1
|
Koning R, van Roon MA, Brouwer MC, van de Beek D. Adjunctive treatments for pneumococcal meningitis: a systematic review of experimental animal models. Brain Commun 2024; 6:fcae131. [PMID: 38707710 PMCID: PMC11069119 DOI: 10.1093/braincomms/fcae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
New treatments are needed to improve the prognosis of pneumococcal meningitis. We performed a systematic review on adjunctive treatments in animal models of pneumococcal meningitis in order to identify treatments with the most potential to progress to clinical trials. Studies testing therapy adjunctive to antibiotics in animal models of pneumococcal meningitis were included. A literature search was performed using Medline, Embase and Scopus for studies published from 1990 up to 17 February 2023. Two investigators screened studies for inclusion and independently extracted data. Treatment effect was assessed on the clinical parameters disease severity, hearing loss and cognitive impairment and the biological parameters inflammation, brain injury and bacterial load. Adjunctive treatments were evaluated by their effect on these outcomes and the quality, number and size of studies that investigated the treatments. Risk of bias was assessed with the SYRCLE risk of bias tool. A total of 58 of 2462 identified studies were included, which used 2703 experimental animals. Disease modelling was performed in rats (29 studies), rabbits (13 studies), mice (12 studies), gerbils (3 studies) or both rats and mice (1 study). Meningitis was induced by injection of Streptococcus pneumoniae into the subarachnoid space. Randomization of experimental groups was performed in 37 of 58 studies (64%) and 12 studies (12%) were investigator-blinded. Overall, 54 treatment regimens using 46 adjunctive drugs were evaluated: most commonly dexamethasone (16 studies), daptomycin (5 studies), complement component 5 (C5; 3 studies) antibody and Mn(III)tetrakis(4-benzoicacid)porphyrin chloride (MnTBAP; 3 studies). The most frequently evaluated outcome parameters were inflammation [32 studies (55%)] and brain injury [32 studies (55%)], followed by disease severity [30 studies (52%)], hearing loss [24 studies (41%)], bacterial load [18 studies (31%)] and cognitive impairment [9 studies (16%)]. Adjunctive therapy that improved clinical outcomes in multiple studies was dexamethasone (6 studies), C5 antibodies (3 studies) and daptomycin (3 studies). HMGB1 inhibitors, matrix metalloproteinase inhibitors, neurotrophins, antioxidants and paquinimod also improved clinical parameters but only in single or small studies. Evaluating the treatment effect of adjunctive therapy was complicated by study heterogeneity regarding the animal models used and outcomes reported. In conclusion, 24 of 54 treatment regimens (44%) tested improved clinically relevant outcomes in experimental pneumococcal meningitis but few were tested in multiple well-designed studies. The most promising new adjunctive treatments are with C5 antibodies or daptomycin, suggesting that these drugs could be tested in clinical trials.
Collapse
Affiliation(s)
- Rutger Koning
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Marian A van Roon
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| |
Collapse
|
2
|
Kelly SB, Tran NT, Polglase GR, Hunt RW, Nold MF, Nold-Petry CA, Olson DM, Chemtob S, Lodygensky GA, Robertson SA, Gunn AJ, Galinsky R. A systematic review of immune-based interventions for perinatal neuroprotection: closing the gap between animal studies and human trials. J Neuroinflammation 2023; 20:241. [PMID: 37864272 PMCID: PMC10588248 DOI: 10.1186/s12974-023-02911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Nhi T Tran
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Rodney W Hunt
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Marcel F Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - David M Olson
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada
| | - Sylvain Chemtob
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Gregory A Lodygensky
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Sarah A Robertson
- The University of Adelaide, Robinson Research Institute, North Adelaide, SA, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Chavanet P, Fournel I, Bourredjem A, Piroth L, Blot M, Sixt T, Binquet C. Addition of daptomycin for the treatment of pneumococcal meningitis: protocol for the AddaMAP study. BMJ Open 2023; 13:e073032. [PMID: 37491088 PMCID: PMC10373719 DOI: 10.1136/bmjopen-2023-073032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND The leading cause of acute bacterial meningitis in adults is Streptococcus pneumoniae. This infection is associated with high rates of mortality and morbidity related, among other factors, to the excessive host response to the pneumococcal lysis. Experimental in vitro and in vivo data show that the combination of corticosteroids/third-generation cephalosporins and the non-lytic antibiotic, daptomycin, has synergistic effects with (1) a rapid cerebrospinal fluid sterilisation, (2) less brain damages and (3) less loss of cognitive performances. Despite these encouraging results, daptomycin has never been evaluated in adult patients with pneumococcal meningitis. METHODS AND ANALYSIS The AddaMAP trial is a phase II, open-label, Simon's two-stage, multicentre trial that has been designed to assess the efficacy and safety of adding daptomycin (10 mg/kg/d for 8 days) to the recommended treatment (corticosteroids+third generation cephalosporin) in adults with confirmed pneumococcal meningitis. The main endpoint is the disability-free survival (defined as modified Rankin Scale mRS≤2) at day 30. Secondary outcomes are overall mortality, disability at D30 and D90 (mRS, Glasgow Coma Scale and Glasgow Outcome Scales, mini-mental score), hearing loss (Hearing Handicap Inventory Test at D30 and D90, routine audiometric test and Hearing-it test at D30), and quality of life (12-item Short Form Survey and WHO QOL BREF). Seventy-two analysable patients are required. ETHICS AND DISSEMINATION The study protocol was approved by the Institutional Review Board of the IDF 1 of the ethics committee on 16 January 2018, and authorisation was obtained from the Agence Nationale de Securité des Médicaments et des Produits de Santé on 22 September 2017. The results will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT03480191.
Collapse
Affiliation(s)
- Pascal Chavanet
- Infectious Diseases Department, University Hospital, Dijon, France
- INSERM, CIC 1432, Module Epidémiologie Clinique, Dijon, France
| | - Isabelle Fournel
- INSERM, CIC 1432, Module Epidémiologie Clinique, Dijon, France
- Centre d'Investigation Clinique, CHU Dijon, Dijon, France
| | - Abderrahmane Bourredjem
- INSERM, CIC 1432, Module Epidémiologie Clinique, Dijon, France
- Centre d'Investigation Clinique, CHU Dijon, Dijon, France
| | - Lionel Piroth
- Infectious Diseases Department, University Hospital, Dijon, France
| | - Mathieu Blot
- Infectious Diseases Department, University Hospital, Dijon, France
| | - Thibault Sixt
- Infectious Diseases Department, University Hospital, Dijon, France
| | - Christine Binquet
- INSERM, CIC 1432, Module Epidémiologie Clinique, Dijon, France
- Centre d'Investigation Clinique, CHU Dijon, Dijon, France
| |
Collapse
|
4
|
Dialkyl Carbamoyl Chloride-Coated Dressing Prevents Macrophage and Fibroblast Stimulation via Control of Bacterial Growth: An In Vitro Assay. Microorganisms 2022; 10:microorganisms10091825. [PMID: 36144427 PMCID: PMC9502631 DOI: 10.3390/microorganisms10091825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, we evaluated the direct effect of a dialkyl carbamoyl chloride (DACC)-coated dressing on Staphylococcus aureus adhesion and growth in vitro, as well as the indirect effect of the dressing on fibroblast and macrophage activity. S. aureus cultures were treated with the dressing or gauze in Müller-Hinton medium or serum-supplemented Dulbecco’s modified Eagle medium. Bacterial growth and attachment were assessed through colony-forming units (CFU) and residual biomass analyses. Fibroblast and macrophage co-cultures were stimulated with filtered supernatants from the bacterial cultures treated with the DACC-coated dressing, following which tumor necrosis factor (TNF)-α/transforming growth factor (TGF)-β1 expression and gelatinolytic activity were assessed by enzyme-linked immunosorbent assays (ELISA) and zymography, respectively. The DACC-coated dressing bound 1.8−6.1% of all of the bacteria in the culture. Dressing-treated cultures presented biofilm formation in the dressing (enabling mechanical removal), with limited formation outside of it (p < 0.001). Filtered supernatants of bacterial cultures treated with the DACC-coated dressing did not over-stimulate TNF-α or TGF-β1 expression (p < 0.001) or increase gelatinolytic activity in eukaryotic cells, suggesting that bacterial cell integrity was maintained. Based on the above data, wound caregivers should consider the use of hydrophobic dressings as a first option for the management of acute or chronic wounds.
Collapse
|
5
|
Le ND, Steinfort M, Grandgirard D, Maleska A, Leppert D, Kuhle J, Leib SL. The CCR5 antagonist maraviroc exerts limited neuroprotection without improving neurofunctional outcome in experimental pneumococcal meningitis. Sci Rep 2022; 12:12945. [PMID: 35902720 PMCID: PMC9334283 DOI: 10.1038/s41598-022-17282-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
One-third of pneumococcal meningitis (PM) survivors suffer from neurological sequelae including learning disabilities and hearing loss due to excessive neuroinflammation. There is a lack of efficacious compounds for adjuvant therapy to control this long-term consequence of PM. One hallmark is the recruitment of leukocytes to the brain to combat the bacterial spread. However, this process induces excessive inflammation, causing neuronal injury. Maraviroc (MVC)-a CCR5 antagonist-was demonstrated to inhibit leukocyte recruitment and attenuate neuroinflammation in several inflammatory diseases. Here, we show that in vitro, MVC decreased nitric oxide production in astroglial cells upon pneumococcal stimulation. In vivo, infant Wistar rats were infected with 1 × 104 CFU/ml S. pneumoniae and randomized for treatment with ceftriaxone plus MVC (100 mg/kg) or ceftriaxone monotherapy. During the acute phase, neuroinflammation in the CSF was measured and histopathological analyses were performed to determine neuronal injury. Long-term neurofunctional outcome (learning/memory and hearing capacity) after PM was assessed. MVC treatment reduced hippocampal cell apoptosis but did not affect CSF neuroinflammation and the neurofunctional outcome after PM. We conclude that MVC treatment only exerted limited effect on the pathophysiology of PM and is, therefore, not sufficiently beneficial in this experimental paradigm of PM.
Collapse
Affiliation(s)
- Ngoc Dung Le
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Marel Steinfort
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Aleksandra Maleska
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Valente LG, Le ND, Pitton M, Chiffi G, Grandgirard D, Jakob SM, Cameron DR, Resch G, Que YA, Leib SL. Efficacy assessment of a novel endolysin PlyAZ3aT for the treatment of ceftriaxone-resistant pneumococcal meningitis in an infant rat model. PLoS One 2022; 17:e0266928. [PMID: 35472061 PMCID: PMC9041855 DOI: 10.1371/journal.pone.0266928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Background Treatment failure in pneumococcal meningitis due to antibiotic resistance is an increasing clinical challenge and alternatives to antibiotics warrant investigation. Phage-derived endolysins efficiently kill gram-positive bacteria including multi-drug resistant strains, making them attractive therapeutic candidates. The current study assessed the therapeutic potential of the novel endolysin PlyAZ3aT in an infant rat model of ceftriaxone-resistant pneumococcal meningitis. Methods Efficacy of PlyAZ3aT was assessed in a randomized, blinded and controlled experimental study in infant Wistar rats. Meningitis was induced by intracisternal infection with 5 x 107 CFU/ml of a ceftriaxone-resistant clinical strain of S. pneumoniae, serotype 19A. Seventeen hours post infection (hpi), animals were randomized into 3 treatment groups and received either (i) placebo (phosphate buffered saline [PBS], n = 8), (ii) 50 mg/kg vancomycin (n = 10) or (iii) 400 mg/kg PlyAZ3aT (n = 8) via intraperitoneal injection. Treatments were repeated after 12 h. Survival at 42 hpi was the primary outcome; bacterial loads in cerebrospinal fluid (CSF) and blood were secondary outcomes. Additionally, pharmacokinetics of PlyAZ3aT in serum and CSF was assessed. Results PlyAZ3aT did not improve survival compared to PBS, while survival for vancomycin treated animals was 70% which is a significant improvement when compared to PBS or PlyAZ3aT (p<0.05 each). PlyAZ3aT was not able to control the infection, reflected by the inability to reduce bacterial loads in the CSF, whereas Vancomycin sterilized the CSF and within 25 h. Pharmacokinetic studies indicated that PlyAZ3aT did not cross the blood brain barrier (BBB). In support, PlyAZ3aT showed a peak concentration of 785 μg/ml in serum 2 h after intraperitoneal injection but could not be detected in CSF. Conclusion In experimental pneumococcal meningitis, PlyAZ3aT failed to cure the infection due to an inability to reach the CSF. Optimization of the galenic formulation e.g. using liposomes might enable crossing of the BBB and improve treatment efficacy.
Collapse
Affiliation(s)
- Luca G. Valente
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ngoc Dung Le
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Melissa Pitton
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Gabriele Chiffi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David R. Cameron
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Grégory Resch
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Schütze S, Döpke A, Kellert B, Seele J, Ballüer M, Bunkowski S, Kreutzfeldt M, Brück W, Nau R. Intracerebral Infection with E. coli Impairs Spatial Learning and Induces Necrosis of Hippocampal Neurons in the Tg2576 Mouse Model of Alzheimer’s Disease. J Alzheimers Dis Rep 2022; 6:101-114. [PMID: 35530117 PMCID: PMC9028720 DOI: 10.3233/adr-210049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background: In patients with Alzheimer’s disease (AD), bacterial infections are often associated with a cognitive decline. Animal models of genuine acute infections with viable bacteria which induce deterioration of neurodegenerative diseases are missing. Objective: We assessed the effect of an intracerebral infection with E. coli in a mouse model of AD. Methods: 13-month-old Tg2576 +/- mice and transgene negative littermates (Tg2576 -/-) received an intracerebral injection with E. coli K1 or saline followed by treatment with ceftriaxone starting 41 h post infection (p.i.) for 5 days. For 4 weeks, mice were monitored for clinical status, weight, motor functions, and neuropsychological status using the Morris water maze. ELISAs, stainings, and immunohistochemistry in brains were performed at the end of the experiment. Results: Mortality of the infection was approximately 20%. After 4 weeks, spatial learning of infected Tg2576 +/- mice was compromised compared to non-infected Tg2576 +/- mice (p < 0.05). E. coli infection did not influence spatial learning in Tg2576 -/- mice, or spatial memory in both Tg2576 +/- and -/- mice within 4 weeks p.i.. Necrosis of hippocampal neurons was induced in infected compared to non-infected Tg2576 +/- mice 4 weeks p.i., whereas brain concentrations of Aβ1–40, Aβ1–42, and phosphoTau as well as axonal damage and microglia density were not altered. Conclusion: Here, we proved in principle that a genuine acute bacterial infection can worsen cognitive functions of AD mice. Mouse models of subacute systemic infections are needed to develop new strategies for the treatment of bacterial infections in patients with AD in order to minimize their cognitive decline.
Collapse
Affiliation(s)
- Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Geriatrics, Neurogeriatric Section, AGAPLESION Frankfurter Diakonie Kliniken, Frankfurt, Germany
| | - Anika Döpke
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Benedikt Kellert
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Seele
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Melissa Ballüer
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Bunkowski
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mario Kreutzfeldt
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Pathology and Immunology, University of Geneva and Division of Clinical Pathology, Geneva University Hospital, Centre Médical Universitaire, Geneva, Switzerland
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
8
|
Wang Z, Wu Y, Pei C, Wang M, Wang X, Shi S, Huang D, Wang Y, Li S, Xiao W, He Y, Wang F. Astragaloside IV pre-treatment attenuates PM2.5-induced lung injury in rats: Impact on autophagy, apoptosis and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153912. [PMID: 35026504 DOI: 10.1016/j.phymed.2021.153912] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) with an aerodynamic diameter of less than 2.5 μm, exerts serious lung toxicity. At present, effective prevention measures and treatment modalities for pulmonary toxicity caused by PM2.5 are lacking. Astragaloside IV (AS-IV) is a natural product that has received increasing attention from researchers for its unique biological functions. PURPOSE To investigate the protective effects of AS-IV on PM2.5-induced pulmonary toxicity and identify its potential mechanisms. METHODS The rat model of PM2.5-induced lung toxicity was created by intratracheal instillation of PM2.5 dust suspension. The investigation was performed with AS-IV or in combination with autophagic flux inhibitor (Chloroquine) or AMP-sensitive protein kinase (AMPK)-specific inhibitor (Compound C). Apoptosis was detected by terminal deoxy-nucleotidyl transferase dUTP nick end labeling (TUNEL) and western blotting. Autophagy was detected by immunofluorescence staining, autophagic flux measurement, western blotting, and transmission electron microscopy. The AMPK/mTOR pathway was analyzed by western blotting. Inflammation was analyzed by western blotting and suspension array. RESULTS AS-IV prevented histopathological injury, inflammation, autophagy dysfunction, apoptosis, and changes in AMPK levels induced by PM2.5. AS-IV increased autophagic flux and inhibited apoptosis and inflammation by activating the AMPK/ mammalian target of rapamycin (mTOR) pathway. However, AS-IV had no protective effect on PM2.5-induced lung injury following treatment with Compound C or Chloroquine. CONCLUSION AS-IV prevented PM2.5-induced lung toxicity by restoring the balance among autophagy, apoptosis, and inflammation in rats by activating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Mingjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Wei Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| |
Collapse
|
9
|
Pan SD, Grandgirard D, Leib SL. Adjuvant Cannabinoid Receptor Type 2 Agonist Modulates the Polarization of Microglia Towards a Non-Inflammatory Phenotype in Experimental Pneumococcal Meningitis. Front Cell Infect Microbiol 2020; 10:588195. [PMID: 33251159 PMCID: PMC7674855 DOI: 10.3389/fcimb.2020.588195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Background Microglia initiates and sustains the inflammatory reaction that drives the pathogenesis of pneumococcal meningitis. The expression of the G-protein cannabinoid receptor type 2 (CB2) in the brain is low, but is upregulated in glial cells during infection. Its activation down-regulates pro-inflammatory processes, driving microglia towards an anti-inflammatory phenotype. CB2 agonists are therefore therapeutic candidates in inflammatory conditions like pneumococcal meningitis. We evaluated the effects of JWH-133, a specific CB2 agonist on microglial cells, inflammation, and damage driven by S. pneumoniae in vitro and in experimental pneumococcal meningitis. Materials/methods Primary mixed glial cultures were stimulated with live or heat-inactivated S. pneumoniae, or lipopolysaccharide and treated with JWH-133 or vehicle. Nitric oxide and cytokines levels were measured in the supernatant. In vivo, pneumococcal meningitis was induced by intracisternal injection of live S. pneumoniae in 11 days old Wistar rats. Animals were treated with antibiotics (Ceftriaxone, 100 mg/kg, s.c. bid) and JWH-133 (1 mg/kg, i.p. daily) or vehicle (10% Ethanol in saline, 100 µl/25g body weight) at 18 h after infection. Brains were harvested at 24 and 42 h post infection (hpi) for histological assessment of hippocampal apoptosis and cortical damage and determination of cyto/chemokines in tissue homogenates. Microglia were characterized using Iba-1 immunostaining. Inflammation in brain homogenates was determined using membrane-based antibody arrays. Results In vitro, nitric oxide and cytokines levels were significantly lowered by JWH-133 treatment. In vivo, clinical parameters were not affected by the treatment. JWH-133 significantly lowered microglia activation assessed by quantification of cell process length and endpoints per microglia. Animals treated with JWH-133 demonstrated significantly lower parenchymal levels of chemokines (CINC-1, CINC-2α/β, and MIP-3α), TIMP-1, and IL-6 at 24 hpi, and CINC-1, MIP-1α, and IL-1α at 42 hpi. Quantitative analysis of brain damage did not reveal an effect of JWH-133. Conclusions JWH-133 attenuates microglial activation and downregulates the concentrations of pro-inflammatory mediators in pneumococcal infection in vitro and in vivo. However, we didn't observe a reduction in cortical or hippocampal injury. This data provides evidence that inhibition of microglia by adjuvant CB2 agonists therapy effectively downmodulates neuroinflammation but does not reduce brain damage in experimental pneumococcal meningitis.
Collapse
Affiliation(s)
- Steven D Pan
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Zbinden FR, De Ste Croix M, Grandgirard D, Haigh RD, Vacca I, Zamudio R, Goodall ECA, Stephan R, Oggioni MR, Leib SL. Pathogenic Differences of Type 1 Restriction-Modification Allele Variants in Experimental Listeria monocytogenes Meningitis. Front Cell Infect Microbiol 2020; 10:590657. [PMID: 33194838 PMCID: PMC7662400 DOI: 10.3389/fcimb.2020.590657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Background: L. monocytogenes meningoencephalitis has a mortality rate of up to 50% and neurofunctional sequelae are common. Type I restriction-modification systems (RMS) are capable of adding methyl groups to the host genome. Some contain multiple sequence recognition (hsdS) genes that recombine, resulting in distinct DNA methylation patterns and patterns of gene expression. These phenotypic switches have been linked to virulence and have recently been discovered in multiple clonal complexes of L. monocytogenes. In the present study, we investigated the significant of RMS on L. monocytogenes virulence during the acute phase of experimental meningitis. Methods: L. monocytogenes strains containing RMS systems were identified, and purified clones enriched for single hsdS alleles were isolated. In vivo, 11-day old Wistar rats were infected with an inoculum containing (a) one of 4 single RMS allele variants (A, B, C, D) treated with amoxicillin (AMX 50 mg/kg/dosis, q8h), (b) a mixture of all 4 variants with or without AMX treatment, or (c) different mixtures of 2 RMS allele variants. At selected time points after infection, clinical and inflammatory parameters, bacterial titers and brain damage were determined. Changes in the relative frequency of the occurring RMS alleles in the inoculum and in CSF or cerebellum of infected animals were analyzed by capillary electrophoresis. Results: We have identified a phase variable RMS locus within L. monocytogenes CC4 and generated stocks that stably expressed each of the possible hsdS genes within that loci. Generation of these allele variants (A, B, C, D) allowed us to determine the methylation pattern associated with each hsdS through SMRT sequencing. In vivo infections with these single allele variants revealed differences in disease severity in that C induced the worst clinical outcome and more pronounced hippocampal apoptosis; D showed the most pronounced weight loss and the highest bacterial titer in the cerebellum. A caused the least severe disease. Conclusion: We identified that L. monocytogenes expressing hsdS (A) causes less damage than when other hsdS genes are expressed. While expression of hsdSC and D worsened the outcome in L. monocytogenes meningitis. We also demonstrate a competitive advantage of variants C and B over variant A in this model. Phenotypical switching may therefore represent a mechanism of virulence regulation during the acute phase of CNS infections with L. monocytogenes.
Collapse
Affiliation(s)
- Florian R Zbinden
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Richard D Haigh
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Irene Vacca
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Roxana Zamudio
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Emily C A Goodall
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Le ND, Muri L, Grandgirard D, Kuhle J, Leppert D, Leib SL. Evaluation of neurofilament light chain in the cerebrospinal fluid and blood as a biomarker for neuronal damage in experimental pneumococcal meningitis. J Neuroinflammation 2020; 17:293. [PMID: 33028339 PMCID: PMC7539528 DOI: 10.1186/s12974-020-01966-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background Pneumococcal meningitis (PM) remains a global public health concern and affects all age groups. If acquired during infancy or childhood, permanent neurofunctional deficits including cognitive impairment, cerebral palsy, and secondary epilepsy are typical sequelae of neuronal injury. Determination of patients at risk for the development of brain injury and subsequent neurofunctional sequelae could help to identify patients for focused management. Neurofilament light chain (NfL) is an axonal cytoskeletal protein released upon neuronal injury into the cerebrospinal fluid (CSF) and blood. As little is known about the course of neurofilament release in the course of PM, we measured CSF and serum NfL levels longitudinally in experimental PM (ePM). Methods Eleven-day-old infant Wistar rats were infected intracisternally with Streptococcus pneumoniae and treated with ceftriaxone. At 18 and 42 h post-infection (hpi), the blood and CSF were sampled for NfL measurements by a single molecule array technology. Inflammatory cytokines and MMP-9 in CSF were quantified by magnetic bead multiplex assay (Luminex®) and by gel zymography, respectively. Results In ePM, CSF and serum NfL levels started to increase at 18 hpi and were 26- and 3.5-fold increased, respectively, compared to mock-infected animals at 42 hpi (p < 0.0001). CSF and serum NfL correlated at 18 hpi (p < 0.05, r = 0.4716) and 42 hpi (p < 0.0001, r = 0.8179). Both CSF and serum NfL at 42 hpi strongly correlated with CSF levels of IL-1β, TNF-α, and IL-6 and of MMP-9 depending on their individual kinetics. Conclusion Current results demonstrate that during the peak inflammatory phase of ePM, NfL levels in CSF and serum are the highest among CNS disease models studied so far. Given the strong correlation of CSF versus serum NfL, and its CNS-specific signal character, longitudinal measurements to monitor the course of PM could be performed based on blood sample tests, i.e., without the need of repetitive spinal taps. We conclude that NfL in the serum should be evaluated as a biomarker in PM.
Collapse
Affiliation(s)
- Ngoc Dung Le
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland.
| |
Collapse
|
12
|
Muri L, Oberhänsli S, Buri M, Le ND, Grandgirard D, Bruggmann R, Müri RM, Leib SL. Repetitive transcranial magnetic stimulation activates glial cells and inhibits neurogenesis after pneumococcal meningitis. PLoS One 2020; 15:e0232863. [PMID: 32915781 PMCID: PMC7485822 DOI: 10.1371/journal.pone.0232863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
Pneumococcal meningitis (PM) causes damage to the hippocampus, a brain structure critically involved in learning and memory. Hippocampal injury-which compromises neurofunctional outcome-occurs as apoptosis of progenitor cells and immature neurons of the hippocampal dentate granule cell layer thereby impairing the regenerative capacity of the hippocampal stem cell niche. Repetitive transcranial magnetic stimulation (rTMS) harbours the potential to modulate the proliferative activity of this neuronal stem cell niche. In this study, specific rTMS protocols-namely continuous and intermittent theta burst stimulation (cTBS and iTBS)-were applied on infant rats microbiologically cured from PM by five days of antibiotic treatment. Following two days of exposure to TBS, differential gene expression was analysed by whole transcriptome analysis using RNAseq. cTBS provoked a prominent effect in inducing differential gene expression in the cortex and the hippocampus, whereas iTBS only affect gene expression in the cortex. TBS induced polarisation of microglia and astrocytes towards an inflammatory phenotype, while reducing neurogenesis, neuroplasticity and regeneration. cTBS was further found to induce the release of pro-inflammatory cytokines in vitro. We conclude that cTBS intensified neuroinflammation after PM, which translated into increased release of pro-inflammatory mediators thereby inhibiting neuroregeneration.
Collapse
Affiliation(s)
- Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Simone Oberhänsli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Michelle Buri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Ngoc Dung Le
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - René M. Müri
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Stephen L. Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
13
|
Fisher J, Pavan C, Ohlmeier LS, Nilson B, Lundgaard I, Linder A, Bentzer P. A functional observational battery for evaluation of neurological outcomes in a rat model of acute bacterial meningitis. Intensive Care Med Exp 2020; 8:40. [PMID: 32770475 PMCID: PMC7415049 DOI: 10.1186/s40635-020-00331-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute bacterial meningitis is a disease with a high mortality and a high incidence of neurological sequelae in survivors. There is an acute need to develop new adjuvant therapies. To ensure that new therapies evaluated in animal models are translatable to humans, studies must evaluate clinically relevant and patient-important outcomes, including neurological symptoms and sequelae. METHODS We developed and tested a functional observational battery to quantify the severity of a variety of relevant neurological and clinical symptoms in a rat model of bacterial meningitis. The functional observational battery included symptoms relating to general clinical signs, gait and posture abnormalities, involuntary motor movements, focal neurological signs, and neuromotor abnormalities which were scored according to severity and summed to obtain a combined clinical and neurological score. To test the functional observational battery, adult Sprague-Dawley rats were infected by intracisternal injection of a clinical isolate of Streptococcus pneumoniae. Rats were evaluated for 6 days following the infection. RESULTS Pneumococcal meningitis was not lethal in this model; however, it induced severe neurological symptoms. Most common symptoms were hearing loss (75% of infected vs 0% of control rats; p = 0.0003), involuntary motor movements (75% of infected vs 0% of control rats; p = 0.0003), and gait and posture abnormality (67% of infected vs 0% of control rats; p = 0.0013). Infected rats had a higher combined score when determined by the functional observational battery than control rats at all time points (24 h 12.7 ± 4.0 vs 4.0 ± 2.0; 48 h 17.3 ± 7.1 vs 3.4 ± 1.8; 6 days 17.8 ± 7.4 vs 1.7 ± 2.4; p < 0.0001 for all). CONCLUSIONS The functional observational battery described here detects clinically relevant neurological sequelae of bacterial meningitis and could be a useful tool when testing new therapeutics in rat models of meningitis.
Collapse
Affiliation(s)
- Jane Fisher
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden.
| | - Chiara Pavan
- Center for Translational Neuromedicine, Faculties of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luisa S Ohlmeier
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Bo Nilson
- Faculty of Medicine, Department of Laboratory Medicine, Division of Medical Microbiology Lund, Lund University, Lund, Sweden
- Clinical Microbiology, Labmedicin, Region Skåne, Lund, Sweden
| | - Iben Lundgaard
- Department of Experimental Medical Science, University of Lund, Lund, Sweden
- Wallenberg Center for Molecular Medicine, University of Lund, Lund, Sweden
| | - Adam Linder
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Peter Bentzer
- Department of Anesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden
- Division of Anesthesia and Intensive Care, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Chemoenzymatic synthesis of daptomycin analogs active against daptomycin-resistant strains. Appl Microbiol Biotechnol 2020; 104:7853-7865. [PMID: 32725322 PMCID: PMC7447621 DOI: 10.1007/s00253-020-10790-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/21/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022]
Abstract
Abstract Daptomycin is a last resort antibiotic for the treatment of infections caused by many Gram-positive bacterial strains, including vancomycin-resistant Enterococcus (VRE) and methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA). However, the emergence of daptomycin-resistant strains of S. aureus and Enterococcus in recent years has renewed interest in synthesizing daptomycin analogs to overcome resistance mechanisms. Within this context, three aromatic prenyltransferases have been shown to accept daptomycin as a substrate, and the resulting prenylated analog was shown to be more potent against Gram-positive strains than the parent compound. Consequently, utilizing prenyltransferases to derivatize daptomycin offered an attractive alternative to traditional synthetic approaches, especially given the molecule’s structural complexity. Herein, we report exploiting the ability of prenyltransferase CdpNPT to synthesize alkyl-diversified daptomycin analogs in combination with a library of synthetic non-native alkyl-pyrophosphates. The results revealed that CdpNPT can transfer a variety of alkyl groups onto daptomycin’s tryptophan residue using the corresponding alkyl-pyrophosphates, while subsequent scaled-up reactions suggested that the enzyme can alkylate the N1, C2, C5, and C6 positions of the indole ring. In vitro antibacterial activity assays using 16 daptomycin analogs revealed that some of the analogs displayed 2–80-fold improvements in potency against MRSA, VRE, and daptomycin-resistant strains of S. aureus and Enterococcus faecalis. Thus, along with the new potent analogs, these findings have established that the regio-chemistry of alkyl substitution on the tryptophan residue can modulate daptomycin’s potency. With additional protein engineering to improve the regio-selectivity, the described method has the potential to become a powerful tool for diversifying complex indole-containing molecules. Key points • CdpNPT displays impressive donor promiscuity with daptomycin as the acceptor. • CdpNPT catalyzes N1-, C2-, C5-, and C6-alkylation on daptomycin’s tryptophan residue. • Differential alkylation of daptomycin’s tryptophan residue modulates its activity. Electronic supplementary material The online version of this article (10.1007/s00253-020-10790-x) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Ricci S, Grandgirard D, Masouris I, Braccini T, Pozzi G, Oggioni MR, Koedel U, Leib SL. Combined therapy with ceftriaxone and doxycycline does not improve the outcome of meningococcal meningitis in mice compared to ceftriaxone monotherapy. BMC Infect Dis 2020; 20:505. [PMID: 32660552 PMCID: PMC7359289 DOI: 10.1186/s12879-020-05226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meningococcal meningitis (MM) is a life-threatening disease associated with approximately 10% case fatality rates and neurological sequelae in 10-20% of the cases. Recently, we have shown that the matrix metalloproteinase (MMP) inhibitor BB-94 reduced brain injury in a mouse model of MM. The present study aimed to assess whether doxycycline (DOX), a tetracycline that showed a neuroprotective effect as adjuvant therapy in experimental pneumococcal meningitis (PM), would also exert a beneficial effect when given as adjunctive therapy to ceftriaxone (CRO) in experimental MM. METHODS BALB/c mice were infected by the intracisternal route with a group C Neisseria meningitidis strain. Eighteen h post infection (hpi), animals were randomised for treatment with CRO [100 mg/kg subcutaneously (s.c.)], CRO plus DOX (30 mg/kg s.c.) or saline (control s.c.). Antibiotic treatment was repeated 24 and 40 hpi. Mouse survival and clinical signs, bacterial counts in cerebella, brain damage, MMP-9 and cyto/chemokine levels were assessed 48 hpi. RESULTS Analysis of bacterial load in cerebella indicated that CRO and CRO + DOX were equally effective at controlling meningococcal replication. No differences in survival were observed between mice treated with CRO (94.4%) or CRO + DOX (95.5%), (p > 0.05). Treatment with CRO + DOX significantly diminished both the number of cerebral hemorrhages (p = 0.029) and the amount of MMP-9 in the brain (p = 0.046) compared to untreated controls, but not to CRO-treated animals (p > 0.05). Levels of inflammatory markers in the brain of mice that received CRO or CRO + DOX were not significantly different (p > 0.05). Overall, there were no significant differences in the parameters assessed between the groups treated with CRO alone or CRO + DOX. CONCLUSIONS Treatment with CRO + DOX showed similar bactericidal activity to CRO in vivo, suggesting no antagonist effect of DOX on CRO. Combined therapy significantly improved mouse survival and disease severity compared to untreated animals, but addition of DOX to CRO did not offer significant benefits over CRO monotherapy. In contrast to experimental PM, DOX has no adjunctive activity in experimental MM.
Collapse
Affiliation(s)
- Susanna Ricci
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Ospedale Santa Maria alle Scotte, University of Siena, Siena, Italy. .,ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.
| | - Denis Grandgirard
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ilias Masouris
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Tiziana Braccini
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Ospedale Santa Maria alle Scotte, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Ospedale Santa Maria alle Scotte, University of Siena, Siena, Italy
| | - Marco R Oggioni
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Uwe Koedel
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Stephen L Leib
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), Basel, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Park SS, Lee DH, Lee SM, Lee CH, Kim SY. Noise exposure alters MMP9 and brevican expression in the rat primary auditory cortex. BMC Neurosci 2020; 21:16. [PMID: 32334536 PMCID: PMC7183651 DOI: 10.1186/s12868-020-00567-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/17/2020] [Indexed: 01/22/2023] Open
Abstract
Background This study aimed to investigate the changes in molecules related to perineuronal nets (PNNs) and synaptic transporters in the primary auditory cortices of rats with noise-induced hearing loss. Female Sprague–Dawley rats at postnatal day 7 were divided into the noise and control groups. Four hours of 115 dB SPL white noise was delivered for 10 days to the noise group. Thirty days after noise exposure, the primary auditory cortex and the inferior colliculus were harvested. The expression levels of vesicular glutamatergic transporter (VGLUT)1, VGLUT2, vesicular GABA transporter (VGAT), glutamate decarboxylase (GAD)67, brevican, aggrecan, MMP9, and MMP14 were evaluated using real-time reverse transcription polymerase chain reaction or western blot. An immunofluorescence assay was conducted to assess parvalbumin (PV), Wisteria floribunda agglutinin (WFA), and brevican. The immune-positive cells were counted in the primary auditory cortex. Results The expression level of VGLUT1 in the primary auditory cortex was decreased in the noise group. The expression level of VGLUT2 in the inferior colliculus was elevated in the noise group. The expression levels of brevican and PV + WFA in the primary auditory cortex were decreased in the noise group. The expression level of MMP9 in the primary auditory cortex was increased in the noise group. Conclusion Noise-induced hearing loss during the precritical period impacted PNN expression in the primary auditory cortex. Increased MMP9 expression may have contributed to the decrease in brevican expression. These changes were accompanied by the attenuation of glutamatergic synaptic transporters.
Collapse
Affiliation(s)
- Sung-Su Park
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Da-Hye Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Chang Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea.
| |
Collapse
|
17
|
Meyer P, Grandgirard D, Lehner M, Haenggi M, Leib SL. Grafted Neural Progenitor Cells Persist in the Injured Site and Differentiate Neuronally in a Rodent Model of Cardiac Arrest-Induced Global Brain Ischemia. Stem Cells Dev 2020; 29:574-585. [PMID: 31964231 DOI: 10.1089/scd.2019.0190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypoxic-ischemic brain injury is the leading cause of disability and death after successful resuscitation from cardiac arrest, and, to date, no specific treatment option is available to prevent subsequent neurofunctional impairments. The hippocampal cornu ammonis segment 1 (CA1) is one of the brain areas most affected by hypoxia, and its degeneration is correlated with memory deficits in patients and corresponding animal models. The aim of this work was to evaluate the feasibility of neural progenitor cell (NPC) transplantation into the hippocampus in a refined rodent cardiac arrest model. Adult rats were subjected to 12 min of potassium-induced cardiac arrest and followed up to 6 weeks. Histological analysis showed extensive neuronal cell death specifically in the hippocampal CA1 segment, without any spontaneous regeneration. Neurofunctional assessment revealed transient memory deficits in ischemic animals compared to controls, detectable after 4 weeks, but not after 6 weeks. Using stereotactic surgery, embryonic NPCs were transplanted in a subset of animals 1 week after cardiac arrest and their survival, migration, and differentiation were assessed histologically. Transplanted cells showed a higher persistence in the CA1 segment of animals after ischemia. Glia in the damaged CA1 segment expressed the chemotactic factor stromal cell-derived factor 1 (SDF-1), while transplanted NPCs expressed its receptor CXC chemokine receptor 4 (CXCR4), suggesting that the SDF-1/CXCR4 pathway, known to be involved in the migration of neural stem cells toward injured brain regions, directs the observed retention of cells in the damaged area. Using immunostaining, we could demonstrate that transplanted cells differentiated into mature neurons. In conclusion, our data document the survival, persistence in the injured area, and neuronal differentiation of transplanted NPCs, and thus their potential to support brain regeneration after hypoxic-ischemic injury. This may represent an option worth further investigation to improve the outcome of patients after cardiac arrest.
Collapse
Affiliation(s)
- Patricia Meyer
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Marika Lehner
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Kietzman C, Tuomanen E. Acute Bacterial Meningitis: Challenges to Better Antibiotic Therapy. ACS Infect Dis 2019; 5:1987-1995. [PMID: 31268283 DOI: 10.1021/acsinfecdis.9b00122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial meningitis is a medical emergency requiring highly bactericidal antibiotics to achieve cure. Many challenges exist to achieving optimal patient outcome. First, antibiotics must pass the blood brain barrier. Once in the subarachnoid space, achieving bactericidal therapy involves circumventing antibiotic resistance and, more commonly, antibiotic tolerance arising from the slow growth of bacteria in the nutrient poor cerebrospinal fluid. Finally, bactericidal therapy is most often bacteriolytic, and debris from lysis is highly inflammatory. Controlling damage from lytic products may require adjunctive therapy to prevent neuronal death. These challenges are an extreme example of the different requirements for treating infections in different body sites.
Collapse
Affiliation(s)
- Colin Kietzman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Elaine Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| |
Collapse
|
19
|
Principi N, Esposito S. Bacterial meningitis: new treatment options to reduce the risk of brain damage. Expert Opin Pharmacother 2019; 21:97-105. [PMID: 31675255 DOI: 10.1080/14656566.2019.1685497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: Bacterial meningitis (BM) is a medical emergency and its etiology varies according to the age group and geographic area. Studies have shown that brain damage, sequelae and neuropsychological deficits depend not only on the direct deleterious action of the pathogens, but also on the host defenses themselves.Areas covered: Corticosteroids (CS) were the first drugs used with the intent to limit the exaggerated host response. However, as steroid addition to antibiotics is frequently unsatisfactory, other measures have been suggested. In this study, the most important adjuvant therapies that are potentially useful to limit the neuropsychological damage of BM are discussed.Expert opinion: The pathophysiological mechanisms leading to the development of brain damage are not completely defined. Moreover, the efficacy of adjuvant therapies can vary according to the aetiologic cause of BM, and differences in immune system function of the host can play a relevant role in the expression of inflammation and related problems. It is likely that none of the measures with demonstrated efficacy in animal models can be translated into clinical practice in the next few years, suggesting that to reduce the total burden of BM, the increased use of vaccines seems to be the best solution.
Collapse
Affiliation(s)
- Nicola Principi
- Emeritus of Pediatrics, Università degli Studi di Milano, Milan, Italy
| | - Susanna Esposito
- Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
20
|
Thomi G, Joerger-Messerli M, Haesler V, Muri L, Surbek D, Schoeberlein A. Intranasally Administered Exosomes from Umbilical Cord Stem Cells Have Preventive Neuroprotective Effects and Contribute to Functional Recovery after Perinatal Brain Injury. Cells 2019; 8:cells8080855. [PMID: 31398924 PMCID: PMC6721675 DOI: 10.3390/cells8080855] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Perinatal brain injury (PBI) in preterm birth is associated with substantial injury and dysmaturation of white and gray matter, and can lead to severe neurodevelopmental deficits. Mesenchymal stromal cells (MSC) have been suggested to have neuroprotective effects in perinatal brain injury, in part through the release of extracellular vesicles like exosomes. We aimed to evaluate the neuroprotective effects of intranasally administered MSC-derived exosomes and their potential to improve neurodevelopmental outcome after PBI. Exosomes were isolated from human Wharton's jelly MSC supernatant using ultracentrifugation. Two days old Wistar rat pups were subjected to PBI by a combination of inflammation and hypoxia-ischemia. Exosomes were intranasally administered after the induction of inflammation and prior to ischemia, which was followed by hypoxia. Infrared-labeled exosomes were intranasally administered to track their distribution with a LI-COR scanner. Acute oligodendrocyte- and neuron-specific cell death was analyzed 24 h after injury in animals with or without MSC exosome application using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and immunohistochemical counterstaining. Myelination, mature oligodendroglial and neuronal cell counts were assessed on postnatal day 11 using immunohistochemistry, Western blot or RT-PCR. Morris water maze assay was used to evaluate the effect of MSC exosomes on long-term neurodevelopmental outcome 4 weeks after injury. We found that intranasally administered exosomes reached the frontal part of the brain within 30 min after administration and distributed throughout the whole brain after 3 h. While PBI was not associated with oligodendrocyte-specific cell death, it induced significant neuron-specific cell death which was substantially reduced upon MSC exosome application prior to ischemia. MSC exosomes rescued normal myelination, mature oligodendroglial and neuronal cell counts which were impaired after PBI. Finally, the application of MSC exosomes significantly improved learning ability in animals with PBI. In conclusion, MSC exosomes represent a novel prevention strategy with substantial clinical potential as they can be administered intranasally, prevent gray and white matter alterations and improve long-term neurodevelopmental outcome after PBI.
Collapse
Affiliation(s)
- Gierin Thomi
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Marianne Joerger-Messerli
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Valérie Haesler
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
21
|
Muri L, Leppert D, Grandgirard D, Leib SL. MMPs and ADAMs in neurological infectious diseases and multiple sclerosis. Cell Mol Life Sci 2019; 76:3097-3116. [PMID: 31172218 PMCID: PMC7079810 DOI: 10.1007/s00018-019-03174-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022]
Abstract
Metalloproteinases-such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs)-are involved in various diseases of the nervous system but also contribute to nervous system development, synaptic plasticity and neuroregeneration upon injury. MMPs and ADAMs proteolytically cleave many substrates including extracellular matrix components but also signaling molecules and receptors. During neuroinfectious disease with associated neuroinflammation, MMPs and ADAMs regulate blood-brain barrier breakdown, bacterial invasion, neutrophil infiltration and cytokine signaling. Specific and broad-spectrum inhibitors for MMPs and ADAMs have experimentally been shown to decrease neuroinflammation and brain damage in diseases with excessive neuroinflammation as a common denominator, such as pneumococcal meningitis and multiple sclerosis, thereby improving the disease outcome. Timing of metalloproteinase inhibition appears to be critical to effectively target the cascade of pathophysiological processes leading to brain damage without inhibiting the neuroregenerative effects of metalloproteinases. As the critical role of metalloproteinases in neuronal repair mechanisms and regeneration was only lately recognized, the original idea of chronic MMP inhibition needs to be conceptually revised. Recently accumulated research urges for a second chance of metalloproteinase inhibitors, which-when correctly applied and dosed-harbor the potential to improve the outcome of different neuroinflammatory diseases.
Collapse
Affiliation(s)
- Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland.
| |
Collapse
|
22
|
Muri L, Le ND, Zemp J, Grandgirard D, Leib SL. Metformin mediates neuroprotection and attenuates hearing loss in experimental pneumococcal meningitis. J Neuroinflammation 2019; 16:156. [PMID: 31351490 PMCID: PMC6660697 DOI: 10.1186/s12974-019-1549-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
Background Pneumococcal meningitis is associated with high risk of neurological sequelae such as cognitive impairment and hearing loss. These sequelae are due to parenchymal brain and inner ear damage primarily induced by the excessive inflammatory reaction in response to bacterial brain invasion. Metformin—a biguanide drug to treat diabetes mellitus type 2—was recently found to suppress neuroinflammation and induce neuroregeneration. This study evaluated the effect of metformin adjunctive to antibiotics on neuroinflammation, brain and inner ear damage, and neurofunctional outcome in experimental pediatric pneumococcal meningitis. Methods Eleven-day-old Wistar rats were infected intracisternally with 5.22 ± 1.27 × 103 CFU Streptococcus pneumoniae and randomized for treatment with metformin (50 mg/kg, i.p., once daily for 3 weeks) plus ceftriaxone (100 mg/kg, i.p., bid, n = 61) or ceftriaxone monotherapy (n = 79). Cortical damage and hippocampal apoptosis were evaluated histomorphometrically 42 h post infection. Cerebrospinal fluid cytokine levels were analyzed during acute infection. Five weeks post infection, auditory brainstem responses were measured to determine hearing thresholds. Spiral ganglion neuron density and abundance of recently proliferated and integrated hippocampal granule neurons were assessed histologically. Additionally, the anti-inflammatory effect of metformin was studied in primary rat astroglial cells in vitro. Results Upon pneumococcal infection, metformin treatment significantly reduced levels of inflammatory cytokines and nitric oxide production in cerebrospinal fluid and in astroglial cell cultures in vitro (p < 0.05). Compared to animals receiving ceftriaxone monotherapy, adjunctive metformin significantly reduced cortical necrosis (p < 0.02) during acute infection and improved median click-induced hearing thresholds (60 dB vs. 100 dB, p < 0.002) 5 weeks after infection. Adjuvant metformin significantly improved pure tone hearing thresholds at all assessed frequencies compared to ceftriaxone monotherapy (p < 0.05) and protected from PM-induced spiral ganglion neuron loss in the inner ear (p < 0.05). Conclusion Adjuvant metformin reduces brain injury during pneumococcal meningitis by decreasing the excessive neuroinflammatory response. Furthermore, it protects spiral ganglion neurons in the inner ear and improves hearing impairments after experimental pneumococcal meningitis. These results identify adjuvant metformin as a promising therapeutic option to improve the outcome after pediatric pneumococcal meningitis. Electronic supplementary material The online version of this article (10.1186/s12974-019-1549-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Ngoc Dung Le
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Jonas Zemp
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland.
| |
Collapse
|
23
|
Combining Ceftriaxone with Doxycycline and Daptomycin Reduces Mortality, Neuroinflammation, Brain Damage, and Hearing Loss in Infant Rat Pneumococcal Meningitis. Antimicrob Agents Chemother 2019; 63:AAC.00220-19. [PMID: 31061158 DOI: 10.1128/aac.00220-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Despite appropriate antibiotic therapy, pneumococcal meningitis (PM) is associated with a case fatality rate of up to 30% in high-income countries. Survivors often suffer from severe lifelong disabilities. An excessive inflammatory reaction drives the pathophysiology, leading to brain damage and neurologic sequelae. We aimed to improve the outcome of experimental PM by simultaneously targeting different pathophysiological mechanisms with combined adjunctive therapies previously shown to be neuroprotective. In vitro, the anti-inflammatory effects of doxycycline and daptomycin were evaluated on primary rat astroglial cells stimulated with Streptococcus pneumoniae Eleven-day-old infant Wistar rats were infected intracisternally with S. pneumoniae and randomized for treatment with ceftriaxone or combination adjuvant therapy consisting of ceftriaxone, daptomycin, and doxycycline. During acute PM, combined-adjuvant therapy with ceftriaxone, daptomycin, and doxycycline increased the survival rate from 64.1% to 85.8% (P < 0.01) and alleviated weight loss compared to ceftriaxone monotherapy (P < 0.01). Levels of inflammatory cytokines were significantly reduced by combined-adjuvant therapy in vitro (P < 0.0001) and in cerebrospinal fluid in vivo (P < 0.05). In infected animals treated with combined adjunctive therapy, cortical damage was significantly reduced (P < 0.05), and animals showed a trend toward better hearing capacity 3 weeks after the infection (P = 0.089), an effect which was significant in mildly infected animals (48 decibels [dB] versus 67.22 dB; P < 0.05). These mildly infected animals showed significantly reduced cochlear fibrous occlusion (P < 0.01). By combining nonbacteriolytic daptomycin and anti-inflammatory doxycycline with ceftriaxone, the previously reported beneficial effects of the drugs were cumulated and identified the triple-antibiotic therapy as a promising therapeutic option for pediatric PM.
Collapse
|
24
|
Erni ST, Fernandes G, Buri M, Perny M, Rutten RJ, van Noort JM, Senn P, Grandgirard D, Roccio M, Leib SL. Anti-inflammatory and Oto-Protective Effect of the Small Heat Shock Protein Alpha B-Crystallin (HspB5) in Experimental Pneumococcal Meningitis. Front Neurol 2019; 10:570. [PMID: 31244750 PMCID: PMC6573805 DOI: 10.3389/fneur.2019.00570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Sensorineural hearing loss is the most common long-term deficit after pneumococcal meningitis (PM), occurring in up to 30% of surviving patients. The infection and the following overshooting inflammatory host response damage the vulnerable sensory cells of the inner ear, resulting in loss of hair cells and spiral ganglion neurons, ultimately leading to elevated hearing thresholds. Here, we tested the oto-protective properties of the small heat shock protein alpha B-crystallin (HspB5) with previously reported anti-inflammatory, anti-apoptotic and neuroprotective functions, in an experimental model of PM-induced hearing loss. We analyzed the effect of local and systemic delivery of HspB5 in an infant rat model of PM, as well as ex vivo, using whole mount cultures. Cytokine secretion profile, hearing thresholds and inner ear damage were assessed at predefined stages of the disease up to 1 month after infection. PM was accompanied by elevated pro-inflammatory cytokine concentrations in the cerebrospinal fluid (CSF), leukocyte and neutrophil infiltration in the perilymphatic spaces of the cochlea with neutrophils extracellular trap formation during the acute phase of the disease. Elevated hearing thresholds were measured after recovery from meningitis. Intracisternal but not intraperitoneal administration of HspB5 significantly reduced the levels of TNF-α, IL-6 IFN-γ and IL-10 in the acute phase of the disease. This resulted in a greater outer hair cell survival, as well as improved hearing thresholds at later stages. These results suggest that high local concentrations of HspB5 are needed to prevent inner ear damage in acute PM. HspB5 represents a promising therapeutic option to improve the auditory outcome and counteract hearing loss after PM.
Collapse
Affiliation(s)
- Silvia T Erni
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, DBMR, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Gabriella Fernandes
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, DBMR, University of Bern, Bern, Switzerland
| | - Michelle Buri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Michael Perny
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, DBMR, University of Bern, Bern, Switzerland
| | | | | | - Pascal Senn
- Service d'oto-rhino-laryngologie (ORL) et de chirurgie cervico-faciale, Département des Neurosciences Cliniques, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Marta Roccio
- Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, DBMR, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Thorsdottir S, Henriques-Normark B, Iovino F. The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Front Microbiol 2019; 10:576. [PMID: 30967852 PMCID: PMC6442515 DOI: 10.3389/fmicb.2019.00576] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Microglia have a pivotal role in the pathophysiology of bacterial meningitis. The goal of this review is to provide an overview on how microglia respond to bacterial pathogens targeting the brain, how the interplay between microglia and bacteria can be studied experimentally, and possible ways to use gained knowledge to identify novel preventive and therapeutic strategies. We discuss the dual role of microglia in disease development, the beneficial functions crucial for bacterial clearing, and the destructive properties through triggering neuroinflammation, characterized by cytokine and chemokine release which leads to leukocyte trafficking through the brain vascular endothelium and breakdown of the blood-brain barrier integrity. Due to intrinsic complexity of microglia and up until recently lack of specific markers, the study of microglial response to bacterial pathogens is challenging. New experimental models and techniques open up possibilities to accelerate progress in the field. We review existing models and discuss possibilities and limitations. Finally, we summarize recent findings where bacterial virulence factors are identified to be important for the microglial response, and how manipulation of evoked responses could be used for therapeutic or preventive purposes. Among promising approaches are: modulations of microglia phenotype switching toward anti-inflammatory and phagocytic functions, the use of non-bacterolytic antimicrobials, preventing release of bacterial components into the neural milieu and consequential amplification of immune activation, and protection of the blood-brain barrier integrity.
Collapse
Affiliation(s)
- Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|