1
|
Dige MS, Gurao A, Mehrotra A, Singh MK, Kumar A, Kaushik R, Kataria RS, Rout PK. Deciphering the molecular mechanisms of heat stress tolerance in goats: Insights from transcriptome and Gene Co-expression analysis. J Therm Biol 2024; 125:104007. [PMID: 39489063 DOI: 10.1016/j.jtherbio.2024.104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Climate change poses a significant threat to the sustainability of livestock production systems in developing countries, particularly impacting small ruminants like goats, which are highly susceptible to heat stress. This stressor not only reduces productivity but also undermines economic viability. This study aimed to delve into the molecular mechanisms underlying heat stress tolerance in goats by conducting a comprehensive transcriptome analysis of heat-tolerant (HT, n = 4) and heat-susceptible (HS, n = 6) Jamunapari goats. Physiological metrics, such as rectal temperature, respiratory rate, and heart rate, were meticulously monitored under extreme environmental conditions (Temperature Humidity Index >92) to effectively classify goats based on their distinct heat stress responses. Samples of blood were obtained, and peripheral blood mononuclear cells (PBMCs) were extracted for subsequent RNA extraction. RNA-Seq analysis revealed a sum of 734 differentially expressed genes (DEGs), comprising 251 upregulated and 483 downregulated genes in HT goats compared to their HS counterparts. The WGCNA revealed three key modules, darkorange (tolerance), paleturquoise (respiration rate), and darkmagenta (heart rate). Moreover, functional enrichment analysis revealed that DEGs within these modules played intricate roles in crucial biological processes and pathways, including mitochondrial function, cardiac function, immune response, genomic stability, and metabolic regulation. This research notably enhances our comprehension of the genetic underpinnings of thermo-tolerance in goats and provides invaluable guidance for formulating breeding strategies aimed at bolstering livestock resilience against the challenges of climate change.
Collapse
Affiliation(s)
- Mahesh Shivanand Dige
- Division of Animal Genetic Resources, ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| | - Ankita Gurao
- Division of Animal Genetic Resources, ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| | | | - Manoj Kumar Singh
- Division of Animal Genetics and Breeding, ICAR- Central Institute for Research on Goats, Makhdoom, (Uttar Pradesh), India.
| | - Amit Kumar
- Division of Animal Genetics, ICAR- Indian Veterinary Research Institute, Izzatnagar, (Uttar Pradesh), India.
| | - Rakesh Kaushik
- Division of Animal Genetics and Breeding, ICAR- Central Institute for Research on Goats, Makhdoom, (Uttar Pradesh), India.
| | - Ranjit Singh Kataria
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| | - Pramod Kumar Rout
- Division of Animal Genetics and Breeding, ICAR- Central Institute for Research on Goats, Makhdoom, (Uttar Pradesh), India.
| |
Collapse
|
2
|
She MP, Hsieh YT, Lin LY, Tu CH, Wu MS, Hsin LW, Yu LCH. Differential roles of serotonin receptor subtypes in regulation of neurotrophin receptor expression and intestinal hypernociception. Histol Histopathol 2024; 39:903-919. [PMID: 38108436 DOI: 10.14670/hh-18-687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Aberrant serotonin (5-hydroxytryptamine, 5-HT) metabolism and neurite outgrowth were associated with abdominal pain in irritable bowel syndrome (IBS). We previously demonstrated that 5-HT receptor subtype 7 (5-HT₇) was involved in visceral hypersensitivity of IBS-like mouse models. The aim was to compare the analgesic effects of a novel 5-HT₇ antagonist to reference standards in mouse models and investigate the mechanisms of 5-HT₇-dependent neuroplasticity. METHODS Two mouse models, including Giardia post-infection combined with water avoidance stress (GW) and post-resolution of trinitrobenzene sulfonic acid-induced colitis (PT) were used. Mice were orally administered CYY1005 (CYY, a novel 5-HT₇ antagonist), alosetron (ALN, a 5-HT₃ antagonist), and loperamide (LPM, an opioid receptor agonist) prior to measurement of visceromotor responses (VMR). Levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin receptors (NTRs) were assessed. RESULTS Peroral CYY was more potent than ALN or LPM in reducing VMR values in GW and PT mice. Increased mucosal 5-HT₇-expressing nerve fibers were associated with elevated Gap43 levels in the mouse colon. We observed higher colonic Ntrk2 and Ngfr expression in GW mice, and increased Bdnf expression in PT mice compared with control mice. Human SH-SY5Y cells stimulated with mouse colonic supernatant or exogenous serotonin exhibited longer nerve fibers, which CYY dose-dependently inhibited. Serotonin increased Ntrk1 and Ngfr expression via 5-HT₇ but not 5-HT₃ or 5-HT₄, while Ntrk2 upregulation was dependent on all three 5-HT receptor subtypes. CONCLUSIONS Stronger analgesic effects by peroral CYY were observed compared with reference standards in two IBS-like mouse models. The 5-HT₇-dependent NTR upregulation and neurite elongation may be involved in intestinal hypernociception.
Collapse
Affiliation(s)
- Meng-Ping She
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Yu-Ting Hsieh
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Li-Yu Lin
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Chia-Hung Tu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan ROC
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan ROC
| | - Ling-Wei Hsin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan ROC
- Center for Innovative Therapeutics Discovery, National Taiwan University, Taipei, Taiwan ROC
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC.
| |
Collapse
|
3
|
Sha C, Van Brunt T, Kudria J, Schmidt D, Yurovsky A, Bandovic J, Giarrizzo M, Lin J, Tsirka SA, Bialkowska AB, Wollmuth L, Speer E, Hsieh H. A graded neonatal mouse model of necrotizing enterocolitis demonstrates that mild enterocolitis is sufficient to activate microglia and increase cerebral cytokine expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551849. [PMID: 38746118 PMCID: PMC11092491 DOI: 10.1101/2023.08.03.551849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Necrotizing enterocolitis (NEC) is an inflammatory gastrointestinal process that afflicts approximately 10% of preterm infants born in the United States each year, with a mortality rate of 30%. NEC severity is graded using Bell's classification system, from stage I mild NEC to stage III severe NEC. Over half of NEC survivors present with neurodevelopmental impairment during adolescence, a long-term complication that is poorly understood but can occur even after mild NEC. Although multiple animal models exist, none allow the experimenter to control nor represent the gradient of symptom severities seen in NEC patients. We bridge this knowledge gap by developing a graded murine model of NEC and studying its relationship with neuroinflammation across a range of NEC severities. Methods Postnatal day 3 (P3) C57BL/6 mice were fed a formula containing different concentrations (0% control, 0.25%, 1%, 2%, and 3%) of dextran sodium sulfate (DSS). P3 mice were fed every 3 hours for 72-hours. We collected data on weight gain and behavior (activity, response, body color) during feeding. At the end of the experiment, we collected tissues (intestine, liver, plasma, brain) for immunohistochemistry, immunofluorescence, and cytokine and chemokine analysis. Results Throughout NEC induction, mice fed higher concentrations of DSS died sooner, lost weight faster, and became sick or lethargic earlier. Intestinal characteristics (dilation, color, friability) were worse in mice fed with higher DSS concentrations. Histology revealed small intestinal disarray among mice fed all DSS concentrations, while higher DSS concentrations resulted in reduced small intestinal cellular proliferation and increased hepatic and systemic inflammation. In the brain, IL-2, G-CSF, and CXCL1 concentrations increased with higher DSS concentrations. Although the number of neurons and microglia in the CA1 hippocampal region did not differ, microglial branching was significantly reduced in DSS-fed mice. Conclusion We characterize a novel graded model of NEC that recapitulates the full range of NEC severities. We show that mild NEC is sufficient to initiate neuroinflammation and microglia activation. This model will facilitate studies on the neurodevelopmental effects of NEC.
Collapse
|
4
|
Epstein AA, Janos SN, Menozzi L, Pegram K, Jain V, Bisset LC, Davis JT, Morrison S, Shailaja A, Guo Y, Chao AS, Abdi K, Rikard B, Yao J, Gregory SG, Fisher K, Pittman R, Erkanli A, Gustafson KE, Carrico CWT, Malcolm WF, Inder TE, Cotten CM, Burt TD, Shinohara ML, Maxfield CM, Benner EJ. Subventricular zone stem cell niche injury is associated with intestinal perforation in preterm infants and predicts future motor impairment. Cell Stem Cell 2024; 31:467-483.e6. [PMID: 38537631 PMCID: PMC11129818 DOI: 10.1016/j.stem.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Brain injury is highly associated with preterm birth. Complications of prematurity, including spontaneous or necrotizing enterocolitis (NEC)-associated intestinal perforations, are linked to lifelong neurologic impairment, yet the mechanisms are poorly understood. Early diagnosis of preterm brain injuries remains a significant challenge. Here, we identified subventricular zone echogenicity (SVE) on cranial ultrasound in preterm infants following intestinal perforations. The development of SVE was significantly associated with motor impairment at 2 years. SVE was replicated in a neonatal mouse model of intestinal perforation. Examination of the murine echogenic subventricular zone (SVZ) revealed NLRP3-inflammasome assembly in multiciliated FoxJ1+ ependymal cells and a loss of the ependymal border in this postnatal stem cell niche. These data suggest a mechanism of preterm brain injury localized to the SVZ that has not been adequately considered. Ultrasound detection of SVE may serve as an early biomarker for neurodevelopmental impairment after inflammatory disease in preterm infants.
Collapse
Affiliation(s)
- Adrian A Epstein
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Sara N Janos
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kelly Pegram
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Logan C Bisset
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph T Davis
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha Morrison
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Aswathy Shailaja
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Yingqiu Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Agnes S Chao
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Khadar Abdi
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Blaire Rikard
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Kimberley Fisher
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Rick Pittman
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Al Erkanli
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Kathryn E Gustafson
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | | | - William F Malcolm
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - C Michael Cotten
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Trevor D Burt
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA; Children's Health and Discovery Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Mari L Shinohara
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles M Maxfield
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA.
| | - Eric J Benner
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Müller P, Dietrich D, Schoch S, Pitsch J, Becker AJ, Cases-Cunillera S. Ganglioglioma cells potentiate neuronal network synchronicity and elicit burst discharges via released factors. Neurobiol Dis 2024; 190:106364. [PMID: 38008342 DOI: 10.1016/j.nbd.2023.106364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Gangliogliomas (GGs) represent the most frequent glioneuronal tumor entity associated with chronic recurrent seizures; rare anaplastic GGs variants retain the glioneuronal character. So far, key mechanisms triggering chronic hyperexcitability in the peritumoral area are unresolved. Based on a recent mouse model for anaplastic GG (BRAFV600E, mTOR activation and Trp53KO) we here assessed the influence of GG-secreted factors on non-neoplastic cells in-vitro. We generated conditioned medium (CM) from primary GG cell cultures to developing primary cortical neurons cultured on multielectrode-arrays and assessed their electrical activity in comparison to neurons incubated with naïve and neuronal CMs. Our results showed that the GG CM, while not affecting the mean firing rates of networks, strongly accelerated the formation of functional networks as indicated increased synchrony of firing and burst activity. Washing out the GG CM did not reverse these effects indicating an irreversible effect on the neuronal network. Mass spectrometry analysis of GG CM detected several enriched proteins associated with neurogenesis as well as gliogenesis, including Gap43, App, Apoe, S100a8, Tnc and Sod1. Concomitantly, immunocytochemical analysis of the neuronal cultures exposed to GG CM revealed abundant astrocytes suggesting that the GG-secreted factors induce astroglial proliferation. Pharmacological inhibition of astrocyte proliferation only partially reversed the accelerated network maturation in neuronal cultures exposed to GG CM indicating that the GG CM exerts a direct effect on the neuronal component. Taken together, we demonstrate that GG-derived paracrine signaling alone is sufficient to induce accelerated neuronal network development accompanied by astrocytic proliferation. Perspectively, a deeper understanding of factors involved may serve as the basis for future therapeutic approaches.
Collapse
Affiliation(s)
- Philipp Müller
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany; Department of Epileptology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Albert J Becker
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Silvia Cases-Cunillera
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, 75014 Paris, France.
| |
Collapse
|
6
|
Won MM, Mladenov GD, Raymond SL, Khan FA, Radulescu A. What animal model should I use to study necrotizing enterocolitis? Semin Pediatr Surg 2023; 32:151313. [PMID: 37276781 DOI: 10.1016/j.sempedsurg.2023.151313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unfortunately, we are all too familiar with the statement: "Necrotizing enterocolitis remains the leading cause of gastrointestinal surgical emergency in preterm neonates". It's been five decades since the first animal models of necrotizing enterocolitis (NEC) were described. There remains much investigative work to be done on identifying various aspects of NEC, ranging from the underlying mechanisms to treatment modalities. Experimental NEC is mainly focused on a rat, mouse, and piglet models. Our aim is to not only highlight the pros and cons of these three main models, but to also present some of the less-used animal models that have contributed to the body of knowledge about NEC. Choosing an appropriate model is essential to conducting effective research and answering the questions asked. As such, this paper reviews some of the variations that come with each model.
Collapse
Affiliation(s)
- Mitchell M Won
- School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Georgi D Mladenov
- Division of Pediatric Surgery, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Steven L Raymond
- School of Medicine, Loma Linda University, Loma Linda, CA, USA; Division of Pediatric Surgery, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Faraz A Khan
- School of Medicine, Loma Linda University, Loma Linda, CA, USA; Division of Pediatric Surgery, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Andrei Radulescu
- School of Medicine, Loma Linda University, Loma Linda, CA, USA; Division of Pediatric Surgery, Loma Linda University Children's Hospital, Loma Linda, CA, USA.
| |
Collapse
|
7
|
Ragan MV, Wala SJ, Sajankila N, Duff AF, Wang Y, Volpe SG, Al-Hadidi A, Dumbauld Z, Purayil N, Wickham J, Conces MR, Mihi B, Goodman SD, Bailey MT, Besner GE. Development of a novel definitive scoring system for an enteral feed-only model of necrotizing enterocolitis in piglets. Front Pediatr 2023; 11:1126552. [PMID: 37138566 PMCID: PMC10149862 DOI: 10.3389/fped.2023.1126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Necrotizing enterocolitis (NEC) is a complex inflammatory disorder of the human intestine that most often occurs in premature newborns. Animal models of NEC typically use mice or rats; however, pigs have emerged as a viable alternative given their similar size, intestinal development, and physiology compared to humans. While most piglet NEC models initially administer total parenteral nutrition prior to enteral feeds, here we describe an enteral-feed only piglet model of NEC that recapitulates the microbiome abnormalities present in neonates that develop NEC and introduce a novel multifactorial definitive NEC (D-NEC) scoring system to assess disease severity. Methods Premature piglets were delivered via Caesarean section. Piglets in the colostrum-fed group received bovine colostrum feeds only throughout the experiment. Piglets in the formula-fed group received colostrum for the first 24 h of life, followed by Neocate Junior to induce intestinal injury. The presence of at least 3 of the following 4 criteria were required to diagnose D-NEC: (1) gross injury score ≥4 of 6; (2) histologic injury score ≥3 of 5; (3) a newly developed clinical sickness score ≥5 of 8 within the last 12 h of life; and (4) bacterial translocation to ≥2 internal organs. Quantitative reverse transcription polymerase chain reaction was performed to confirm intestinal inflammation in the small intestine and colon. 16S rRNA sequencing was performed to evaluate the intestinal microbiome. Results Compared to the colostrum-fed group, the formula-fed group had lower survival, higher clinical sickness scores, and more severe gross and histologic intestinal injury. There was significantly increased bacterial translocation, D-NEC, and expression of IL-1α and IL-10 in the colon of formula-fed compared to colostrum-fed piglets. Intestinal microbiome analysis of piglets with D-NEC demonstrated lower microbial diversity and increased Gammaproteobacteria and Enterobacteriaceae. Conclusions We have developed a clinical sickness score and a new multifactorial D-NEC scoring system to accurately evaluate an enteral feed-only piglet model of NEC. Piglets with D-NEC had microbiome changes consistent with those seen in preterm infants with NEC. This model can be used to test future novel therapies to treat and prevent this devastating disease.
Collapse
Affiliation(s)
- Mecklin V. Ragan
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Samantha J. Wala
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Nitin Sajankila
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Audrey F. Duff
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Yijie Wang
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Samuel G. Volpe
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Ameer Al-Hadidi
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Zachary Dumbauld
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Nanditha Purayil
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joseph Wickham
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Miriam R. Conces
- Department of Pathology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Belgacem Mihi
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Gail E. Besner
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
8
|
Kania B, Sotelo A, Ty D, Wisco JJ. The Prevention of Inflammation and the Maintenance of Iron and Hepcidin Homeostasis in the Gut, Liver, and Brain Pathologies. J Alzheimers Dis 2023; 92:769-789. [PMID: 36846996 PMCID: PMC10116142 DOI: 10.3233/jad-220224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The human gut microbiome consists of a variety of microorganisms that inhabit the intestinal tract. This flora has recently been shown to play an important role in human disease. The crosstalk between the gut and brain axis has been investigated through hepcidin, derived from both hepatocytes and dendritic cells. Hepcidin could potentially play an anti-inflammatory role in the process of gut dysbiosis through a means of either a localized approach of nutritional immunity, or a systemic approach. Like hepcidin, mBDNF and IL-6 are part of the gut-brain axis: gut microbiota affects their levels of expression, and this relationship is thought to play a role in cognitive function and decline, which could ultimately lead to a number of neurodegenerative diseases such as Alzheimer's disease. This review will focus on the interplay between gut dysbiosis and the crosstalk between the gut, liver, and brain and how this is mediated by hepcidin through different mechanisms including the vagus nerve and several different biomolecules. This overview will also focus on the gut microbiota-induced dysbiotic state on a systemic level, and how gut dysbiosis can contribute to beginnings and the progression of Alzheimer's disease and neuroinflammation.
Collapse
Affiliation(s)
- Barbara Kania
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Alexis Sotelo
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Darren Ty
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| | - Jonathan J Wisco
- Department of Anatomy and Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Wang Y, Hang C, Hu J, Li C, Zhan C, Pan J, Yuan T. Role of gut-brain axis in neurodevelopmental impairment of necrotizing enterocolitis. Front Neurosci 2023; 17:1059552. [PMID: 36743802 PMCID: PMC9894661 DOI: 10.3389/fnins.2023.1059552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a common gastrointestinal disease of preterm infants with high morbidity and mortality. In survivors of NEC, one of the leading causes of long-term morbidity is the development of severe neurocognitive injury. The exact pathogenesis of neurodevelopmental delay in NEC remains unknown, but microbiota is considered to have dramatic effects on the development and function of the host brain via the gut-brain axis. In this review, we discuss the characteristics of microbiota of NEC, the impaired neurological outcomes, and the role of the complex interplay between the intestinal microbiota and brain to influence neurodevelopment in NEC. The increasing knowledge of microbial-host interactions has the potential to generate novel therapies for manipulating brain development in the future.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Children’s Hospital of Zhejiang University, Hangzhou, China
| | - Chengcheng Hang
- Department of Neonatology, Children’s Hospital of Zhejiang University, Hangzhou, China
| | - Jun Hu
- Department of Surgical Intensive Care Unit, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chen Li
- Department of Neonatology, Children’s Hospital of Zhejiang University, Hangzhou, China
| | - Canyang Zhan
- Department of Neonatology, Children’s Hospital of Zhejiang University, Hangzhou, China
| | - Jiarong Pan
- Department of Neonatology, Children’s Hospital of Zhejiang University, Hangzhou, China
| | - Tianming Yuan
- Department of Neonatology, Children’s Hospital of Zhejiang University, Hangzhou, China,*Correspondence: Tianming Yuan,
| |
Collapse
|
10
|
Sun J, Akıllıoğlu HG, Aasmul‐Olsen K, Ye Y, Lund P, Zhao X, Brunse A, Nielsen CF, Chatterton DEW, Sangild PT, Lund MN, Bering SB. Ultra-High Temperature Treatment and Storage of Infant Formula Induces Dietary Protein Modifications, Gut Dysfunction, and Inflammation in Preterm Pigs. Mol Nutr Food Res 2022; 66:e2200132. [PMID: 36052940 PMCID: PMC9786312 DOI: 10.1002/mnfr.202200132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/10/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Ready-to-feed liquid infant formula is increasingly used for preterm infants when human milk is unavailable. These formulas are sterilized by ultra-high temperature treatment, but heating and storage may reduce bioactivity and increase formation of Maillard reaction products with potential negative consequences for immature newborns. METHODS AND RESULTS Using preterm pigs as a model for sensitive newborn infants, the study tests the intestinal responses of feeding experimental liquid formula within 5 days. A pasteurized formula (PAST) with the same nutrient composition but less protein modifications serves as control to ultra-high temperature-treated formula without (UHT) and with prolonged storage (SUHT). Relative to PAST, UHT contains lower levels of lactoferrin and IgG. Additional storage (40 °C, 60 days, SUHT) reduces antimicrobial capacity and increases non-reducible protein aggregates and Maillard reaction products (up to 13-fold). Pigs fed SUHT have more diarrhea and show signs of intestinal inflammation (necrotizing enterocolitis) compared with pigs fed PAST and UHT. These clinical effects are accompanied by accumulation of Maillard reaction products, protein cross-links, and inflammatory responses in the gut. CONCLUSION The results demonstrate that feeding UHT infant formulas, particularly after prolonged storage, adversely affects gut maturation and function in preterm pigs used as a model of preterm infants.
Collapse
Affiliation(s)
- Jing Sun
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| | - Halise Gül Akıllıoğlu
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Karoline Aasmul‐Olsen
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| | - Yuhui Ye
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Pernille Lund
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Xiao Zhao
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
| | - Anders Brunse
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| | | | | | - Per Torp Sangild
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
- Department of Pediatrics and Adolescent MedicineRigshospitaletBlegdamsvej 9Copenhagen Ø2100Denmark
- Hans Christian Andersen Children's HospitalJ. B. Winsløws Vej 4Odense C5000Denmark
| | - Marianne N. Lund
- Department of Food ScienceUniversity of CopenhagenRolighedsvej 26Frederiksberg1958Denmark
- Department of Biomedical SciencesUniversity of CopenhagenBlegdamsvej 3BCopenhagen N2200Denmark
| | - Stine Brandt Bering
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesUniversity of CopenhagenDyrlægevej 68Frederiksberg C1870Denmark
| |
Collapse
|
11
|
Berken JA, Chang J. Neurologic consequences of neonatal necrotizing enterocolitis. Dev Neurosci 2022; 44:295-308. [PMID: 35697005 DOI: 10.1159/000525378] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease of the premature infant with high mortality and morbidity. Children who survive NEC have been shown to demonstrate neurodevelopmental delay, with significantly worse outcomes than from prematurity alone. The pathways leading to NEC-associated neurological impairments remain unclear, limiting the development of preventative and protective strategies. This review aims to summarize the existing clinical and experimental studies related to NEC-associated brain injury. We describe the current epidemiology of NEC, reported long-term neurodevelopmental outcomes among survivors, and proposed pathogenesis of brain injury in NEC. Highlighted are the potential connections between hypoxia-ischemia, nutrition, infection, gut inflammation, and the developing brain in NEC.
Collapse
Affiliation(s)
- Jonathan A Berken
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Jill Chang
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA,
- Division of Neonatal-Perinatal Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA,
| |
Collapse
|
12
|
He Y, Zhang Y, Li F, Shi Y. White Matter Injury in Preterm Infants: Pathogenesis and Potential Therapy From the Aspect of the Gut–Brain Axis. Front Neurosci 2022; 16:849372. [PMID: 35573292 PMCID: PMC9099073 DOI: 10.3389/fnins.2022.849372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Very preterm infants who survive are at high risk of white matter injury (WMI). With a greater understanding of the pathogenesis of WMI, the gut microbiota has recently drawn increasing attention in this field. This review tries to clarify the possible mechanisms behind the communication of the gut bacteria and the immature brain via the gut–brain axis. The gut microbiota releases signals, such as microbial metabolites. These metabolites regulate inflammatory and immune responses characterized by microglial activation, which ultimately impact the differentiation of pre-myelinating oligodendrocytes (pre-OLs) and lead to WMI. Moreover, probiotics and prebiotics emerge as a promising therapy to improve the neurodevelopmental outcome. However, future studies are required to clarify the function of these above products and the optimal time for their administration within a larger population. Based on the existing evidence, it is still too early to recommend probiotics and prebiotics as effective treatments for WMI.
Collapse
Affiliation(s)
- Yu He
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yuni Zhang
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Fang Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- *Correspondence: Fang Li,
| | - Yuan Shi
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Yuan Shi,
| |
Collapse
|
13
|
Pan X, Muk T, Ren S, Nguyen DN, Shen RL, Gao F, Sangild PT. Blood transcriptomic markers of necrotizing enterocolitis in preterm pigs. Pediatr Res 2022; 91:1113-1120. [PMID: 34112973 DOI: 10.1038/s41390-021-01605-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC), a severe gut disorder in preterm infants, is difficult to predict due to poor specificity and sensitivity of clinical signs and biomarkers. Using preterm piglets as a model, we hypothesized that early development of NEC affects blood gene expression, potentially related to early systemic immune responses. METHODS A retrospective analysis of clinical, tissue, and blood data was performed on 129 formula-fed piglets with NEC diagnosis at necropsy on day 5. Subgroups of NEC (n = 20) and control piglets (CON, n = 19) were analyzed for whole-blood transcriptome. RESULTS Preterm piglets had variable NEC lesions, especially in the colon region, without severe clinical signs (e.g. normal growth, activity, hematology, digestion, few piglets with bloody stools). Transcriptome analysis showed 344 differentially expressed genes (DEGs) between NEC and CON piglets. Validation experiment showed that AOAH, ARG2, FKBP5, PAK2, and STAT3 were among the genes affected by severe lesions on day 5, when analyzed in whole blood and in dried blood spots (DBS). CONCLUSION Whole-blood gene expressions may be affected in preterm pigs before clinical signs of NEC get severe. Blood gene expression analysis, potentially using DBS samples, is a novel tool to help identify new early biomarkers of NEC. IMPACT Preterm pig model was used to investigate if blood transcriptomics could be used to identify new early blood biomarkers of NEC progression. Whole-blood transcriptome revealed upregulation of target genes in NEC cases when clinical symptoms are subtle, and mainly colon regions were affected. Differential NEC-associated gene expressions could be detected also in dried blood spots, potentially allowing easy collection of small blood volumes in infants.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tik Muk
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shuqiang Ren
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rene L Shen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fei Gao
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,H.C. Andersen Childrens Hospital, Odense University Hospital, University of Southern Denmark, Odense, Denmark. .,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
14
|
Jiang JK, Wang C, Yin R, Jiang ZD. Functional status of brainstem auditory pathway in babies born below 30 week gestation with necrotizing enterocolitis. Brain Dev 2022; 44:263-270. [PMID: 35042649 DOI: 10.1016/j.braindev.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Recent studies showed that neonatal necrotizing enterocolitis (NEC) adversely affects the brainstem auditory pathway in babies born at 30-40 week gestation. We compared the functional status of the pathway between babies born below 30 week gestation with NEC and those without NEC for any differences to understand whether NEC also affects the pathway in babies born at a smaller gestation. METHOD Brainstem auditory evoked response was studied at term in NEC babies born below 30 week gestation. The data obtained were compared with age-matched non-NEC babies for any abnormalities, and then compared with previously reported NEC babies born at 30-34 week gestation for any differences. RESULTS Although the latencies of waves I and III did not differ significantly between NEC and non-NEC babies, wave V latency in NEC babies was longer than in non-NEC babies at all click rates used. In particular, I-V interpeak interval, reflecting brainstem conduction time, in NEC babies was significant longer than in non-NEC babies. Wave V amplitude and the V/I amplitude ratios in NEC babies was smaller than in non-NEC babies at some click rates. The I-V interval in our NEC babies born below 30 week gestation was longer than in previously reported NEC babies born at 30-34 week gestation at all click rates. CONCLUSION NEC babies born below 30 week gestation are associated with delayed brainstem conduction time. Functional status of the brainstem auditory pathway in NEC babies born below 30 week gestation is less favorable than that in those with greater gestation.
Collapse
Affiliation(s)
- James Ken Jiang
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Cui Wang
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Rong Yin
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Ze Dong Jiang
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Muk T, Stensballe A, Dmytriyeva O, Brunse A, Jiang PP, Thymann T, Sangild PT, Pankratova S. Differential Brain and Cerebrospinal Fluid Proteomic Responses to Acute Prenatal Endotoxin Exposure. Mol Neurobiol 2022; 59:2204-2218. [PMID: 35064541 DOI: 10.1007/s12035-022-02753-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Chorioamnionitis (CA) is a risk factor for preterm birth and is associated with neurodevelopmental delay and cognitive disorders. Prenatal inflammation-induced brain injury may resolve during the immediate postnatal period when rapid brain remodeling occurs. Cerebrospinal fluid (CSF) collected at birth may be a critical source of predictive biomarkers. Using pigs as a model of preterm infants exposed to CA, we hypothesized that prenatal lipopolysaccharide (LPS) exposure induces proteome changes in the CSF and brain at birth and postnatally. Fetal piglets (103 days gestation of full-term at 117 days) were administered intra-amniotic (IA) lipopolysaccharide (LPS) 3 days before preterm delivery by caesarian section. CSF and brain tissue were collected on postnatal Days 1 and 5 (P1 and P5). CSF and hippocampal proteins were profiled by LC-MS-based quantitative proteomics. Neuroinflammatory responses in the cerebral cortex, periventricular white matter and hippocampus were evaluated by immunohistochemistry, and gene expression was evaluated by qPCR. Pigs exposed to LPS in utero showed changes in CSF protein levels at birth but not at P5. Complement protein C3, hemopexin, vasoactive intestinal peptide, carboxypeptidase N subunit 2, ITIH1, and plasminogen expression were upregulated in the CSF, while proteins associated with axon growth and synaptic functions (FGFR1, BASP1, HSPD1, UBER2N, and RCN2), adhesion (talin1), and neuronal survival (Atox1) were downregulated. Microglia, but not astrocytes, were activated by LPS at P5 in the hippocampus but not in other brain regions. At this time, marginal increases in complement protein C3, LBP, HIF1a, Basp1, Minpp1, and FGFR1 transcription indicated hippocampal proinflammatory responses. In conclusion, few days exposure to endotoxin prenatally induce proteome changes in the CSF and brain at birth, but most changes resolve a few days later. The developing hippocampus has high neuronal plasticity in response to perinatal inflammation. Changes in CSF protein expression at birth may predict later structural brain damage in preterm infants exposed to variable types and durations of CA-related inflammation in utero.
Collapse
Affiliation(s)
- Tik Muk
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Oksana Dmytriyeva
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anders Brunse
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ping-Ping Jiang
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.,Department of Paediatrics, Odense University Hospital, Odense, Denmark
| | - Stanislava Pankratova
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
16
|
Chandramowlishwaran P, Raja S, Maheshwari A, Srinivasan S. Enteric Nervous System in Neonatal Necrotizing Enterocolitis. Curr Pediatr Rev 2022; 18:9-24. [PMID: 34503418 DOI: 10.2174/1573396317666210908162745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The pathophysiology of necrotizing enterocolitis (NEC) is not clear, but increasing information suggests that the risk and severity of NEC may be influenced by abnormalities in the enteric nervous system (ENS). OBJECTIVE The purpose of this review was to scope and examine the research related to ENS-associated abnormalities that have either been identified in NEC or have been noted in other inflammatory bowel disorders (IBDs) with histopathological abnormalities similar to NEC. The aim was to summarize the research findings, identify research gaps in existing literature, and disseminate them to key knowledge end-users to collaborate and address the same in future studies. METHODS Articles that met the objectives of the study were identified through an extensive literature search in the databases PubMed, EMBASE, and Scopus. RESULTS The sources identified through the literature search revealed that: (1) ENS may be involved in NEC development and post-NEC complications, (2) NEC development is associated with changes in the ENS, and (3) NEC-associated changes could be modulated by the ENS. CONCLUSION The findings from this review identify the enteric nervous as a target in the development and progression of NEC. Thus, factors that can protect the ENS can potentially prevent and treat NEC and post-NEC complications. This review serves to summarize the existing literature and highlights a need for further research on the involvement of ENS in NEC.
Collapse
Affiliation(s)
- Pavithra Chandramowlishwaran
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| | - Shreya Raja
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Shanthi Srinivasan
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
17
|
Zheng K, Lin L, Jiang W, Chen L, Zhang X, Zhang Q, Ren Y, Hao J. Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. J Cereb Blood Flow Metab 2022; 42:56-73. [PMID: 34496660 PMCID: PMC8721774 DOI: 10.1177/0271678x211026770] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ischemic stroke (IS) is a detrimental neurological disease with limited treatments options. It has been challenging to define the roles of brain cell subsets in IS onset and progression due to cellular heterogeneity in the CNS. Here, we employed single-cell RNA sequencing (scRNA-seq) to comprehensively map the cell populations in the mouse model of MCAO (middle cerebral artery occlusion). We identified 17 principal brain clusters with cell-type specific gene expression patterns as well as specific cell subpopulations and their functions in various pathways. The CNS inflammation triggered upregulation of key cell type-specific genes unpublished before. Notably, microglia displayed a cell differentiation diversity after stroke among its five distinct subtypes. Importantly, we found the potential trajectory branches of the monocytes/macrophage's subsets. Finally, we also identified distinct subclusters among brain vasculature cells, ependymal cells and other glia cells. Overall, scRNA-seq revealed the precise transcriptional changes during neuroinflammation at the single-cell level, opening up a new field for exploration of the disease mechanisms and drug discovery in stroke based on the cell-subtype specific molecules.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingmin Lin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Chen
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiyue Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qian Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Junwei Hao, Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
18
|
Qiu M, Zong JB, He QW, Liu YX, Wan Y, Li M, Zhou YF, Wu JH, Hu B. Cell Heterogeneity Uncovered by Single-Cell RNA Sequencing Offers Potential Therapeutic Targets for Ischemic Stroke. Aging Dis 2022; 13:1436-1454. [PMID: 36186129 PMCID: PMC9466965 DOI: 10.14336/ad.2022.0212] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/12/2022] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke is a detrimental neurological disease characterized by an irreversible infarct core surrounded by an ischemic penumbra, a salvageable region of brain tissue. Unique roles of distinct brain cell subpopulations within the neurovascular unit and peripheral immune cells during ischemic stroke remain elusive due to the heterogeneity of cells in the brain. Single-cell RNA sequencing (scRNA-seq) allows for an unbiased determination of cellular heterogeneity at high-resolution and identification of cell markers, thereby unveiling the principal brain clusters within the cell-type-specific gene expression patterns as well as cell-specific subclusters and their functions in different pathways underlying ischemic stroke. In this review, we have summarized the changes in differentiation trajectories of distinct cell types and highlighted the specific pathways and genes in brain cells that are impacted by stroke. This review is expected to inspire new research and provide directions for investigating the potential pathological mechanisms and novel treatment strategies for ischemic stroke at the level of a single cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie-hong Wu
- Correspondence should be addressed to: Dr. Bo Hu () and Dr. Jie-hong Wu (), Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Correspondence should be addressed to: Dr. Bo Hu () and Dr. Jie-hong Wu (), Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Filev AD, Kostyuk SV, Umriukhin PE, Pisarev VM. Oxidized Cell-Free DNA Rapidly Skews the Transcriptional Profile of Brain Cells toward Boosting Neurogenesis and Neuroplasticity. Curr Issues Mol Biol 2021; 43:1583-1591. [PMID: 34698136 PMCID: PMC8929019 DOI: 10.3390/cimb43030112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Cell-free DNA (cfDNA) is liberated and accumulated in neural tissue due to cell damage. The oxidative and nitrosative stress in the brain that accompanies various pathological conditions has been shown to increase the oxidation of cellular and cell-free DNA. Whether the high concentration of non-oxidized and oxidized cfDNA may affect the transcriptome response of brain cells has not been studied. In the current work, we studied whether cfDNA fragments affect several key pathways, including neurogenesis, at the level of gene expression in brain cells. In the study, primary rat cerebellum cell cultures were used to assess the effects of oxidized and non-oxidized cfDNA on the expression of 91 genes in brain cells. We found that only oxidized cfDNA, not non-oxidized cfDNA, significantly altered the transcription in brain cells in 3 h. The pattern of change included all 10 upregulated genes (S100A8, S100A9, S100b, TrkB, Ngf, Pink1, Aqp4, Nmdar, Kcnk2, Mapk1) belonging to genes associated with neurogenesis and neuroplasticity. The expression of inflammatory and apoptosis genes, which oppose neurogenesis, decreased. The results show that the oxidized form of cfDNA positively regulates early gene expression of neurogenesis and neuroplasticity. At the same time, the question of whether chronic elevation of cfDNA concentration alters brain cells remains unexplored.
Collapse
Affiliation(s)
- Anton D. Filev
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
- Correspondence:
| | - Svetlana V. Kostyuk
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Pavel E. Umriukhin
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir M. Pisarev
- Research Centre for Medical Genetics (RCMG), 115478 Moscow, Russia; (S.V.K.); (P.E.U.); (V.M.P.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| |
Collapse
|
20
|
Sangild PT, Strunk T, Currie AJ, Nguyen DN. Editorial: Immunity in Compromised Newborns. Front Immunol 2021; 12:732332. [PMID: 34381463 PMCID: PMC8350506 DOI: 10.3389/fimmu.2021.732332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Per T. Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Tobias Strunk
- Centre for Molecular Medicine & Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA, Australia
- Neonatal Directorate, Child and Adolescent Health Service, Western, Australia
| | - Andrew J. Currie
- Neonatal Directorate, Child and Adolescent Health Service, Western, Australia
- Centre for Neonatal Research and Education, The University of Western Australia, Perth, WA, Australia
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
21
|
Zhou Q, Niño DF, Yamaguchi Y, Wang S, Fulton WB, Jia H, Lu P, Prindle T, Pamies D, Morris M, Chen LL, Sodhi CP, Hackam DJ. Necrotizing enterocolitis induces T lymphocyte-mediated injury in the developing mammalian brain. Sci Transl Med 2021; 13:13/575/eaay6621. [PMID: 33408187 DOI: 10.1126/scitranslmed.aay6621] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Necrotizing enterocolitis (NEC) causes acute intestinal necrosis in premature infants and is associated with severe neurological impairment. In NEC, Toll-like receptor 4 is activated in the intestinal epithelium, and NEC-associated brain injury is characterized by microglial activation and white matter loss through mechanisms that remain unclear. We now show that the brains of mice and humans with NEC contained CD4+ T lymphocytes that were required for the development of brain injury. Inhibition of T lymphocyte influx into the brains of neonatal mice with NEC reduced inflammation and prevented myelin loss. Adoptive intracerebroventricular delivery of gut T lymphocytes from mice with NEC into Rag1 -/- recipient mice lacking CD4+ T cells resulted in brain injury. Brain organoids derived from mice with or without NEC and from human neuronal progenitor cells revealed that IFN-γ release by CD4+ T lymphocytes induced microglial activation and myelin loss in the organoids. IFN-γ knockdown in CD4+ T cells derived from mice with NEC abrogated the induction of NEC-associated brain injury after adoptive transfer to naïve Rag1 -/- recipient mice. T cell receptor sequencing revealed that NEC mouse brain-derived T lymphocytes shared homology with gut T lymphocytes from NEC mice. Intraperitoneal injection of NEC gut-derived CD4+ T lymphocytes into naïve Rag1 -/- recipient mice induced brain injury, suggesting that gut-derived T lymphocytes could mediate neuroinflammation in NEC. These findings indicate that NEC-associated brain injury may be induced by gut-derived IFN-γ-releasing CD4+ T cells, suggesting that early management of intestinal inflammation in children with NEC could improve neurological outcomes.
Collapse
Affiliation(s)
- Qinjie Zhou
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diego F Niño
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yukihiro Yamaguchi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanxia Wang
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Fulton
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongpeng Jia
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peng Lu
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Prindle
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins School of Public Health, Baltimore, MD, USA.,Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Meaghan Morris
- Division of Neuropathology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Liam L Chen
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Chhinder P Sodhi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA. .,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Hackam
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA. .,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Effect of Xenon Treatment on Gene Expression in Brain Tissue after Traumatic Brain Injury in Rats. Brain Sci 2021; 11:brainsci11070889. [PMID: 34356124 PMCID: PMC8301933 DOI: 10.3390/brainsci11070889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/21/2023] Open
Abstract
The overactivation of inflammatory pathways and/or a deficiency of neuroplasticity may result in the delayed recovery of neural function in traumatic brain injury (TBI). A promising approach to protecting the brain tissue in TBI is xenon (Xe) treatment. However, xenon's mechanisms of action remain poorly clarified. In this study, the early-onset expression of 91 target genes was investigated in the damaged and in the contralateral brain areas (sensorimotor cortex region) 6 and 24 h after injury in a TBI rat model. The expression of genes involved in inflammation, oxidation, antioxidation, neurogenesis and neuroplasticity, apoptosis, DNA repair, autophagy, and mitophagy was assessed. The animals inhaled a gas mixture containing xenon and oxygen (ϕXe = 70%; ϕO2 25-30% 60 min) 15-30 min after TBI. The data showed that, in the contralateral area, xenon treatment induced the expression of stress genes (Irf1, Hmox1, S100A8, and S100A9). In the damaged area, a trend towards lower expression of the inflammatory gene Irf1 was observed. Thus, our results suggest that xenon exerts a mild stressor effect in healthy brain tissue and has a tendency to decrease the inflammation following damage, which might contribute to reducing the damage and activating the early compensatory processes in the brain post-TBI.
Collapse
|
23
|
Chen W, Sun J, Kappel SS, Gormsen M, Sangild PT, Aunsholt L. Gut transit time, using radiological contrast imaging, to predict early signs of necrotizing enterocolitis. Pediatr Res 2021; 89:127-133. [PMID: 32244249 DOI: 10.1038/s41390-020-0871-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/07/2020] [Accepted: 03/04/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Immature gut motility in preterm neonates may be a risk factor for necrotizing enterocolitis (NEC). Using preterm pigs as a model for infants, we hypothesized that intestinal dysmotility precedes NEC development. METHODS Eighty-five preterm pigs were fed increasing amounts of milk diets to induce NEC lesions, as detected at autopsy on day 5. Gut transit time was determined on day 4 by x-ray imaging after oral intake of contrast solution. RESULTS No clinical or radiological signs of NEC were detected on day 4, but macroscopic NEC lesions were recorded in 59% of pigs (n = 50) on day 5. Relative to pigs without NEC (noNEC, n = 35), pigs with small intestinal lesions (siNEC, n = 18) showed delayed stomach emptying time (StEmpty) and time for contrast to reach cecum (ToCecum) already on day 4. Pigs with lesions only in colon (coNEC, n = 20) showed more diarrhea, shorter ToCecum time, but longer small intestinal emptying time (SiEmpty). ToCecum time predicted siNEC and coNEC lesions with a receiver-operator characteristic area under the curve of 78-81%. CONCLUSIONS Region-dependent changes in gut transit time is associated with early NEC development in preterm pigs. How gut dysmotility is related to NEC in preterm infants requires further investigations. IMPACT Using preterm pigs as a model for preterm infants, we show that gut transit time, using serial x-ray contrast imaging, was changed in individuals with NEC-like lesions before they showed the typical radiological signs of NEC. Thus prolonged transit time across the entire gut was recorded when NEC lesions appeared in the small intestine but not when lesions were detected only in the colon. Until now, recordings of food transit have mainly investigated changes in the upper gut. Using serial x-rays, this study describes food transit across the entire gut and documents a region-dependent effect of NEC lesions on gut transit changes in preterm individuals. The findings provide proof of concept for use of x-ray contrast imaging as a tool to monitor gut transit in preterm pigs as models for infants. Delayed passage across the entire gut may be an early sign of small intestinal NEC, at least in pigs. More studies are needed to confirm relations in infants. In the future, it might be possible to use x-ray contrast imaging in preterm infants to better understand gut motility in relation to early NEC progression and need for medical NEC treatment.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Neonatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.,Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jing Sun
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanne S Kappel
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
| | | | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Lise Aunsholt
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
24
|
Karadeniz Cerit K, Koyuncuoğlu T, Yağmur D, Peker Eyüboğlu İ, Şirvancı S, Akkiprik M, Aksu B, Dağlı ET, Yeğen BÇ. Nesfatin-1 ameliorates oxidative bowel injury in rats with necrotizing enterocolitis: The role of the microbiota composition and claudin-3 expression. J Pediatr Surg 2020; 55:2797-2810. [PMID: 32171536 DOI: 10.1016/j.jpedsurg.2020.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Ongoing high mortality due to necrotizing enterocolitis (NEC) necessitates the investigation of novel treatments to improve the outcome of the affected newborns. The aim was to elucidate the potential therapeutic impact of the nesfatin-1, a peptide with anti-inflammatory and anti-apoptotic effects in several inflammatory processes, on NEC-induced newborn rats. MATERIALS AND METHODS Sprague-Dawley pups were separated from their mothers, fed with a hyperosmolar formula and exposed to hypoxia, while control pups had no intervention. NEC-induced pups received saline or nesfatin-1 (0.2 μg/kg/day) for 3 days, while some nesfatin-1 treated pups were injected with capsaicin (50 μg/g) for the chemical ablation of afferent neurons. On the 4th day, clinical state and macroscopic gut assessments were made. In intestines, immunohistochemical staining of cycloxygenase-2 (COX-2), nuclear factor (NF)-κB-p65 (RelA), vascular endothelial growth factor (VEGF), claudin-3 and zonula occludens-1 (ZO-1) were performed, while gene expressions of COX-2, occludin, claudin-3, NF-κB-p65 (RelA) and VEGF were determined using q-PCR. In fecal samples, relative abundance of bacteria was quantified by q-PCR. Biochemical evaluation of oxidant/antioxidant parameters was performed in both intestinal and cerebral tissues. RESULTS Claudin-3 and ZO-1 immunoreactivity scores were significantly elevated in the nesfatin-1 treated control pups. Nesfatin-1 reduced NEC-induced high macroscopic and clinical scores, inhibited NF-κB-65 pathway and maintained the balance of oxidant/antioxidant systems. NEC increased the abundance of Proteobacteria with a concomitant reduction in Actinobacteria and Bacteroidetes, while nesfatin-1 treatment reversed these alterations. Modulatory effects of nesfatin-1 on microbiota and oxidative injury were partially reversed by capsaicin. Immunohistochemistry demonstrated that nesfatin-1 abolished NEC-induced reduction in claudin-3. Gene expressions of COX-2, NF-κB, occludin and claudin-3 were elevated in saline-treated NEC pups, while these up-regulated mRNA levels were not further altered in nesfatin-1-treated NEC pups. CONCLUSION Nesfatin-1 could be regarded as a potential preventive agent for the treatment of NEC.
Collapse
Affiliation(s)
| | - Türkan Koyuncuoğlu
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Damla Yağmur
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - İrem Peker Eyüboğlu
- Department of Medical Biology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Serap Şirvancı
- Department of Histology & Embryology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Mustafa Akkiprik
- Department of Medical Biology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Burak Aksu
- Department of Medical Microbiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - E Tolga Dağlı
- Department of Pediatric Surgery, Marmara University, School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
25
|
Lang GP, Ndongson-Dongmo B, Lajqi T, Brodhun M, Han Y, Wetzker R, Frasch MG, Bauer R. Impact of ambient temperature on inflammation-induced encephalopathy in endotoxemic mice-role of phosphoinositide 3-kinase gamma. J Neuroinflammation 2020; 17:292. [PMID: 33028343 PMCID: PMC7541275 DOI: 10.1186/s12974-020-01954-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is an early and frequent event of infection-induced systemic inflammatory response syndrome. Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and inflammation-related microglial activity. In homeotherms, variations in ambient temperature (Ta) outside the thermoneutral zone lead to thermoregulatory responses, mainly driven by a gradually increasing sympathetic activity, and may affect disease severity. We hypothesized that thermoregulatory response to hypothermia (reduced Ta) aggravates SAE in PI3Kγ-dependent manner. METHODS Experiments were performed in wild-type, PI3Kγ knockout, and PI3Kγ kinase-dead mice, which were kept at neutral (30 ± 0.5 °C) or moderately lowered (26 ± 0.5 °C) Ta. Mice were exposed to lipopolysaccharide (LPS, 10 μg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection)-evoked systemic inflammatory response (SIR) and monitored 24 h for thermoregulatory response and blood-brain barrier integrity. Primary microglial cells and brain tissue derived from treated mice were analyzed for inflammatory responses and related cell functions. Comparisons between groups were made with one-way or two-way analysis of variance, as appropriate. Post hoc comparisons were made with the Holm-Sidak test or t tests with Bonferroni's correction for adjustments of multiple comparisons. Data not following normal distribution was tested with Kruskal-Wallis test followed by Dunn's multiple comparisons test. RESULTS We show that a moderate reduction of ambient temperature triggers enhanced hypothermia of mice undergoing LPS-induced systemic inflammation by aggravated SAE. PI3Kγ deficiency enhances blood-brain barrier injury and upregulation of matrix metalloproteinases (MMPs) as well as an impaired microglial phagocytic activity. CONCLUSIONS Thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range exacerbates LPS-induced blood-brain barrier injury and neuroinflammation. PI3Kγ serves a protective role in suppressing release of MMPs, maintaining microglial motility and reinforcing phagocytosis leading to improved brain tissue integrity. Thus, preclinical research targeting severe brain inflammation responses is seriously biased when basic physiological prerequisites of mammal species such as preferred ambient temperature are ignored.
Collapse
Affiliation(s)
- Guang-Ping Lang
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Joint International Research Laboratory of Ethnomedicine and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563006 China
| | - Bernadin Ndongson-Dongmo
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Trim Lajqi
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
- Department of Neonatology, University Children’s Hospital, Heidelberg, Germany
| | - Michael Brodhun
- Department of Pathology, Helios-Klinikum Erfurt, Erfurt, Germany
| | - Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany
| |
Collapse
|
26
|
Matei A, Montalva L, Goodbaum A, Lauriti G, Zani A. Neurodevelopmental impairment in necrotising enterocolitis survivors: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 2020; 105:432-439. [PMID: 31801792 DOI: 10.1136/archdischild-2019-317830] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
AIM To determine (1) the incidence of neurodevelopmental impairment (NDI) in necrotising enterocolitis (NEC), (2) the impact of NEC severity on NDI in these babies and (3) the cerebral lesions found in babies with NEC. METHODS Systematic review: three independent investigators searched for studies reporting infants with NDI and a history of NEC (PubMed, Medline, Cochrane Collaboration, Scopus). Meta-analysis: using RevMan V.5.3, we compared NDI incidence and type of cerebral lesions between NEC infants versus preterm infants and infants with medical vs surgical NEC. RESULTS Of 10 674 abstracts screened, 203 full-text articles were examined. In 31 studies (n=2403 infants with NEC), NDI incidence was 40% (IQR 28%-64%) and was higher in infants with surgically treated NEC (43%) compared with medically managed NEC (27%, p<0.00001). The most common NDI in NEC was cerebral palsy (18%). Cerebral lesions: intraventricular haemorrhage (IVH) was more common in NEC babies (26%) compared with preterm infants (18%; p<0.0001). There was no difference in IVH incidence between infants with surgical NEC (25%) and those treated medically (20%; p=0.4). The incidence of periventricular leukomalacia (PVL) was significantly increased in infants with NEC (11%) compared with preterm infants (5%; p<0.00001). CONCLUSIONS This study shows that a large proportion of NEC survivors has NDI. NEC babies are at higher risk of developing IVH and/or PVL than babies with prematurity alone. The degree of NDI seems to correlate to the severity of gut damage, with a worse status in infants with surgical NEC compared with those with medical NEC. TRIAL REGISTRATION NUMBER CRD42019120522.
Collapse
Affiliation(s)
- Andreea Matei
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Louise Montalva
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexa Goodbaum
- Division of General and Thoracic Surgery, Department of Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giuseppe Lauriti
- Department of Pediatric Surgery, Spirito Santo Hospital, Pescara, Italy.,G. d'Annunzio University, Chieti-Pescara, Italy
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Mendez YS, Khan FA, Perrier GV, Radulescu A. Animal models of necrotizing enterocolitis. WORLD JOURNAL OF PEDIATRIC SURGERY 2020; 3:e000109. [DOI: 10.1136/wjps-2020-000109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
BackgroundNecrotizing enterocolitis (NEC) is one of the leading causes of death in premature infants. To determine the factors present in the disease that lead to increased morbidity and mortality, manipulation of variables that are shown to have a positive response has been tested using various animal models. Testing and manipulation of these variables are unwarranted in humans due to regulatory health standards.MethodsThe purpose of this review is to provide an update to previous summaries that determine the significance of animal models in studying the mechanisms of NEC. A large variety of animal models including rats, mice, rabbits, piglets, nonhuman primates, and quails have been described in literature. We reviewed the reported animal models of NEC and examined the pros and cons of the various models as well as the scientific question addressed.ResultsThe animals used in these experiments were subject to gavage feeding, hypoxia, hypothermia, oxygen perfusion, and other methods to induce the disease state. Each of these models has been utilized to show the effects of NEC on the premature, undeveloped gut in animals to find a correlation to the disease state present in humans. We found specific advantages and disadvantages for each model.ConclusionsRecent advances in our understanding of NEC and the ongoing therapeutic strategy developments underscore the importance of animal models for this disease.
Collapse
|
28
|
Molina TL, Stoll B, Mohammad M, Mohila CA, Call L, Cui L, Guthrie G, Kunichoff D, Lin S, Welch-Jernigan R, Nielsen J, Premkumar M, Robinson J, Smith V, Teets H, Obelitz-Ryom K, Hagan J, Cruz S, Lau P, Puyau M, Shypailo R, Manjarin R, Butte N, Fang Z, Olutoye O, Thymann T, Sangild P, Burrin D. New generation lipid emulsions increase brain DHA and improve body composition, but not short-term neurodevelopment in parenterally-fed preterm piglets. Brain Behav Immun 2020; 85:46-56. [PMID: 31026499 PMCID: PMC6813879 DOI: 10.1016/j.bbi.2019.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
New generation, multicomponent parenteral lipid emulsions provide key fatty acids for brain growth and development, such as docosahexaenoic acid (DHA) and arachidonic acid (AA), yet the content may be suboptimal for preterm infants. Our aim was to test whether DHA and AA-enriched lipid emulsions would increase activity, growth, and neurodevelopment in preterm piglets and limit brain inflammation. Cesarean-delivered preterm pigs were given three weeks of either enteral preterm infant formula (ENT) or TPN with one of three parenteral lipid emulsions: Intralipid (IL), SMOFlipid (SMOF) or an experimental emulsion (EXP). Activity was continuously monitored and weekly blood sampling and behavioral field testing performed. At termination of the study, whole body and tissue metrics were collected. Neuronal density was assessed in sections of hippocampus (HC), thalamus, and cortex. Frontal cortex (FC) and HC tissue were assayed for fatty acid profiles and expression of genes of neuronal growth and inflammation. After 3 weeks of treatment, brain DHA content in SMOF, EXP and ENT pigs was higher (P < 0.01) in FC but not HC vs. IL pigs. There were no differences in brain weight or neuron density among treatment groups. Inflammatory cytokine TNFα and IL-1β expression in brain regions were increased in IL pigs (P < 0.05) compared to other groups. Overall growth velocity was similar among groups, but IL pigs had higher percent body fat and increased insulin resistance compared to other treatments (P < 0.05). ENT pigs spent more time in higher physical activity levels compared to all TPN groups, but there were no differences in exploratory behavior among groups. We conclude that a soybean oil emulsion increased select brain inflammatory cytokines and multicomponent lipid emulsions enriched with DHA and AA in parenteral lipids results in increased cortical DHA and improved body composition without affecting short term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Tiffany L. Molina
- Baylor College of Medicine, Department of Pediatrics, Section of Neonatology, 6621 Fannin St. MS W6104. Houston, TX 77030
| | - Barbara Stoll
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Mahmoud Mohammad
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Carrie A. Mohila
- Baylor College of Medicine, Department of Pathology & Immunology, Texas Children’s Hospital, Department of Pathology, 6621 Fannin St. Suite AB1195 Houston, TX 77030
| | - Lee Call
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Liwei Cui
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Gregory Guthrie
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Dennis Kunichoff
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Sen Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | | | - Jon Nielsen
- Dept of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, DK
| | - Muralidhar Premkumar
- Baylor College of Medicine, Department of Pediatrics, Section of Neonatology, 6621 Fannin St. MS W6104. Houston, TX 77030
| | - Jason Robinson
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Victoria Smith
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Haley Teets
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Karina Obelitz-Ryom
- Comparative Pediatrics and Nutrition, University of Copenhagen, 68 Dyrlægevej, DK-1870 Frederiskberg C., Copenhagen, Denmark
| | - Joseph Hagan
- Baylor College of Medicine, Department of Pediatrics, Section of Neonatology, 6621 Fannin St. MS W6104. Houston, TX 77030
| | - Stephanie Cruz
- Baylor College of Medicine, Department of Pediatric Surgery, 6701 Fannin St. Houston, TX 77030
| | - Patricio Lau
- Baylor College of Medicine, Department of Pediatric Surgery, 6701 Fannin St. Houston, TX 77030
| | - Maurice Puyau
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Roman Shypailo
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Rodrigo Manjarin
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Nancy Butte
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Oluyinka Olutoye
- Baylor College of Medicine, Department of Pediatric Surgery, 6701 Fannin St. Houston, TX 77030
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, University of Copenhagen, 68 Dyrlægevej, DK-1870 Frederiskberg C., Copenhagen, Denmark
| | - Per Sangild
- Comparative Pediatrics and Nutrition, University of Copenhagen, 68 Dyrlægevej, DK-1870 Frederiskberg C., Copenhagen, Denmark
| | - Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St., Houston, TX 77030, United States.
| |
Collapse
|
29
|
Kappel SS, Sangild PT, Hilsted L, Hartmann B, Thymann T, Aunsholt L. Gastric Residual to Predict Necrotizing Enterocolitis in Preterm Piglets As Models for Infants. JPEN J Parenter Enteral Nutr 2020; 45:87-93. [PMID: 32100882 DOI: 10.1002/jpen.1814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a serious intestinal inflammatory disease in preterm infants. High volume of gastric residual (GR) after oral feedings is often used as a predictor of NEC, but evidence is limited. Using NEC-sensitive preterm piglets as models, we hypothesized that GR mass and related plasma biomarkers predict early onset of NEC. METHODS In total, 258 newborn preterm piglets were fed bovine milk-based formulas for 5 days. At euthanasia, the stomach, small intestine, and colon were evaluated for NEC lesions. Mass, acidity, gastrin, and bile acid levels were determined for GR content, together with gastrin, glucagon-like peptide 2 (GLP-2), and gastric inhibitory polypeptide (GIP) levels in plasma. RESULTS In total, 48% of piglets had NEC lesions in the small intestine and/or colon. These piglets had higher GR mass (+32%, P < 0.001) and lower gastric bile acid concentrations (-22%, P < 0.05) than piglets without NEC lesions. The positive and negative predictive values for these markers were 34%-61%. Gastric acidity, gastrin, GLP-2, and GIP levels were similar for piglets with and without NEC lesions. CONCLUSION Elevated GR mass correlates positively with NEC lesions but may be a poor predictor of NEC, even when combined with other biomarkers. More knowledge about gastric emptying and gut transit in preterm neonates is required to understand how GR volume and composition relate to morbidities, such as NEC, in preterm neonates.
Collapse
Affiliation(s)
- Susanne Soendergaard Kappel
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Linda Hilsted
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lise Aunsholt
- Department of Neonatology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
30
|
Liu S, Yue T, Ahmad MJ, Hu X, Zhang X, Deng T, Hu Y, He C, Zhou Y, Yang L. Transcriptome Analysis Reveals Potential Regulatory Genes Related to Heat Tolerance in Holstein Dairy Cattle. Genes (Basel) 2020; 11:genes11010068. [PMID: 31936116 PMCID: PMC7017222 DOI: 10.3390/genes11010068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023] Open
Abstract
Heat stress affects the physiology and production performance of Chinese Holstein dairy cows. As such, the selection of heat tolerance in cows and elucidating its underlying mechanisms are vital to the dairy industry. This study aimed to investigate the heat tolerance associated genes and molecular mechanisms in Chinese Holstein dairy cows using a high-throughput sequencing approach and bioinformatics analysis. Heat-induced physiological indicators and milk yield changes were assessed to determine heat tolerance levels in Chinese Holstein dairy cows by Principal Component Analysis method following Membership Function Value Analysis. Results indicated that rectal temperature (RT), respiratory rate (RR), and decline in milk production were significantly lower (p < 0.05) in heat tolerant (HT) cows while plasma levels of heat shock protein (HSP: HSP70, HSP90), and cortisol were significantly higher (p < 0.05) when compared to non-heat tolerant (NHT) Chinese Holstein dairy cows. By applying RNA-Seq analysis, we identified 200 (81 down-regulated and 119 up-regulated) significantly (|log2fold change| ≥ 1.4 and p ≤ 0.05) differentially expressed genes (DEGs) in HT versus NHT Chinese Holstein dairy cows. In addition, 14 of which were involved in protein–protein interaction (PPI) network. Importantly, several hub genes (OAS2, MX2, IFIT5 and TGFB2) were significantly enriched in immune effector process. These findings might be helpful to expedite the understanding for the mechanism of heat tolerance in Chinese Holstein dairy cows.
Collapse
Affiliation(s)
- Shenhe Liu
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.L.); (T.Y.); (M.J.A.); (X.H.); (X.Z.); (Y.H.); (C.H.); (Y.Z.)
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingting Yue
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.L.); (T.Y.); (M.J.A.); (X.H.); (X.Z.); (Y.H.); (C.H.); (Y.Z.)
| | - Muhammad Jamil Ahmad
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.L.); (T.Y.); (M.J.A.); (X.H.); (X.Z.); (Y.H.); (C.H.); (Y.Z.)
| | - Xiangwei Hu
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.L.); (T.Y.); (M.J.A.); (X.H.); (X.Z.); (Y.H.); (C.H.); (Y.Z.)
| | - Xinxin Zhang
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.L.); (T.Y.); (M.J.A.); (X.H.); (X.Z.); (Y.H.); (C.H.); (Y.Z.)
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China;
| | - Yan Hu
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.L.); (T.Y.); (M.J.A.); (X.H.); (X.Z.); (Y.H.); (C.H.); (Y.Z.)
| | - Changjiu He
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.L.); (T.Y.); (M.J.A.); (X.H.); (X.Z.); (Y.H.); (C.H.); (Y.Z.)
| | - Yang Zhou
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.L.); (T.Y.); (M.J.A.); (X.H.); (X.Z.); (Y.H.); (C.H.); (Y.Z.)
| | - Liguo Yang
- Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.L.); (T.Y.); (M.J.A.); (X.H.); (X.Z.); (Y.H.); (C.H.); (Y.Z.)
- Correspondence:
| |
Collapse
|
31
|
Holgersen K, Gao X, Narayanan R, Gaur T, Carey G, Barton N, Pan X, Muk T, Thymann T, Sangild PT. Supplemental Insulin-Like Growth Factor-1 and Necrotizing Enterocolitis in Preterm Pigs. Front Pediatr 2020; 8:602047. [PMID: 33614541 PMCID: PMC7891102 DOI: 10.3389/fped.2020.602047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Recombinant human IGF-1/binding protein-3 (rhIGF-1/BP-3) is currently tested as a therapy in preterm infants but possible effects on the gut, including necrotizing enterocolitis (NEC), have not been tested. The aim of this study was to evaluate if rhIGF-1/BP-3 supplementation in the first days after birth negatively affects clinical variables like growth, physical activity, blood chemistry and hematology and gut maturation (e.g., intestinal permeability, morphology, enzyme activities, cytokine levels, enterocyte proliferation, NEC lesions), using NEC-sensitive preterm pigs as a model for preterm infants. Methods: Preterm pigs were given twice daily subcutaneous injections of rhIGF-1/BP-3 or vehicle. Blood was collected for IGF-1 measurements and gut tissue for NEC evaluation and biochemical analyses on day 5. Results: Baseline circulating IGF-1 levels were low in preterm pigs compared with near-term pigs reared by their mother (<20 vs. 70 ng/ml). Injection with rhIGF-1/BP-3 resulted in increased plasma IGF-1 levels for up to 6 h after injection (>40 ng/mL). rhIGF-1/BP-3 treatment reduced the incidence of severe NEC lesions (7/24 vs.16/24, p = 0.01) and overall NEC severity (1.8 ± 0.2 vs. 2.6 ± 0.3, p < 0.05, with most lesions occurring in colon). In the small intestine, villi length (405 ± 25 vs. 345 ± 33 μm) and activities of the brush border peptidases aminopeptidase N and dipeptidylpeptidase IV were increased in rhIGF-1/BP-3 treated pigs, relative to control pigs (+31-44%, both p < 0.05). The treatment had no effects on body weight, blood chemistry or hematology, except for an increase in blood leucocyte and neutrophil counts (p < 0.05, i.e., reduced neonatal neutropenia). Likewise, rhIGF-1/BP-3 treatment did not affect intestinal tissue cytokine levels (IL-1β, IL-6, IL-8, TNFα,), enterocyte proliferation, goblet cell density, permeability or bacterial translocation to the bone marrow. Conclusion: Supplemental rhIGF-1/BP-3 did not negatively affect any of the measured variables of clinical status or gut maturation in preterm pigs. Longer-term safety and efficacy of exogenous rhIGF-1/BP-3 to support maturation of the gut and other critical organs in preterm newborns remain to be investigated in both pigs and infants.
Collapse
Affiliation(s)
- Kristine Holgersen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Xiaoyan Gao
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Neonatology, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | | | | | | | | | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tik Muk
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
32
|
Holme Nielsen C, Bladt Brandt A, Thymann T, Obelitz-Ryom K, Jiang P, Vanden Hole C, van Ginneken C, Pankratova S, Sangild PT. Rapid Postnatal Adaptation of Neurodevelopment in Pigs Born Late Preterm. Dev Neurosci 2019; 40:586-600. [PMID: 31141813 DOI: 10.1159/000499127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/26/2019] [Indexed: 11/19/2022] Open
Abstract
Preterm birth interrupts intrauterine brain growth and maturation and may induce a delay in postnatal neurodevelopment. Such developmental delays can result from the reduced fetal age at birth, together with the clinical compli-cations of preterm birth (e.g., hypoxia, ischemia, and inflammation). We hypothesized that late preterm birth, inducing only mild clinical complications, has minimal effects on brain-related outcomes such as motor function and behavior. Using the pig as a model for late preterm infants, piglets were cesarean delivered preterm (90%, 106 days gestation) or at full term, reared by identical procedures, and euthanized for tissue collection at birth or after 11 days (e.g., term-corrected age for preterm pigs). Clinical variables and both structural and functional brain endpoints were assessed. The preterm pigs were slow to get on their feet, gained less weight (-30%), and had a higher cerebral hydration level and blood-to-cerebrospinal fluid permeability than the term pigs. At term-corrected age (11 days), the absolute weight of the brain and the weights of its regions were similar between 11-day-old preterm and newborn term pigs, and both were lower than in 11-day-old term pigs. Postnatally, physical activity and movements in an open field were similar, except that preterm pigs showed a reduced normalized stride length and increased normalized maximum stride height. Perinatal brain growth is closely associated with advancing postconceptional age in pigs, and late preterm birth is initially associated with impaired brain growth and physical activity. Postnatally, neuromuscular functions mature rapidly and become similar to those in term pigs, even before term-corrected age. Neuromuscular functions and behavior may show rapid postnatal adaptation to late preterm birth in both pigs and infants.
Collapse
Affiliation(s)
- Charlotte Holme Nielsen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Bladt Brandt
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Obelitz-Ryom
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pingping Jiang
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Chris van Ginneken
- Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Stanislava Pankratova
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark, .,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark,
| |
Collapse
|
33
|
Biouss G, Antounians L, Li B, O'Connell JS, Seo S, Catania VD, Guadagno J, Rahman A, Zani-Ruttenstock E, Svergun N, Pierro A, Zani A. Experimental necrotizing enterocolitis induces neuroinflammation in the neonatal brain. J Neuroinflammation 2019; 16:97. [PMID: 31077225 PMCID: PMC6511222 DOI: 10.1186/s12974-019-1481-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 01/15/2023] Open
Abstract
Background Necrotizing enterocolitis (NEC) is an inflammatory gastrointestinal disease primarily affecting preterm neonates. Neonates with NEC suffer from a degree of neurodevelopmental delay that is not explained by prematurity alone. There is a need to understand the pathogenesis of neurodevelopmental delay in NEC. In this study, we assessed the macroscopic and microscopic changes that occur to brain cell populations in specific brain regions in a neonatal mouse model of NEC. Moreover, we investigated the role of intestinal inflammation as part of the mechanism responsible for the changes observed in the brain of pups with NEC. Methods Brains of mice were assessed for gross morphology and cerebral cortex thickness (using histology). Markers for mature neurons, oligodendrocytes, neural progenitor cells, microglia, and astrocytes were used to quantify their cell populations in different regions of the brain. Levels of cell apoptosis in the brain were measured by Western blotting and immunohistochemistry. Endoplasmic reticulum (ER) stress markers and levels of pro-inflammatory cytokines (in the ileum and brain) were measured by RT-qPCR and Western blotting. A Pearson test was used to correlate the levels of cytokines (ELISA) in the brain and ileum and to correlate activated microglia and astrocyte populations to the severity of NEC. Results NEC pups had smaller brain weights, higher brain-to-body weight ratios, and thinner cortices compared to control pups. NEC pups had increased levels of apoptosis and ER stress. In addition, NEC was associated with a reduction in the number of neurons, oligodendrocytes, and neural progenitors in specific regions of the brain. Levels of pro-inflammatory cytokines and the density of activated microglia and astrocytes were increased in the brain and positively correlated with the increase in the levels pro-inflammatory cytokines in the gut and the severity of NEC damage respectively. Conclusions NEC is associated with severe changes in brain morphology, a pro-inflammatory response in the brain that alters cell homeostasis and density of brain cell populations in specific cerebral regions. We show that the severity of neuroinflammation is associated with the severity of NEC. Our findings suggest that early intervention during NEC may reduce the chance of acute neuroinflammation and cerebral damage. Electronic supplementary material The online version of this article (10.1186/s12974-019-1481-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- George Biouss
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Translational Medicine Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Translational Medicine Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - Joshua S O'Connell
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Translational Medicine Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - Shogo Seo
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Translational Medicine Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - Vincenzo D Catania
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Jennifer Guadagno
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Abidur Rahman
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - Elke Zani-Ruttenstock
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Translational Medicine Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nataliia Svergun
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.,Translational Medicine Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada. .,Division of General and Thoracic Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada. .,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Bellodas Sanchez J, Kadrofske M. Necrotizing enterocolitis. Neurogastroenterol Motil 2019; 31:e13569. [PMID: 30793842 DOI: 10.1111/nmo.13569] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Necrotizing enterocolitis (NEC) is an acute inflammatory disease of the intestine which primarily affects preterm infants and is a leading cause of morbidity and mortality in the neonatal intensive care unit. From a clinical standpoint, and during the early course of the disease, NEC can be difficult to distinguish from other diseases and conditions common to the preterm infant, and this warrants the need for specific disease biomarkers. The pathogenesis of NEC is only partly understood but likely involves an altered intestinal barrier immune response to feeding and the developing microbiome. Recent evidence points toward a role of the enteric nervous system in NEC pathogenesis. In this issue, Meister and colleagues use a rodent model of NEC to demonstrate that NEC is associated with diminished vagal tone, as determined by decreased high-frequency heart rate variability (HF-HRV), and altered myenteric nitrergic inhibitory neurotransmission. These results augment their previous findings that describe decreased HF-HRV in human preterm infants with NEC. This mini-review provides a brief summary of clinical and pathophysiologic aspects of NEC with focus on certain aspects of neurogastroenterology.
Collapse
Affiliation(s)
- Jenny Bellodas Sanchez
- Neonatal-Perinatal Medicine Fellowship Program, Michigan State University and Sparrow Hospital, Lansing, Michigan
| | - Mark Kadrofske
- Department of Pediatrics and Human Development, Division of Neonatology, Michigan State University, East Lansing, Michigan
| |
Collapse
|