1
|
Ning W, Lv S, Wang Q, Xu Y. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage. Neural Regen Res 2025; 20:1829-1848. [PMID: 38993136 PMCID: PMC11691474 DOI: 10.4103/nrr.nrr-d-24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Subarachnoid hemorrhage leads to a series of pathological changes, including vascular spasm, cellular apoptosis, blood-brain barrier damage, cerebral edema, and white matter injury. Microglia, which are the key immune cells in the central nervous system, maintain homeostasis in the neural environment, support neurons, mediate apoptosis, participate in immune regulation, and have neuroprotective effects. Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage. Moreover, microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage. Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury. This provides new targets and ideas for the treatment of subarachnoid hemorrhage. However, an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking. This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm, neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, cerebral edema, and cerebral white matter lesions. It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage. Currently, microglia in subarachnoid hemorrhage are targeted with TLR inhibitors, nuclear factor-κB and STAT3 pathway inhibitors, glycine/tyrosine kinases, NLRP3 signaling pathway inhibitors, Gasdermin D inhibitors, vincristine receptor α receptor agonists, ferroptosis inhibitors, genetic modification techniques, stem cell therapies, and traditional Chinese medicine. However, most of these are still being evaluated at the laboratory stage. More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Kanamaru H, Suzuki H. Therapeutic potential of stem cells in subarachnoid hemorrhage. Neural Regen Res 2025; 20:936-945. [PMID: 38989928 PMCID: PMC11438332 DOI: 10.4103/nrr.nrr-d-24-00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/27/2024] [Indexed: 07/12/2024] Open
Abstract
Aneurysm rupture can result in subarachnoid hemorrhage, a condition with potentially severe consequences, such as disability and death. In the acute stage, early brain injury manifests as intracranial pressure elevation, global cerebral ischemia, acute hydrocephalus, and direct blood-brain contact due to aneurysm rupture. This may subsequently cause delayed cerebral infarction, often with cerebral vasospasm, significantly affecting patient outcomes. Chronic complications such as brain volume loss and chronic hydrocephalus can further impact outcomes. Investigating the mechanisms of subarachnoid hemorrhage-induced brain injury is paramount for identifying effective treatments. Stem cell therapy, with its multipotent differentiation capacity and anti-inflammatory effects, has emerged as a promising approach for treating previously deemed incurable conditions. This review focuses on the potential application of stem cells in subarachnoid hemorrhage pathology and explores their role in neurogenesis and as a therapeutic intervention in preclinical and clinical subarachnoid hemorrhage studies.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | | |
Collapse
|
3
|
He P, Zhang H, Wang J, Guo Y, Tian Q, Liu C, Gong P, Ye Q, Peng Y, Li M. Dental Pulp Stem Cells Attenuate Early Brain Injury After Subarachnoid Hemorrhage via miR-26a-5p/PTEN/AKT Pathway. Neurochem Res 2025; 50:91. [PMID: 39883266 DOI: 10.1007/s11064-025-04340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential. Therefore, we aim to investigate whether DPSCs can improve EBI after SAH, and explore the mechanisms. In our study, we utilized the endovascular perforation method to establish a SAH mouse model and investigated whether DPSCs administered via tail vein injection could improve EBI after SAH. Furthermore, we used hemin-stimulated HT22 cells to simulate neuronal cell injury induced by SAH and employed a co-culture approach to examine the effects of DPSCs on these cells. To gain insights into the potential mechanisms underlying the improvement of SAH-induced EBI by DPSCs, we conducted bioinformatics analysis. Finally, we further validated our findings through experiments. In vivo experiments, we found that DPSCs administration improved neurological dysfunction, reduced brain edema, and prevented neuronal apoptosis in SAH mice. Additionally, we observed a decrease in the expression level of miR-26a-5p in the cortical tissues of SAH mice, which was significantly increased following intravenous injection of DPSCs. Through bioinformatic analysis and luciferase reporter assay, we confirmed the target relationship between miR-26a-5p and PTEN. Moreover, we demonstrated that DPSCs exerted neuroprotective effects by modulating the miR-26a-5p/PTEN/AKT pathway. Our study demonstrates that DPSCs can improve EBI after SAH through the miR-26a-5p/PTEN/AKT pathway, laying a foundation for the application of DPSCs in SAH treatment. These findings provide a theoretical basis for further investigating the therapeutic mechanisms of DPSCs and developing novel treatment strategies in SAH.
Collapse
Affiliation(s)
- Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hui Zhang
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qingsong Ye
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Youjian Peng
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
4
|
Ming Y, Zhao P, Zhang H, Zhang Z, Huang Z, Zhang L, Sun Y, Li X. Complement Molecule C3a Exacerbates Early Brain Injury After Subarachnoid Hemorrhage by Inducing Neuroinflammation Through the C3aR-ERK-P2X7-NLRP3 Inflammasome Signaling Axis. Inflammation 2024:10.1007/s10753-024-02155-7. [PMID: 39528767 DOI: 10.1007/s10753-024-02155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
An important aspect of the pathophysiology of early brain damage (EBI) after subarachnoid hemorrhage (SAH) is inflammasome-mediated neuroinflammation. It has been demonstrated that C3aR activation exacerbates neuronal damage in a number of neurological disorders. This study aims to explore the role of C3a in activating the NLRP3 inflammasome and exacerbating neuroinflammation after SAH. Preprocessing of RNA-seq transcriptome datasets using bioinformatics analysis, and screening of differentially expressed genes between SAH patients and healthy individuals from the GEO database. Internal carotid artery puncture was performed to establish SAH models in rats and mice. SAH grading, neurological scoring, brain water content, behavioral analysis, and assessments using ELISA, Western blot, immunofluorescence, and immunohistochemistry were conducted. An in vitro model of SAH was induced in BV-2 cells treated with heme (200 μM). The mechanism of C3a in post-SAH neuroinflammation was studied by interfering with and inhibiting C3aR. Results showed that the expression of C3aR was upregulated in the GEO dataset (serum of SAH patients) and identified as a key differential gene in SAH. Further, elevated levels of C3a were found in the cerebrospinal fluid of clinically collected SAH patients. In the cerebral cortex and/or serum of SAH rats, expression of C3a, IL-1β, IL-6, TNF-α, CD11b, and Ki67 were significantly increased, while IL-10 was significantly decreased. Correlation analysis revealed that C3a showed negative correlation with IL-10 and positive correlation with IL-1β, IL-6, TNF-α, CD11b, and Ki67. After stimulation with heme, protein levels of C3a increased in BV-2 cells. Interfering with C3aR significantly reduced LDH release, IL-1β secretion, Caspase1 activation, levels of NLRP3 expression and ASC oligomerization, and ATP release after heme stimulation in BV-2. Subsequently, the addition of inhibitors of ERK1/2 phosphorylation demonstrated that C3a promotes ATP efflux by activating ERK1/2 phosphorylation, thereby activating P2X7. Further addition of JNJ-55308942 (a P2X7R antagonist) revealed that C3a activated the NLRP3 inflammasome via P2X7. Finally, administering SB290157 (a C3aR inhibitor) in vivo effectively alleviated brain edema, reduced mortality, improved Garcia score, ameliorated motor dysfunction, and suppressed inflammation and NLRP3 inflammasome activation in mice after SAH. Overall, C3a exacerbates EBI-associated NLRP3 inflammasome and neuroinflammation via the C3aR-ERK-P2X7 pathway after SAH. Inhibiting C3aR may serve as a one possible treatment approach to alleviate SAH after EBI.
Collapse
Affiliation(s)
- Yuanyuan Ming
- Institute of Stroke Research, Soochow University, Suzhou, 215006, China
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Panpan Zhao
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Hongwei Zhang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Ziyuan Zhang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Zhengqian Huang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Le Zhang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Yong Sun
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China.
| | - Xiangdong Li
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
5
|
Ru D, Zhang Z, Liu M, Fan X, Wang Y, Yan Y, Wang E. Downregulation of Notch Signaling-Stimulated Genes in Neurovascular Unit Alterations Induced by Chronic Cerebral Hypoperfusion. Immun Inflamm Dis 2024; 12:e70082. [PMID: 39607309 PMCID: PMC11603426 DOI: 10.1002/iid3.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is a key contributor to vascular cognitive impairment (VCI) and is typically associated with blood-brain barrier (BBB) damage. This study investigates the pathological mechanisms underlying CCH-induced neurovascular unit (NVU) alterations. METHODS A mouse model of CCH was established using the bilateral common carotid artery stenosis (BCAS) procedure. Decreased cerebral blood flow (CBF) and impaired BBB integrity were assessed. Brain microvessel (BMV)-specific transcriptome profiles were analyzed using RNA-seq, supplemented with published single-cell RNA-seq data. RESULTS RNA-seq revealed neuroinflammation-related gene activation and significant downregulation of Notch signaling pathway genes in BMVs post-BCAS. Upregulated differentially expressed genes (DEGs) were enriched in microglia/macrophages, while downregulated DEGs were prominent in endothelial cells and pericytes. Enhanced activation of vascular-associated microglia (VAM) was linked to neurovascular alterations. CONCLUSION CCH induces significant NVU changes, marked by microglia-associated neuroinflammation and Notch signaling downregulation. These insights highlight potential therapeutic targets for treating neuroinflammatory and vascular-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Dewen Ru
- Department of Neurosurgery, Jinshan HospitalFudan UniversityShanghaiChina
- Department of Neurosurgery, Huashan HospitalFudan UniversityShanghaiChina
- Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zengyu Zhang
- Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Neurology, Minhang HospitalFudan UniversityShanghaiChina
| | - Meng Liu
- Department of Neurosurgery, Jinshan HospitalFudan UniversityShanghaiChina
| | - Xuhui Fan
- Department of Neurosurgery, Jinshan HospitalFudan UniversityShanghaiChina
| | - Yuqi Wang
- Department of Neurosurgery, Jinshan HospitalFudan UniversityShanghaiChina
| | - Yufeng Yan
- Department of Neurosurgery, Jinshan HospitalFudan UniversityShanghaiChina
| | - Ersong Wang
- Department of Neurosurgery, Jinshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Wang W, Wang Y, Gao L. Stem Cells Treatment for Subarachnoid Hemorrhage. Neurologist 2024:00127893-990000000-00158. [PMID: 39450602 DOI: 10.1097/nrl.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) refers to bleeding in the subarachnoid space, which is a serious neurologic emergency. However, the treatment effects of SAH are limited. In recent years, stem cell (SC) therapy has gradually become a very promising therapeutic method and advanced scientific research area for SAH. REVIEW SUMMARY The SCs used for SAH treatment are mainly bone marrow mesenchymal stem cells (BMSCs), umbilical cord mesenchymal stem cells (hUC-MSCs), dental pulp stem cells (DPSCs), neural stem cells (NSCs)/neural progenitor cell (NPC), and endothelial progenitor cell (EPC). The mechanisms mainly included differentiation and migration of SCs for tissue repair; alleviating neuronal apoptosis; anti-inflammatory effects; and blood-brain barrier (BBB) protection. The dosage of SCs was generally 106 orders of magnitude. The administration methods included intravenous injection, nasal, occipital foramen magnum, and intraventricular administration. The administration time is generally 1 hour after SAH modeling, but it may be as late as 24 hours or 6 days. Existing studies have confirmed the neuroprotective effect of SCs in the treatment of SAH. CONCLUSIONS SC has great potential application value in SAH treatment, a few case reports have provided support for this. However, the relevant research is still insufficient and there is still a lack of clinical research on the SC treatment for SAH to further evaluate the effectiveness and safety before it can go from experiment to clinical application.
Collapse
Affiliation(s)
| | | | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Wei B, Liu W, Jin L, Huang Y, Cheng W, Fan H, Su S, Jin F, Zhang X, Yang Z, Liang S, Li L, Wu Y, Liu Y, Duan C, Li X. Hepcidin depending on astrocytic NEO1 ameliorates blood-brain barrier dysfunction after subarachnoid hemorrhage. Cell Death Dis 2024; 15:569. [PMID: 39107268 PMCID: PMC11303805 DOI: 10.1038/s41419-024-06909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024]
Abstract
Subarachnoid hemorrhage (SAH) significantly compromises the blood-brain barrier (BBB) and impairs patient recovery. This study elucidates the critical role of astrocytic Neogenin-1 (NEO1) in BBB integrity post-SAH and examines the regulatory effects of hepcidin on endothelial cell (EC) function amid NEO1-mediated disruptions in iron homeostasis. Proteomic analyses of cerebrospinal fluid (CSF) from SAH patients revealed a substantial decrease in NEO1 expression, identifying it as a key factor in BBB integrity. 111 CSF proteins were significantly reduced in early SAH stages (days 1-3), with NEO1 among the most significantly altered. This dysregulation was linked to poorer patient outcomes, as indicated by a negative correlation between NEO1 levels and Modified Rankin Scale scores six months post-SAH (R = -0.4743, P < 0.0001). Experimental models further highlighted the importance of NEO1: SAH model and NEO1GFAP-Cre mice exhibited exacerbated EC dysfunction and increased BBB permeability, evidenced by significant Evans Blue retention and dextran leakage in the parietal cortex, effects that were mitigated by hepcidin administration. Our findings highlight the complex interplay between astrocytic signaling and endothelial function in SAH pathophysiology. The loss of astrocytic NEO1 led to increased EC proliferation and altered BBB structure, as confirmed by transmission electron microscopy and immunostaining for PECAM-1, indicating heightened blood vessel density in the affected cortex. Hepcidin treatment effectively reversed the EC dysfunction and BBB disruption in both NEO1-cKO mice and the SAH model, highlighting its potential as a therapeutic agent to enhance recovery and improve prognosis following SAH.
Collapse
Affiliation(s)
- Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yaxian Huang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wenping Cheng
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haiyan Fan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shixing Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fa Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xin Zhang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zeyu Yang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuyin Liang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Longxiang Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yu Wu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yanchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
8
|
Ding M, Jin L, Wei B, Cheng W, Liu W, Li X, Duan C. Tumor necrosis factor-stimulated gene-6 ameliorates early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome-mediated astrocyte pyroptosis. Neural Regen Res 2024; 19:1064-1071. [PMID: 37862209 PMCID: PMC10749632 DOI: 10.4103/1673-5374.385311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 10/22/2023] Open
Abstract
Subarachnoid hemorrhage is associated with high morbidity and mortality and lacks effective treatment. Pyroptosis is a crucial mechanism underlying early brain injury after subarachnoid hemorrhage. Previous studies have confirmed that tumor necrosis factor-stimulated gene-6 (TSG-6) can exert a neuroprotective effect by suppressing oxidative stress and apoptosis. However, no study to date has explored whether TSG-6 can alleviate pyroptosis in early brain injury after subarachnoid hemorrhage. In this study, a C57BL/6J mouse model of subarachnoid hemorrhage was established using the endovascular perforation method. Our results indicated that TSG-6 expression was predominantly detected in astrocytes, along with NLRC4 and gasdermin-D (GSDMD). The expression of NLRC4, GSDMD and its N-terminal domain (GSDMD-N), and cleaved caspase-1 was significantly enhanced after subarachnoid hemorrhage and accompanied by brain edema and neurological impairment. To explore how TSG-6 affects pyroptosis during early brain injury after subarachnoid hemorrhage, recombinant human TSG-6 or a siRNA targeting TSG-6 was injected into the cerebral ventricles. Exogenous TSG-6 administration downregulated the expression of NLRC4 and pyroptosis-associated proteins and alleviated brain edema and neurological deficits. Moreover, TSG-6 knockdown further increased the expression of NLRC4, which was accompanied by more severe astrocyte pyroptosis. In summary, our study revealed that TSG-6 provides neuroprotection against early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome activation-induced astrocyte pyroptosis.
Collapse
Affiliation(s)
- Mingxiang Ding
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Cerebrovascular Intervention, Zhongshan City People’s Hospital, Zhongshan, Guangdong Province, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenping Cheng
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Alzahrani FA, Riza YM, Eid TM, Almotairi R, Scherschinski L, Contreras J, Nadeem M, Perez SE, Raikwar SP, Jha RM, Preul MC, Ducruet AF, Lawton MT, Bhatia K, Akhter N, Ahmad S. Exosomes in Vascular/Neurological Disorders and the Road Ahead. Cells 2024; 13:670. [PMID: 38667285 PMCID: PMC11049650 DOI: 10.3390/cells13080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasir M. Riza
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Lea Scherschinski
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Muhammed Nadeem
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sylvia E. Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sudhanshu P. Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Michael T. Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kanchan Bhatia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ 85012, USA
| |
Collapse
|
10
|
Jin F, Jin L, Wei B, Li X, Li R, Liu W, Guo S, Fan H, Duan C. miR-96-5p alleviates cerebral ischemia-reperfusion injury in mice by inhibiting pyroptosis via downregulating caspase 1. Exp Neurol 2024; 374:114676. [PMID: 38190934 DOI: 10.1016/j.expneurol.2024.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Ischemic stroke is one of the leading causes of global mortality and disability. Nevertheless, successful treatment remains limited. In this study, we investigated the efficacy and the mechanism of miR-96-5p in protecting acute ischemic brain injury in adult mice. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice. MiR-96-5p or the negative control was administered via intracerebroventricular injection. The expression of pyroptosis-related genes and activation of various resident cells in the brain was assessed by RT-qPCR, western blot, immunohistochemistry, and immunofluorescence. Modified neurological severity score, rotarod test, cylinder test, brain water content, and cerebral infarction volume were used to evaluate the behavioral deficits and the severity of brain injury after MCAO. Flow cytometry, TUNEL staining, and Nissl staining were employed to assess the neuron damage. MiR-96-5p decreased markedly in the ischemic stroke model in vivo and in vitro. MiR-96-5p mimics suppressed the expression of caspase 1 and alleviated the apoptosis rate in OGD/R treatment N2a cells, however, the miR-96-5p inhibitor caused the opposite results. Intracerebroventricular delivery of miR-96-5p agomir significantly mitigated behavioral deficits, brain water content, and cerebral infarction volume after MCAO. In addition, treatment with miR-96-5p agomir downregulated the expression of caspase 1/cleaved caspase 1 and Gsdmd/Gsdmd-N, while alleviating the neuron damage. In summary, overexpression of miR-96-5p suppresses pyroptosis and reduces brain damage in the acute phase of ischemic stroke, providing new insight into the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Fa Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ran Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Haiyan Fan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
11
|
Lin C, He C, Li L, Liu Y, Tang L, Ni Z, Zhang N, Lai T, Chen X, Wang X. Alpha-lipoic acid (ALA) ameliorates early brain injury after subarachnoid hemorrhage in Sprague-Dawley (SD) rats via inhibiting STING-NLRP3 inflammatory signaling. Neuroreport 2024; 35:250-257. [PMID: 38305103 PMCID: PMC10852041 DOI: 10.1097/wnr.0000000000001998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Neuroinflammation is intimately associated with poor prognosis in patients with subarachnoid hemorrhage (SAH). Alpha-lipoic acid (ALA), a disulfide antioxidant, has been shown to be neuroprotective in an in vivo model of neurological injury; however, the role of ALA in SAH has never been evaluated. In this study, the Sprague-Dawley rats SAH model was induced by endovascular perforation method. ALA was transplanted intravenously into rats, and SR-717, a stimulator of interferon genes (STING) agonist, was injected intraperitoneally. The effects of ALA on early brain injury were assayed by neurological score, hematoxylin and eosin staining and Nissl staining. Immunohistochemistry staining and Western blotting were used to analyze various proteins. ALA significantly reduced STING- NLRP3 protein expression and decreased cell death, which in turn mitigated the neurobehavioral dysfunction following SAH. Furthermore, coadministration of ALA and SR-717 promoted STING-NLRP3 signaling pathway activation following SAH, which reversed the inhibitory effect of ALA on STING-NLRP3 protein activation and increased the neurological deficits. In conclusion, ALA may be a promising therapeutic strategy for alleviating early brain injury after SAH.
Collapse
Affiliation(s)
- Chunnan Lin
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Chunliu He
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Liuqing Li
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Yongqiang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Liangang Tang
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Zepeng Ni
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Naichong Zhang
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Tinghai Lai
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Xiaohong Chen
- Department of Neurosurgery, Maoming People’s Hospital
- Department of Neurosurgery, Maoming Clinical College of Guangdong Medical University, Maoming, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong
| |
Collapse
|
12
|
Kang J, Tian S, Zhang L, Yang G. Ferroptosis in early brain injury after subarachnoid hemorrhage: review of literature. Chin Neurosurg J 2024; 10:6. [PMID: 38347652 PMCID: PMC10863120 DOI: 10.1186/s41016-024-00357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), mainly caused by ruptured intracranial aneurysms, is a serious acute cerebrovascular disease. Early brain injury (EBI) is all brain injury occurring within 72 h after SAH, mainly including increased intracranial pressure, decreased cerebral blood flow, disruption of the blood-brain barrier, brain edema, oxidative stress, and neuroinflammation. It activates cell death pathways, leading to neuronal and glial cell death, and is significantly associated with poor prognosis. Ferroptosis is characterized by iron-dependent accumulation of lipid peroxides and is involved in the process of neuron and glial cell death in early brain injury. This paper reviews the research progress of ferroptosis in early brain injury after subarachnoid hemorrhage and provides new ideas for future research.
Collapse
Affiliation(s)
- Junlin Kang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Shilai Tian
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Lei Zhang
- Gansu Provincial Hospital, Lanzhou City, Gansu Province, China
| | - Gang Yang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
13
|
Jung H, Youn DH, Park JJ, Jeon JP. Bone-Marrow-Derived Mesenchymal Stem Cells Attenuate Behavioral and Cognitive Dysfunction after Subarachnoid Hemorrhage via HMGB1-RAGE Axis Mediation. Life (Basel) 2023; 13:881. [PMID: 37109411 PMCID: PMC10145212 DOI: 10.3390/life13040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
We evaluated the therapeutic effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on behavioral and cognitive function in a mouse model of mild subarachnoid hemorrhage (SAH) and explored the underlying mechanisms in conjunction with the HMGB1-RAGE axis. The SAH models were generated in a total of 126 male C57BL/6J mice via endovascular perforation and evaluated 24 h and 72 h after the intravenous administration of BMSCs (3 × 105 cells). The BMSCs were administered once, at 3 h, or twice, at 3 h and 48 h after the model induction. The therapeutic effects of the BMSCs were compared to those of the saline administration. Compared to saline-treated SAH-model mice, at 3 h, the mice with mild SAH treated with the BMSCs showed significant improvements in their neurological scores and cerebral edema. The administration of the BMSCs decreased the mRNA expression of HMGB1, RAGE, TLR4, and MyD88, as well as the protein expression of HMGB1 and phosphorylated NF-kB p65. Furthermore, the numbers of slips per walking time, impairments in short-term memory, and the recognition of novel objects were improved. There was some improvement in inflammatory-marker levels and cognitive function according to the BMSCs' administration times, but no large differences were seen. The administration of BMSCs improved behavioral and cognitive dysfunction by ameliorating HMGB1-RAGE axis-mediated neuroinflammation after SAH.
Collapse
Affiliation(s)
- Harry Jung
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Republic of Korea
- Department of Neurosurgery, Kangwon National University College of Medicine, Chuncheon 24341, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
14
|
Xia Y, Zhu J, Yang R, Wang H, Li Y, Fu C. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front Immunol 2023; 14:1141601. [PMID: 36911700 PMCID: PMC9999104 DOI: 10.3389/fimmu.2023.1141601] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Spinal cord injury (SCI) has considerable impact on patient physical, mental, and financial health. Secondary SCI is associated with inflammation, vascular destruction, and subsequent permanent damage to the nervous system. Mesenchymal stem cells (MSCs) have anti-inflammatory properties, promoting vascular regeneration and the release neuro-nutrients, and are a promising strategy for the treatment of SCI. Preclinical studies have shown that MSCs promote sensory and motor function recovery in rats. In clinical trials, MSCs have been reported to improve the American Spinal Injury Association (ASIA) sensory and motor scores. However, the effectiveness of MSCs in treating patients with SCI remains controversial. MSCs promote tumorigenesis and ensuring the survival of MSCs in the hostile environment of SCI is challenging. In this article we examine the evidence on the pathophysiological changes occurring after SCI. We then review the underlying mechanisms of MSCs in the treatment of SCI and summarize the potential application of MSCs in clinical practice. Finally, we highlight the challenges surrounding the use of MSCs in the treatment of SCI and discuss future applications.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| |
Collapse
|
15
|
Ruchika FNU, Shah S, Delawan M, Durga N, Lucke-Wold B. Cytokines and subarachnoid hemorrhage. IN VITRO DIAGNOSIS 2023; 1:55. [PMID: 37982005 PMCID: PMC10657139 DOI: 10.59400/ivd.v1i1.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Subarachnoid hemorrhage (SAH) remains a potentially devastating cerebrovascular disease with a high morbidity and mortality rate, irrespective of treatment. The disease still has a 40-50% mortality rate with a 70% rate of cerebral vasospasm in those patients. The release of cytokines has been implicated in the development and progression of SAH. In this paper, we will explore the role of cytokines in aneurysmal subarachnoid hemorrhage (aSAH), including their effects on the inflammatory response, cerebral vasospasm, blood-brain barrier disruption, and neuronal damage. We also identify the role of the glymphatic system in progression of aSAH. The review will also briefly touch upon current research on potential therapeutic targets aimed at modulating cytokine activity in patients with aSAH. This review aims to give an in-depth review of the cytokines involved in aSAH and serve as a catalyst to research directed towards treatment options for aSAH.
Collapse
Affiliation(s)
- FNU Ruchika
- Department of Neurosurgery, University of Florida, Gainesville, 32608, USA
| | - Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, 32608, USA
| | - Maliya Delawan
- Department of Neurosurgery, University of Florida, Gainesville, 32608, USA
| | - Neupane Durga
- Department of Neurosurgery, University of Florida, Gainesville, 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, 32608, USA
| |
Collapse
|
16
|
Luo Y, Qu J, He Z, Zhang M, Zou Z, Li L, Zhang Y, Ye J. Human Umbilical Cord Mesenchymal Stem Cells Improve the Status of Hypoxic/Ischemic Cerebral Palsy Rats by Downregulating NogoA/NgR/Rho Pathway. Cell Transplant 2023; 32:9636897231210069. [PMID: 37982384 PMCID: PMC10664427 DOI: 10.1177/09636897231210069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSC) have shown promising potential in ameliorating brain injury, but the mechanism is unclear. We explore the role of NogoA/NgR/Rho pathway in mediating hUCMSC to improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP (cerebral palsy) rat model in order to promote the clinical application of stem cell therapy in CP. The injury model of HT22 cells was established after 3 h hypoxia, and then co-cultured with hUCMSC. The rat model of CP was established by ligation of the left common carotid artery for 2.5 h. Subsequently, hUCMSC was administered via the tail vein once a week for a total of four times. The neurobehavioral status of CP rats was determined by behavioral experiment, and the pathological brain injury was determined by pathological staining method. The mRNA and protein expressions of NogoA, NgR, RhoA, Rac1, and CDC42 in brain tissues of rats in all groups and cell groups were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence. The CP rats exhibited obvious motor function abnormalities and pathological damage. Compared with the control group, hUCMSC transplantation could significantly improve the neurobehavioral situation and attenuate brain pathological injury in CP rats. The relative expression of NogoA, NgR, RhoA mRNA, and protein in brain tissues of rats in the CP group was significantly higher than the rats in the sham and CP+hUCMSC group. The relative expression of Rac1, CDC42 mRNA, and protein in brain tissues of rats in the CP group was significantly lower than the rats in the sham and CP+hUCMSC group. The animal experiment results were consistent with the experimental trend of hypoxic injury of HT22 cells. This study confirmed that hUCMSC can efficiently improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP rat model and HT22 cell model through downregulating the NogoA/NgR/Rho pathway.
Collapse
Affiliation(s)
- Yaoling Luo
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiayang Qu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, China
| | - Zhengyi He
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | | | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, China
| |
Collapse
|
17
|
Zhang J, Zhang N, Lei J, Jing B, Li M, Tian H, Xue B, Li X. Fluoxetine shows neuroprotective effects against LPS-induced neuroinflammation via the Notch signaling pathway. Int Immunopharmacol 2022; 113:109417. [DOI: 10.1016/j.intimp.2022.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
|
18
|
Lu J, Huang X, Deng A, Yao H, Wu G, Wang N, Gui H, Ren M, Guo S. miR-452-3p Targets HDAC3 to Inhibit p65 Deacetylation and Activate the NF-κB Signaling Pathway in Early Brain Injury after Subarachnoid Hemorrhage. Neurocrit Care 2022; 37:558-571. [PMID: 35641805 DOI: 10.1007/s12028-022-01509-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Subarachnoid hemorrhage (SAH) is a subtype of stroke, and early brain injury (EBI) is a contributor to its unfavorable outcome. microRNA (miRNA) is abundantly expressed in the brain and participates in brain injury. This study investigated the effect of miR-452-3p on EBI after SAH. METHODS The murine model of SAH was established. miR-452-3p expression was detected 48 h after the model establishment. Neurobehavioral function, blood-brain barrier permeability, brain water content, neuronal apoptosis, and inflammatory factors were evaluated. The cell model of SAH was induced by oxygen hemoglobin. Apoptosis rate, lactate dehydrogenase, and reactive oxygen species were detected. The targeting relationship between miR-452-3p and histone deacetylase 3 (HDAC3) was verified. The acetylation of p65 and the binding of HDAC3 to p65 were detected. The inhibitory protein of the nuclear factor κB pathway (IκBα) was detected. Suberoylanilide hydroxamic acid was injected into the SAH mice treated with miR-452-3p inhibitor. RESULTS SAH mice showed upregulated miR-452-3p expression; reduced the neurological score; increased blood-brain barrier permeability, brain water content, and neuronal apoptosis; elevated pro-inflammatory factors; and reduced anti-inflammatory factors. SAH increased the apoptosis rate, lactate dehydrogenase release, and reactive oxygen species levels in oxygen-hemoglobin-treated neuron cells. Inhibition of miR-452-3p reversed the above trends. miR-452-3p targeted HDAC3. SAH upregulated p65 acetylation. miR-452-3p inhibitor promoted the binding of HDAC3 to p65, decreased p65 acetylation, and upregulated IκBα. Suberoylanilide hydroxamic acid reversed the protective effect of miR-452-3p inhibitor on SAH mice and aggravated brain injury. CONCLUSIONS miR-452-3p targeted HDAC3 to inhibit the deacetylation of p65 and activate the nuclear factor κB pathway, thus aggravating EBI after SAH.
Collapse
Affiliation(s)
- Junti Lu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Xiaodong Huang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Aiping Deng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Hong Yao
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Gao Wu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Na Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Hui Gui
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Mojie Ren
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Shiwen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
19
|
Song N, Song R, Ma P. MiR-340-5p alleviates neuroinflammation and neuronal injury via suppressing STING in subarachnoid hemorrhage. Brain Behav 2022; 12:e2687. [PMID: 35957622 PMCID: PMC9480905 DOI: 10.1002/brb3.2687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe acute neurological disorder. SAH causes neuroinflammation and leads to early brain injury (EBI) and secondary injury. MicroRNAs are crucial regulators in a variety of neurological diseases. This study was performed to decipher how miR-340-5p functions in SAH. METHODS An experimental mouse model with SAH was established by the intravascular perforation, and the in vitro SAH model was constructed by exposing cocultured primary neurons and microglia to oxyhemoglobin. After overexpression of miR-340-5p in mice, the neurobehavioral disorders were evaluated by Garcia test; brain edema was evaluated by wet-dry method; blood-brain barrier (BBB) damage was detected with Evan's blue staining; levels of inflammatory cytokines were detected with enzyme-linked immunosorbent assay. After miR-340-5p was transfected in to microglia, Iba-1 expression was detected by Western blot, and neuronal apoptosis were detected with flow cytometry. The targeting relationship between miR-340-5p and STING was verified by dual-luciferase reporter gene assay and RNA immunoprecipitation assay. RESULTS MiR-340-5p was significantly inhibited in the brain tissues of mice with SAH and microglia of SAH model, and neurological impairment, brain edema, BBB injury, and neuroinflammation were significantly alleviated in mice after overexpressing miR-340-5p. STING was identified as a target of miR-340-5p, and STING overexpression could counteract the effects of miR-340-5p overexpression on neurons. CONCLUSION MiR-340-5p can attenuate EBI caused by SAH-induced neuroinflammation by inhibiting STING.
Collapse
Affiliation(s)
- Ning Song
- Department of Emergency, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Rong Song
- Department of Oral Medicine, Lanzhou University Dental Hospital, Lanzhou, Gansu, China
| | - Peiliang Ma
- Department of Orthopedics, Lanzhou PLA 96604 Military Hospital, Lanzhou, Gansu, China
| |
Collapse
|
20
|
Tong L, Gao S, Li W, Yang J, Wang P, Li W. TRPM2 mediates CaMKⅡ-Beclin-1 signaling in early cortical injury after induced subarachnoid hemorrhage in mice. J Chem Neuroanat 2022; 125:102144. [PMID: 35988814 DOI: 10.1016/j.jchemneu.2022.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Though early brain injury (EBI) is the primary cause of poor outcomes among patients with subarachnoid hemorrhage (SAH), its exact molecular mechanisms remain unclear. Improved the understanding of how transient receptor potential melastatin-related 2 (TRPM2) is involved in SAH-induced EBI will help develop novel interventions. METHODS Wild type (WT) male C57BL/6J mice were subjected to SAH for 12 h, 24 h or 48 h, after which neurological scores and pathological changes in the hippocampus (CA3, DG, and CA1) and temporal base cortex were observed. Expressions of TRPM2, Ca2+/calmodulin (CaM)-dependent protein kinase Ⅱ (CaMKⅡ), and Beclin-1 in hippocampus (CA3, DG, and CA1) and temporal base cortex were compared across post-SAH timepoints. TRPM2-deficient (TRPM2-/-) male C57BL/6 J mice and a CaMKⅡ inhibitor (KN-93) were used to analyze the effects oTRPM2 on the CaMKⅡ-Beclin-1 signaling post SAH. RESULTS Neurological and temporal base cortex deterioration were more severe with increased time post-SAH induction, whereas hippocampal damage was not observed. Post-SAH, TRPM2-CaMKⅡ-Beclin-1 cascade was activated in the temporal base cortex, but not the hippocampus. Using TRPM2-/- mice and KN-93 administration, SAH-induced EBI was improved, and CaMKⅡ and Beclin-1 expressions in the temporal base cortex were significantly decreased compared with WT mice. TRPM2-/- mice also showed better neurological improvement compared with KN-93 treated mice. CONCLUSION TRPM2 mediates CaMKⅡ-Beclin-1 signaling that aggravates SAH-induced EBI in the temporal base cortex. TRPM2 may be an alternative therapy target in EBI after SAH. DATA AVAILABILITY The datasets generated and/or analysed during the current study are available from the corresponding author.
Collapse
Affiliation(s)
- Lin Tong
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China.
| | - Su Gao
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Wei Li
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Junli Yang
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Ping Wang
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Weiwei Li
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| |
Collapse
|
21
|
Wei B, Liu W, Jin L, Guo S, Fan H, Jin F, Wei C, Fang D, Zhang X, Su S, Duan C, Li X. Dexmedetomidine Inhibits Gasdermin D-Induced Pyroptosis via the PI3K/AKT/GSK3β Pathway to Attenuate Neuroinflammation in Early Brain Injury After Subarachnoid Hemorrhage in Rats. Front Cell Neurosci 2022; 16:899484. [PMID: 35800132 PMCID: PMC9253293 DOI: 10.3389/fncel.2022.899484] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is one kind of life-threatening stroke, which leads to severe brain damage. Pyroptosis plays a critical role in early brain injury (EBI) after SAH. Previous reports suggest that SAH-induced brain edema, cell apoptosis, and neuronal injury could be suppressed by dexmedetomidine (Dex). In this study, we used a rat model of SAH to investigate the effect of Dex on pyroptosis in EBI after SAH and to determine the mechanisms involved. Pyroptosis was found in microglia in EBI after SAH. Dex significantly alleviated microglia pyroptosis via reducing pyroptosis executioner GSDMD and inhibited the release of proinflammatory cytokines induced by SAH. Furthermore, the reduction of GSDMD by Dex was abolished by the PI3K inhibitor LY294002. In conclusion, our data demonstrated that Dex reduces microglia pyroptosis in EBI after SAH via the activation of the PI3K/AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fa Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chengcong Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dazhao Fang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shixing Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neurological deficit and endothelial cell dysfunction after subarachnoid hemorrhage via the KLF3-AS1/miR-83-5p/TCF7L2 axis. Exp Neurol 2022; 356:114151. [PMID: 35738418 DOI: 10.1016/j.expneurol.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND New data are accumulating on the effects of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in cerebrovascular diseases. We explored the potential role of KLF3-AS1-containing bone marrow MSC-EVs (BMSC-EVs) in a rat model of subarachnoid hemorrhage (SAH). METHODS A rat model of SAH was established by endovascular perforation method, into which KLF3-AS1-containing EVs from BMSCs or miR-183-5p mimic were injected. Further, brain microvascular endothelial cells (BMECs) were induced by oxyhemoglobin (OxyHb) to simulate in vitro setting, which were co-cultured with KLF3-AS1-containing EVs from BMSCs. Effects of KLF3-AS1 on neurological deficits in vivo and endothelial cell dysfunction in vitro were investigated. We also performed bioinformatics analysis to predict downstream factors miR-183-5p and TCF7L2, which were verified by RIP, RNA pull-down and luciferase activity assays. RESULTS BMSC-EVs was demonstrated to alleviate neurological deficits in SAH rats and endothelial cell dysfunction in OxyHb-induced BMECs. In addition, BMSC-EVs were shown to deliver KLF3-AS1 to BMECs, where KLF3-AS1 bound to miR-183-5p and miR-183-5p targeted TCF7L2. In vivo results confirmed that BMSC-EVs regulated the KLF3-AS1/miR-183-5p/TCF7L2 signaling axis to attenuate neurological deficit and endothelial dysfunction after SAH. CONCLUSION Overall, KLF3-AS1 delivered by BMSC-EVs upregulate TCF7L2 expression by binding to miR-138-5p, thus attenuating neurological deficits and endothelial dysfunction after SAH.
Collapse
|
23
|
Wang X, Wang Z, Wu J, Wang L, Li X, Shen H, Li H, Xu J, Li W, Chen G. Thioredoxin 1 regulates the pentose phosphate pathway via ATM phosphorylation after experimental subarachnoid hemorrhage in rats. Brain Res Bull 2022; 185:162-173. [PMID: 35588962 DOI: 10.1016/j.brainresbull.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
Subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke, is a neurological emergency with high morbidity and mortality. Early brain injury (EBI) after SAH is the leading cause of poor prognosis in SAH patients. TRX system is a NADPH-dependent antioxidant system which is composed of thioredoxin reductase (TRXR), thioredoxin (TRX). The pentose phosphate pathway (PPP), a pathway through which glucose can be metabolized, is a major source of NADPH. Thioredoxin 1 (TRX1) is a member of thioredoxin system mainly located in cytoplasm. Serine/threonine kinases ataxia telangiectasia mutated (ATM) is an important oxidative stress receptor, and TRX1 can regulate ATM phosphorylation and then affect the activity of PPP key enzyme glucose 6-phosphate dehydrogenase (G6PD). However, whether TRX1 is involved in the regulation of PPP pathway after subarachnoid hemorrhage remains unclear. The results showed that after SAH, the level of TRX1 and phosphor-ATM decreased while the level of TRXR1 increased. G6PD protein level remained unchanged but the activity decreased, and the NADPH contents decreased. Overexpression of TRX1 by lentivirus upregulates the level of phosphor-ATM, G6PD activity and NADPH content. TRX1 overexpression improved short-term and long-term neurobehavioral outcomes and alleviated neuronal impairment in rats. Nissl staining showed that upregulation of TRX1 reduced cortical neuron injury. Our study shows that TRX1 participates in the PPP pathway by regulating phosphorylation ATM, which is accomplished by affecting G6PD activity. TRX1 may be an important target for EBI intervention after SAH.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Jie Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Wen Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
24
|
Mahajan C, Kapoor I, Prabhakar H. A Narrative Review on Translational Research in Acute Brain Injury. JOURNAL OF NEUROANAESTHESIOLOGY AND CRITICAL CARE 2022. [DOI: 10.1055/s-0042-1744399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
AbstractThere has been a constant endeavor to reduce the mortality and morbidity associated with acute brain injury. The associated complex mechanisms involving biomechanics, markers, and neuroprotective drugs/measures have been extensively studied in preclinical studies with an ultimate aim to improve the patients' outcomes. Despite such efforts, only few have been successfully translated into clinical practice. In this review, we shall be discussing the major hurdles in the translation of preclinical results into clinical practice. The need is to choose an appropriate animal model, keeping in mind the species, age, and gender of the animal, choosing suitable outcome measures, ensuring quality of animal trials, and carrying out systematic review and meta-analysis of experimental studies before proceeding to human trials. The interdisciplinary collaboration between the preclinical and clinical scientists will help to design better, meaningful trials which might help a long way in successful translation. Although challenging at this stage, the advent of translational precision medicine will help the integration of mechanism-centric translational medicine and patient-centric precision medicine.
Collapse
Affiliation(s)
- Charu Mahajan
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Indu Kapoor
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Hemanshu Prabhakar
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and Mechanism of Ferroptosis in Neurological Diseases. Mol Metab 2022; 61:101502. [PMID: 35447365 PMCID: PMC9170779 DOI: 10.1016/j.molmet.2022.101502] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Ferroptosis, as a new form of cell death, is different from other cell deaths such as autophagy or senescence. Ferroptosis involves in the pathophysiological progress of several diseases, including cancers, cardiovascular diseases, nervous system diseases, and kidney damage. Since oxidative stress and iron deposition are the broad pathological features of neurological diseases, the role of ferroptosis in neurological diseases has been widely explored. Scope of review Ferroptosis is mainly characterized by changes in iron homeostasis, iron-dependent lipid peroxidation, and glutamate toxicity accumulation, of which can be specifically reversed by ferroptosis inducers or inhibitors. The ferroptosis is mainly regulated by the metabolism of iron, lipids and amino acids through System Xc−, voltage-dependent anion channels, p53, p62-Keap1-Nrf2, mevalonate and other pathways. This review also focus on the regulatory pathways of ferroptosis and its research progress in neurological diseases. Major conclusions The current researches of ferroptosis in neurological diseases mostly focus on the key pathways of ferroptosis. At the same time, ferroptosis was found playing a bidirectional regulation role in neurological diseases. Therefore, the specific regulatory mechanisms of ferroptosis in neurological diseases still need to be further explored to provide new perspectives for the application of ferroptosis in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mengmeng Ou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Ying Jiang
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Yingying Ji
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Qin Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Zhiqiang Du
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Haohao Zhu
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Zhenhe Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
26
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
27
|
Liu M, Zhong W, Li C, Su W. Fluoxetine attenuates apoptosis in early brain injury after subarachnoid hemorrhage through Notch1/ASK1/p38 MAPK signaling pathway. Bioengineered 2022; 13:8396-8411. [PMID: 35383529 PMCID: PMC9162017 DOI: 10.1080/21655979.2022.2037227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe brain condition associated with a significantly high incidence and mortality. As a consequence of SAH, early brain injury (EBI) may contribute to poor SAH patient outcomes. Apoptosis is a signaling pathway contributing to post-SAH early brain injury and the diagnosis of the disease. Fluoxetine is a well-studied serotonin selective reuptake inhibitor (SSRI). However, its role in apoptosis has not been clearly understood. The present investigation assessed the effects of Fluoxetine in apoptosis and the potential Notch1/ASK1/p38 MAPK signaling pathway in EBI after SAH. Adult C57BL/6 J mice were subjected to SAH. Study mice (56) were randomly divided into 4 groups: the surgery without SAH (sham (n = 8), SAH+ vehicle; (SAH+V) (n = 16), surgery+ Fluoxetine (Fluox), (n = 16) and SAH+ Fluoxetine (n = 16). Various parameters were investigated 12, 24, 48, and 72 h after induction of SAH. Western blot analysis, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, Immunohistochemistry (IHC), and flow cytometry were carried out in every experimental group. According to the findings, the SAH downregulated NOTCH1 signaling pathway, Jlk6 inhibited Notch1, Notch1 inactivation increased apoptotic protein expression and suppressed Bax, and cytochrome C. Fluoxetine reversed the effects of notch1 inhibition in SAH. The Neuroprotective Fluoxetine effects involved suppression of apoptosis post-SAH. In summary, early Fluoxetine treatment significantly attenuates apoptosis and the expression of apoptosis-related proteins after 72 h post-SAH. Fluoxetine may ameliorate early brain injury after subarachnoid hemorrhage through anti-apoptotic effects and Notch1/ASK1/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Ming Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Weiying Zhong
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Wandong Su
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
28
|
Jin L, Jin F, Guo S, Liu W, Wei B, Fan H, Li G, Zhang X, Su S, Li R, Fang D, Duan C, Li X. Metformin Inhibits NLR Family Pyrin Domain Containing 3 (NLRP)-Relevant Neuroinflammation via an Adenosine-5′-Monophosphate-Activated Protein Kinase (AMPK)-Dependent Pathway to Alleviate Early Brain Injury After Subarachnoid Hemorrhage in Mice. Front Pharmacol 2022; 13:796616. [PMID: 35370693 PMCID: PMC8969021 DOI: 10.3389/fphar.2022.796616] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/09/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroinflammation plays a key role in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies have shown that metformin exerts anti-inflammatory effects and promotes functional recovery in various central nervous system diseases. We designed this study to investigate the effects of metformin on EBI after SAH. Our results indicate that the use of metformin alleviates the brain edema, behavioral disorders, cell apoptosis, and neuronal injury caused by SAH. The SAH-induced NLRP3-associated inflammatory response and the activation of microglia are also suppressed by metformin. However, we found that the blockade of AMPK with compound C weakened the neuroprotective effects of metformin on EBI. Collectively, our findings indicate that metformin exerts its neuroprotective effects by inhibiting neuroinflammation in an AMPK-dependent manner, by modulating the production of NLRP3-associated proinflammatory factors and the activation of microglia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xifeng Li
- *Correspondence: Chuanzhi Duan, ; Xifeng Li,
| |
Collapse
|
29
|
A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans. Transl Stroke Res 2022; 13:881-897. [PMID: 35260989 DOI: 10.1007/s12975-022-01001-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke that occurs following rupture of a cerebral aneurysm. Acute inflammation and secondary delayed inflammatory responses, both largely controlled by cytokines, work together to create high mortality and morbidity for this group. The trajectory and time course of cytokine change must be better understood in order to effectively manage unregulated inflammation and improve patient outcomes following aSAH. A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three different search phrases ("cytokines and subarachnoid hemorrhage," "cytokine levels and subarachnoid hemorrhage," and "cytokine measurement and subarachnoid hemorrhage") were applied across three databases (PubMed, SCOPUS, and the Cochrane Library). Our procedures returned 856 papers. After application of inclusion/exclusion criteria, 95 preclinical animal studies and 41 clinical studies remained. Across studies, 22 different cytokines had been investigated, 5 different tissue types were analyzed, and 3 animal models were utilized. Three main pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) demonstrated reliable increases following aSAH across the included studies. While this is a promising area of research for potential therapeutics, there are gaps in the knowledge base that bar progress for clinical translation of this information. In particular, there is a need for investigations that explore the systemic inflammatory response following injury in a more diverse number of cytokines, the balance of specific pro-/anti- inflammatory cytokines, and how these biomarkers relate to patient outcomes and recovery over time.
Collapse
|
30
|
Fu C, Zhou Y, Wang L. The Effect of Bone Marrow Mesenchymal Stem Cells (BMSCs) on Brain Injury Repair and Synapse Regeneration in Mice Under Different Conditions of Intrauterine Ischemia and Hypoxia Through Wnt Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) can be differentiated into a variety of cells and repair damaged cells. We explore whether BMSCs can repair brain damage and synapses regeneration in mice under intrauterine ischemia and hypoxia. Twenty-five pregnant mice were assigned into
control group, 6% hypoxic injury group, 8% hypoxic injury group, 6% treatment group, 8% treatment group followed by analysis of the expression of MBP, MAG, CSPGs, IGF-1, NCAN, COLIV, SynD1G1, GFAP, GSK-3β, and β-actin by RT-PCR and Western blot. Our results showed that
the expression of MBP, MAG, COL IV, SynD1G1, IGF-1 in the treatment group were significantly higher than those in hypoxic injury group with significant differences between the 8% treatment group and 6% treatment group (P < 0.05). In conclusion, BMSCs can repair brain damage and synapse
regeneration in mice under different intrauterine ischemia and hypoxia conditions which might be through Wnt signaling pathway.
Collapse
Affiliation(s)
- Changtao Fu
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Youdong Zhou
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Lei Wang
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| |
Collapse
|
31
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
32
|
Kim JT, Youn DH, Kim BJ, Rhim JK, Jeon JP. Recent Stem Cell Research on Hemorrhagic Stroke : An Update. J Korean Neurosurg Soc 2022; 65:161-172. [PMID: 35193326 PMCID: PMC8918254 DOI: 10.3340/jkns.2021.0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022] Open
Abstract
Although technological advances and clinical studies on stem cells have been increasingly reported in stroke, research targeting hemorrhagic stroke is still lacking compared to that targeting ischemic stroke. Studies on hemorrhagic stroke are also being conducted, mainly in the USA and China. However, little research has been conducted in Korea. In reality, stem cell research or treatment is unfamiliar to many domestic neurosurgeons. Nevertheless, given the increased interest in regenerative medicine and the increase of life expectancy, attention should be paid to this topic. In this paper, we summarized pre-clinical rodent studies and clinical trials using stem cells for hemorrhagic stroke. In addition, we discussed results of domestic investigations and future perspectives on stem cell research for a better understanding.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea.,Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
33
|
Tian Y, Liu B, Li Y, Zhang Y, Shao J, Wu P, Xu C, Chen G, Shi H. Activation of RARα Receptor Attenuates Neuroinflammation After SAH via Promoting M1-to-M2 Phenotypic Polarization of Microglia and Regulating Mafb/Msr1/PI3K-Akt/NF-κB Pathway. Front Immunol 2022; 13:839796. [PMID: 35237277 PMCID: PMC8882645 DOI: 10.3389/fimmu.2022.839796] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Subarachnoid hemorrhage (SAH) is a life-threatening subtype of stroke with high rates of mortality. In the early stages of SAH, neuroinflammation is one of the important mechanisms leading to brain injury after SAH. In various central nervous system diseases, activation of RARα receptor has been proven to demonstrate neuroprotective effects. This study aimed to investigate the anti-inflammatory effects of RARα receptor activation after SAH. Methods Internal carotid artery puncture method used to established SAH model in Sprague-Dawley rats. The RARα specific agonist Am80 was injected intraperitoneally 1 hour after SAH. AGN196996 (specific RARα inhibitor), Msr1 siRNA and LY294002 (PI3K-Akt inhibitor) were administered via the lateral ventricle before SAH. Evaluation SAH grade, neurological function score, blood-brain barrier permeability. BV2 cells and SH-SY5Y cells were co-cultured and stimulated by oxyhemoglobin to establish an in vitro model of SAH. RT-PCR, Western blotting, and immunofluorescence staining were used to investigate pathway-related proteins, microglia activation and inflammatory response. Results: The expression of RARα, Mafb, and Msr1 increased in rat brain tissue after SAH. Activation of the RARα receptor with Am80 improved neurological deficits and attenuated brain edema, blood brain barrier permeability. Am80 increased the expression of Mafb and Msr1, and reduced neuroinflammation by enhancing the phosphorylation of Akt and by inhibiting the phosphorylation of NF-κB. AGN196996, Msr1 siRNA, and LY294002 reversed the therapeutic effects of Am80 by reducing the expression of Msr1 and the phosphorylation of Akt. In vitro model of SAH, Am80 promoted M1-to-M2 phenotypic polarization in microglia and suppressed the nuclear transcription of NF-κB. Conclusion Activation of the RARα receptor attenuated neuroinflammation by promoting M1-to-M2 phenotypic polarization in microglia and regulating the Mafb/Msr1/PI3K-Akt/NF-κB pathway. RARα might serve as a potential target for SAH therapy.
Collapse
Affiliation(s)
- Yang Tian
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Binbing Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuchen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiang Shao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pei Wu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangduo Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Huaizhang Shi,
| |
Collapse
|
34
|
He J, Liu J, Huang Y, Lan Z, Tang X, Hu Z. Mesenchymal stem cells-derived therapies for subarachnoid hemorrhage in preclinical rodent models: a meta-analysis. Stem Cell Res Ther 2022; 13:42. [PMID: 35093176 PMCID: PMC8800223 DOI: 10.1186/s13287-022-02725-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) and MSCs-derived extracellular vesicles (EVs) have emerged as potential novel therapies for subarachnoid hemorrhage (SAH). However, their effects remain incompletely understood. We aim to comprehensively evaluate the effect of MSCs-derived therapies in rodent models of SAH. Methods We searched PubMed, EMBASE, and Web of Science up to September 2021 to identify studies that reported the effects of MSCs or MSCs-derived EVs in a rodent SAH model. Neurobehavioral score was extracted as the functional outcome, and brain water content was measured as the histopathological outcome. A random-effects model was used to calculate the standardized mean difference (SMD) and confidence interval (CI). Results Nine studies published from 2018 to 2021 met the inclusion criteria. Studies quality scores ranged from 5 to 10, with a mean value of 7.22. Our results revealed an overall positive effect of MSCs and MSCs-derived EVs on the neurobehavioral score with a SMD of − 2.21 (95% CI − 3.14, − 1.08; p < 0.0001). Meanwhile, we also found that MSCs and MSCs-derived EVs reduced brain water content by a SMD of − 2.09 (95% CI − 2.99, − 1.19; p < 0.00001). Significant heterogeneity among studies was observed, further stratified and sensitivity analyses did not identify the source of heterogeneity. Conclusions Our results suggested that MSCs-derived therapies prominently improved functional recovery and reduced brain edema in the rodent models of SAH. Notably, the limitations of small sample size should be considered when interpreting the results, and large animal studies and human trials are needed for further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02725-2.
Collapse
|
35
|
Chen M, Chen X, Hu X, Dai J, Sun J. Androgen receptor contributes to microglial/macrophage activation in rats with intracranial hemorrhage by mediating the JMJD3/Botch/Notch1 axis. Neurosci Lett 2021; 765:136283. [PMID: 34624395 DOI: 10.1016/j.neulet.2021.136283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
Intracerebral hemorrhage (ICH) is a leading medical problem and has no effective treatment approach up until now. The transcription factor androgen receptor (AR) has been indicated in the cerebrovascular function recently. However, its participation in ICH remains unclear. The present study aims to expound the regulation of AR in microglia/macrophage phenotypes and the secondary brain injury in a rat model with ICH, and to discuss the involved pathway. Following the induction of ICH in rats, we found that ICH led to increased mNSS score, enhanced microglial activity, and promoted levels of inflammatory factors and apoptosis of brain cells. Using microarray analysis, AR was found to be significantly overexpressed in ICH rat brain tissues. AR repressed the transcription of Jumonji d3 (JMJD3, histone 3 demethylase). JMJD3 inhibited the methylation of Botch and promoted the activity of Notch1. JMJD3 hampered microglial activity and ameliorated secondary brain injury in rats, whereas upregulation of AR or downregulation of Botch reversed the protective effects of JMJD3. In conclusion, we found that AR promoted microglial activation and secondary brain injury via transcriptionally repressing JMJD3 and mediating the subsequent Botch/Notch1 pathway, which may provide novel insights into therapeutic options for the treatment of ICH.
Collapse
Affiliation(s)
- Maohua Chen
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Xiaoxiang Chen
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Xingzhong Hu
- Department of Clinical Laboratory, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Junxia Dai
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Jun Sun
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China.
| |
Collapse
|
36
|
Hu J, Chang Y, Peng C, Huang S, Li G, Li H. Umbilical Cord Mesenchymal Stem Cells Derived Neurospheres Promote Long-term functional recovery But Aggravate Acute Phase Inflammation in Experimental Stroke. Neuroscience 2021; 480:217-228. [PMID: 34762983 DOI: 10.1016/j.neuroscience.2021.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Human umbilical cord mesenchymal stem cells (UC-MSCs) transplantation has been shown to ameliorate intracerebral hemorrhage (ICH) in animal and clinical studies. We previously reported an easy one-step method to induce UC-MSCs into neurospheres with much enhanced neurogenic and angiogenic potential. In the present study, we further evaluated the neuro-protective effects of these UC-MSCs derived neurospheres (UC-MSCs-NS) using a murine collagenase induced ICH model. We compared the effects of UC-MSCs or UC-MSCs-NS transplantation at two different time-points: 3 h after ICH induction (early transplantation) or three days after ICH induction (delayed transplantation). The results showed that UC-MSCs exhibited favorable effects at both time-points whereas UC-MSCs-NS early delivery led to increased cell apoptosis, exacerbated brain edema, enlarged ICH volume and deteriorated neurological function. In vivo inflammatory cytokine analysis indicated UC-MSCs transplantation was able to attenuate the acute phase secretion of inflammatory cytokines TNF-α and IL-1β whereas UC-MSCs-NS immediate transplantation led to increased levels of these cytokines. However, long-term follow-up experiment showed delayed UC-MSCs-NS transplantation was superior to UC-MSCs transplantation alone in terms of increased neurogenic reconstitution. Our results suggest both UC-MSCs and UC-MSCs-NS can exert favorable effects in ICH therapy but the infusion of UC-MSCs-NS should avoid the super-early phase of ICH. We believe UC-MSCs derived neurospheres should be further exploited for chronic refractory neurological disorders such as chronic phase of stroke and various neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Jingqiong Hu
- Stem Cell Center, Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chunyang Peng
- Emergency Internal Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Sui Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Huiyu Li
- Stem Cell Center, Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
37
|
Notch1 Signaling Contributes to Mechanical Allodynia Associated with Cyclophosphamide-Induced Cystitis by Promoting Microglia Activation and Neuroinflammation. Mediators Inflamm 2021; 2021:1791222. [PMID: 34646085 PMCID: PMC8505104 DOI: 10.1155/2021/1791222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Aims Notch1 signaling regulates microglia activation, which promotes neuroinflammation. Neuroinflammation plays an essential role in various kinds of pain sensation, including bladder-related pain in bladder pain syndrome/interstitial cystitis (BPS/IC). However, the impact of Notch1 signaling on mechanical allodynia in cyclophosphamide- (CYP-) induced cystitis is unclear. This study is aimed at determining whether and how Notch1 signaling modulates mechanical allodynia of CYP-induced cystitis. Methods CYP was peritoneally injected to establish a bladder pain syndrome/interstitial cystitis (BPS/IC) rat model. A γ-secretase inhibitor, DAPT, was intrathecally injected to modulate Notch1 signaling indirectly. Mechanical withdrawal threshold in the lower abdomen was measured with von Frey filaments using the up-down method. The expression of Notch1 signaling, Iba-1, OX-42, TNF-α, and IL-1β in the L6-S1 spinal dorsal horn (SDH) was measured with Western blotting analysis and immunofluorescence staining. Results Notch1 and Notch intracellular domain (NICD) were both upregulated in the SDH of the cystitis group. Moreover, the expression of Notch1 and NICD was negatively correlated with the mechanical withdrawal threshold of the cystitis rats. Furthermore, treatment with DAPT attenuated mechanical allodynia in CYP-induced cystitis and inhibited microglia activation, leading to decreased production of TNF-α and IL-1β. Conclusion Notch1 signaling contributes to mechanical allodynia associated with CYP-induced cystitis by promoting microglia activation and neuroinflammation. Our study showed that inhibition of Notch1 signaling might have therapeutic value for treating pain symptoms in BPS/IC.
Collapse
|
38
|
Liu Z, Wang B, Guo Q. MiR-26b-5p-modified hUB-MSCs derived exosomes attenuate early brain injury during subarachnoid hemorrhage via MAT2A-mediated the p38 MAPK/STAT3 signaling pathway. Brain Res Bull 2021; 175:107-115. [PMID: 34284075 DOI: 10.1016/j.brainresbull.2021.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023]
Abstract
Early brain injury (EBI) is a major cause of adverse outcomes following subarachnoid hemorrhage (SAH). There is evidence that mesenchymal stem cells (MSCs) - derived exosomes are involved in the repair of SAH. Exosomes were extracted from human umbilical cord mesenchymal stem cells (hubMSCs) and identified. OxyHb treated PC12 cells were transfected with exosomes alone or together with miR-26b-5p inhibitor. Hub-MSCs derived exosomes promote cell proliferation, inhibit apoptosis and reduce inflammatory mediator expression. Transfection of miR-26b-5p inhibitor abolished the promoting effect of exosomes on the proliferation of PC12 cells, as well as the inhibitory effect on cell apoptosis. In addition, methionine adenosyltransferase II alpha (MAT2A) was one target gene of miR-26b-5p. OxyHb treated PC12 cells were transfected with exosomes alone or together with pcDNA-MAT2A and observed that the promoting effect of exosomes on PC12 cell proliferation was abolished by pcDNA-MAT2A, which was the same as the effect of miR-26b-5p inhibitor. OxyHb treated PC cells incubated with exosomes were transfected with miR-26b-5p inhibitor alone or together with si-MAT2A, respectively, and it was observed that exosomes decreased the phosphorylation levels of p38 MAPK and STAT3 proteins, inhibited cell apoptosis and inflammatory mediator expression, and miR-26b-5p inhibitor abrogated the effects of exosomes, while transfection of si-MAT2A reversed the effects of miR-26b-5p inhibitor. Moreover, injection of miR-26b-5p inhibitor resulted in increased MAT2A and pathway protein expression, increased inflammatory mediators, and aggravated neurological symptoms in the brain tissues of SAH rats.
Collapse
Affiliation(s)
- Zunwei Liu
- Department of Renal Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Bo Wang
- Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qihang Guo
- Department of Renal Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
39
|
Skok M. Mesenchymal stem cells as a potential therapeutic tool to cure cognitive impairment caused by neuroinflammation. World J Stem Cells 2021; 13:1072-1083. [PMID: 34567426 PMCID: PMC8422935 DOI: 10.4252/wjsc.v13.i8.1072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
An established contribution of neuroinflammation to multiple brain pathologies has raised the requirement for therapeutic strategies to overcome it in order to prevent age- and disease-dependent cognitive decline. Mesenchymal stem cells (MSCs) produce multiple growth and neurotrophic factors and seem to evade immune rejection due to low expression of major histocompatibility complex class I molecules. Therefore, MSCs are widely used in experiments and clinical trials of regenerative medicine. This review summarizes recent data concerning the optimization of MSC use for therapeutic purposes with the emphasis on the achievements of the last 2 years. Specific attention is paid to extracellular vesicles secreted by MSCs and to the role of α7 nicotinic acetylcholine receptors. The reviewed data demonstrate that MSCs have a significant therapeutic potential in treating neuroinflammation-related cognitive disfunctions including age-related neurodegenerative diseases. The novel data demonstrate that maximal therapeutic effect is being achieved when MSCs penetrate the brain and produce their stimulating factors in situ. Consequently, therapeutic application using MSCs should include measures to facilitate their homing to the brain, support the survival in the brain microenvironment, and stimulate the production of neurotrophic and anti-inflammatory factors. These measures include but are not limited to genetic modification of MSCs and pre-conditioning before transplantation.
Collapse
Affiliation(s)
- Maryna Skok
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, Kyiv 01054, Ukraine
| |
Collapse
|
40
|
Ramos-Languren LE, Avila-Luna A, García-Díaz G, Rodríguez-Labrada R, Vázquez-Mojena Y, Parra-Cid C, Montes S, Bueno-Nava A, González-Piña R. Glutamate, Glutamine, GABA and Oxidative Products in the Pons Following Cortical Injury and Their Role in Motor Functional Recovery. Neurochem Res 2021; 46:3179-3189. [PMID: 34387812 DOI: 10.1007/s11064-021-03417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
Brain injury leads to an excitatory phase followed by an inhibitory phase in the brain. The clinical sequelae caused by cerebral injury seem to be a response to remote functional inhibition of cerebral nuclei located far from the motor cortex but anatomically related to the injury site. It appears that such functional inhibition is mediated by an increase in lipid peroxidation (LP). To test this hypothesis, we report data from 80 rats that were allocated to the following groups: the sham group (n = 40), in which rats received an intracortical infusion of artificial cerebrospinal fluid (CSF); the injury group (n = 20), in which rats received CSF containing ferrous chloride (FeCl2, 50 mM); and the recovery group (n = 20), in which rats were injured and allowed to recover. Beam-walking, sensorimotor and spontaneous motor activity tests were performed to evaluate motor performance after injury. Lipid fluorescent products (LFPs) were measured in the pons. The total pontine contents of glutamate (GLU), glutamine (GLN) and gamma-aminobutyric acid (GABA) were also measured. In injured rats, the motor deficits, LFPs and total GABA and GLN contents in the pons were increased, while the GLU level was decreased. In contrast, in recovering rats, none of the studied variables were significantly different from those in sham rats. Thus, motor impairment after cortical injury seems to be mediated by an inhibitory pontine response, and functional recovery may result from a pontine restoration of the GLN-GLU-GABA cycle, while LP may be a primary mechanism leading to remote pontine inhibition after cortical injury.
Collapse
Affiliation(s)
- Laura E Ramos-Languren
- Faculty of Psychology, Coordination of Psychobiology and Neurosciences, National Autonomous University of Mexico, Av. Universidad 3040 Col, Copilco Universidad Alcaldía Coyoacán, 04510, Mexico City, Mexico
| | - Alberto Avila-Luna
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Gabriela García-Díaz
- Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Roberto Rodríguez-Labrada
- School of Physical Culture, University of Holguín, Avenida XX Aniversario, 80100, Holguín, Cuba
- Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba
| | - Yaimee Vázquez-Mojena
- Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba
| | - Carmen Parra-Cid
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Sergio Montes
- Reynosa-Aztlan Multidisciplinary Unit, Autonomous University of Tamaulipas, Fuente de Diana, Aztlán, 88740, Tamaulipas, Mexico
| | - Antonio Bueno-Nava
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Rigoberto González-Piña
- Laboratory of Aging Biology, National Geriatric Institute, Av. Contreras 428 Col. San Jerónimo Lídice Alcaldía Magdalena Contreras, 10200, Mexico City, Mexico.
- Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico.
- Department of Special Education, University of the Americas Mexico City College, Puebla # 223 Col. Roma Alcaldía Cuauhtemoc, 06700, Mexico City, Mexico.
| |
Collapse
|
41
|
Liu X, Guo H, Wang X, Jiao H, Li L, Zheng J. c-myc protects mice from ischemia stroke through elevating microRNA-200b-5p-regulated SIRT1 expression. Brain Res Bull 2021; 176:76-84. [PMID: 34371139 DOI: 10.1016/j.brainresbull.2021.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE c-myc has been reported to attenuate ischemia stroke (IS). We initiated the research to uncover the molecular mechanism of c-myc with regard to microRNA (miR)-200b-5p/Sirtuin1 (SIRT1) axis. METHODS An IS mouse model was prepared by middle cerebral artery occlusion (MCAO). Measurements of c-myc, miR-200b-5p and SIRT1 levels in MCAO mice were conducted. c-myc, miR-200b-5p and SIRT1 expression levels in MCAO mice were detected. The neurological function, production of inflammatory cytokines, neuronal apoptosis, brain tissue pathology and neuronal survival of MCAO mice were observed. RESULTS c-myc and SIRT1 levels went downward while miR-200b-5p expression went upward in MCAO mice. Elevation of c-myc or suppression of miR-200b-5p improved neurological function, reduced inflammation and neuronal apoptosis, and attenuated brain tissue pathology and neuronal survival of MCAO mice. Enhancement of miR-200b-5p or knockdown of SIRT1 weakened c-myc-induced protection against MCAO-induced brain injury in mice. CONCLUSION Overall, c-myc protects mice from IS through elevating miR-200b-5p-targeted SIRT1 expression.
Collapse
Affiliation(s)
- Xiaodan Liu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Heng Guo
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Xiao Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Hong Jiao
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Lei Li
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Jiaolin Zheng
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
42
|
Ejma M, Madetko N, Brzecka A, Alster P, Budrewicz S, Koszewicz M, Misiuk-Hojło M, Tomilova IK, Somasundaram SG, Kirkland CE, Aliev G. The Role of Stem Cells in the Therapy of Stroke. Curr Neuropharmacol 2021; 20:630-647. [PMID: 34365923 PMCID: PMC9608230 DOI: 10.2174/1570159x19666210806163352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Stroke is a major challenge in neurology due to its multifactorial genesis and irreversible consequences. Processes of endogenous post-stroke neurogenesis, although insufficient, may indicate possible direction of future therapy. Multiple research considers stem-cell-based approaches in order to maximize neuroregeneration and minimize post-stroke deficits. Objective: Aim of this study is to review current literature considering post-stroke stem-cell-based therapy and possibilities of inducing neuroregeneration after brain vascular damage. Methods: Papers included in this article were obtained from PubMed and MEDLINE databases. The following medical subject headings (MeSH) were used: “stem cell therapy”, “post-stroke neurogenesis”, “stem-cells stroke”, “stroke neurogenesis”, “stroke stem cells”, “stroke”, “cell therapy”, “neuroregeneration”, “neurogenesis”, “stem-cell human”, “cell therapy in human”. Ultimate inclusion was made after manual review of the obtained reference list. Results: Attempts of stimulating neuroregeneration after stroke found in current literature include supporting endogenous neurogenesis, different routes of exogenous stem cells supplying and extracellular vesicles used as a method of particle transport. Conclusion: Although further research in this field is required, post stroke brain recovery supported by exogenous stem cells seems to be promising future therapy revolutionizing modern neurology.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszynska 105, 53-439 Wroclaw. Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Borowska 213. Poland
| | - Irina K Tomilova
- Department of Biochemistry, Ivanovo State Medical Academy, Avenue Sheremetyevsky 8, Ivanovo, 153012. Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- Wroclaw Medical University, Department of Pulmonology and Lung Oncology, Wroclaw. Poland
| |
Collapse
|
43
|
Muhammad S, Hänggi D. Inflammation and Anti-Inflammatory Targets after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22147355. [PMID: 34298971 PMCID: PMC8304004 DOI: 10.3390/ijms22147355] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
|
44
|
Xu S, Mei S, Lu J, Wu H, Dong X, Shi L, Zhou J, Zhang J. Transcriptome Analysis of Microglia Reveals That the TLR2/IRF7 Signaling Axis Mediates Neuroinflammation After Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:645649. [PMID: 34276335 PMCID: PMC8278202 DOI: 10.3389/fnagi.2021.645649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Microglia-mediated neuroinflammatory response in the early brain injury after subarachnoid hemorrhage (SAH) has been reported to have an impact on progress, and the mechanism is not completely understood. Here, we performed genome-wide transcriptome analysis of microglia purified from damaged hemisphere of adult mice at 3 days after SAH or sham operation. Robust transcriptional changes were observed between SAH-induced and healthy microglia, indicating rapid activation of microglia after suffering from SAH. We identified 1576 differentially expressed genes (DEGs; 928 upregulated and 648 downregulated) in SAH-induced microglia compared with sham microglia, representing a strong alteration of the genome (6.85% of total ∼23,000 genes). Functional enrichment of these DEGs indicated that cell division, inflammatory response, cytokine production, and leukocyte chemotaxis were strongly activated in SAH-induced microglia. Moreover, we identified and proved that the TLR2/IRF7 signaling axis was involved in the regulation of this microglia-mediated inflammation in SAH mice by performing flow cytometry and immunofluorescence. Together, these results provided a perspective of microglia-mediated neuroinflammatory response in the early stage of SAH and might give a new therapeutic target for SAH.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Dong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Tsai TH, Chang CH, Lin SH, Su YF, Tsai YC, Yang SF, Lin CL. Therapeutic effect of and mechanisms underlying the effect of miR-195-5p on subarachnoid hemorrhage-induced vasospasm and brain injury in rats. PeerJ 2021; 9:e11395. [PMID: 34221706 PMCID: PMC8231314 DOI: 10.7717/peerj.11395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives There is much evidence suggesting that inflammation contributes majorly to subarachnoid hemorrhage (SAH)-induced cerebral vasospasm and brain injury. miRNAs have been found to modulate inflammation in several neurological disorders. This study investigated the effect of miR-195-5p on SAH-induced vasospasm and early brain injury in experimental rats. Methods Ninety-six Sprague-Dawley male rats were randomly and evenly divided into a control group (no SAH, sham surgery), a SAH only group, a SAH + NC-mimic group, and a SAH + miR-195-5p group. SAH was induced using a single injection of blood into the cisterna magna. Suspensions containing NC-mimic and miR-195-5p were intravenously injected into rat tail 30 mins after SAH was induced. We determined degree of vasospasm by averaging areas of cross-sections the basilar artery 24h after SAH. We measured basilar artery endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κ B), phosphorylated NF-κ B (p-NF-κ B), inhibitor of NF-κ B (Iκ Bα) and phosphorylated-Iκ Bα (p-Iκ Bα). Cell death assay was used to quantify the DNA fragmentation, an indicator of apoptotic cell death, in the cortex, hippocampus, and dentate gyrus. Tumor necrosis factor alpha (TNF-α) levels were measured using sample protein obtained from the cerebral cortex, hippocampus and dentate gyrus. Results Prior to fixation by perfusion, there were no significant physiological differences among the control and treatment groups. SAH successfully induced vasospasm and early brain injury. MiR-195-5p attenuated vasospasam-induced changes in morphology, reversed SAH-induced elevation of iNOS, p-NF-κ B, NF-κ B, and p-Iκ Bα and reversed SAH-induced suppression of eNOS in the basilar artery. Cell death assay revealed that MiR-195-5p significantly decreased SAH-induced DNA fragmentation (apoptosis) and restored TNF-α level in the dentate gyrus. Conclusion In conclusion, MiRNA-195-5p attenuated SAH-induced vasospasm by up-regulating eNOS, down-regulating iNOS and inhibiting the NF-κ B signaling pathway. It also protected neurons by decreasing SAH-induced apoptosis-related cytokine TNF-α expression in the dentate gyrus. Further study is needed to elucidate the detail mechanism underlying miR-195-5p effect on SAH-induced vasospasm and cerebral injury. We believe that MiR-195-5p can potentially be used to manage SAH-induced cerebral vasospasm and brain injury.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Huai Lin
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Cheng Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
46
|
El-Derany MO, Noureldein MH. Bone marrow mesenchymal stem cells and their derived exosomes resolve doxorubicin-induced chemobrain: critical role of their miRNA cargo. Stem Cell Res Ther 2021; 12:322. [PMID: 34090498 PMCID: PMC8180158 DOI: 10.1186/s13287-021-02384-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Doxorubicin (DOX), a widely used chemotherapeutic agent, can cause neurodegeneration in the brain, which leads to a condition known as chemobrain. In fact, chemobrain is a deteriorating condition which adversely affects the lives of cancer survivors. This study aimed to examine the potential therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) and their derived exosomes (BMSCs-Exo) in DOX-induced chemobrain in rat models. Methods Chemobrain was induced by exposing rats to DOX (2 mg/kg, i.p) once weekly for 4 consecutive weeks. After 48 h of the last DOX dose, a subset of rats was supplied with either an intravenous injection of BMSCs (1 × 106) or a single dose of 150 μg of BMSCs-Exo. Behavioral tests were conducted 7 days post injection. Rats were sacrificed after 14 days from BMSCs or BMSCs-Exo injection. Results BMSCs and BMSCs-Exo successfully restored DOX-induced cognitive and behavioral distortion. These actions were mediated via decreasing hippocampal neurodegeneration and neural demyelination through upregulating neural myelination factors (myelin%, Olig2, Opalin expression), neurotropic growth factors (BDNF, FGF-2), synaptic factors (synaptophysin), and fractalkine receptor expression (Cx3cr1). Halting neurodegeneration in DOX-induced chemobrain was achieved through epigenetic induction of key factors in Wnt/β-catenin and hedgehog signaling pathways mediated primarily by the most abundant secreted exosomal miRNAs (miR-21-5p, miR-125b-5p, miR-199a-3p, miR-24-3p, let-7a-5p). Moreover, BMSCs and BMSCs-Exo significantly abrogate the inflammatory state (IL-6, TNF-α), apoptotic state (BAX/Bcl2), astrocyte, and microglia activation (GFAP, IBA-1) in DOX-induced chemobrain with a significant increase in the antioxidant mediators (GSH, GPx, SOD activity). Conclusions BMSCs and their derived exosomes offer neuroprotection against DOX-induced chemobrain via genetic and epigenetic abrogation of hippocampal neurodegeneration through modulating Wnt/β-catenin and hedgehog signaling pathways and through reducing inflammatory, apoptotic, and oxidative stress state. Graphical abstract Proposed mechanisms of the protective effects of bone marrow stem cells (BMSCs) and their exosomes (BMSCs-Exo) in doxorubicin (DOX)-induced chemobrain. Blue arrows: induce. Red arrows: inhibit.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02384-9.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Mohamed H Noureldein
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes Program, Beirut, Lebanon
| |
Collapse
|
47
|
Zhang CS, Han Q, Song ZW, Jia HY, Shao TP, Chen YP. Hydrogen gas post-conditioning attenuates early neuronal pyroptosis in a rat model of subarachnoid hemorrhage through the mitoK ATP signaling pathway. Exp Ther Med 2021; 22:836. [PMID: 34149882 PMCID: PMC8200808 DOI: 10.3892/etm.2021.10268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal pyroptosis serves an important role in the progress of neurologic dysfunction following subarachnoid hemorrhage (SAH), which is predominantly caused by a ruptured aneurysm. Hydrogen gas has been previously reported to be an effective anti-inflammatory agent against ischemia-associated diseases by regulating mitochondrial function. The objective of the present study was to investigate the potential neuroprotective effects of hydrogen gas post-conditioning against neuronal pyroptosis after SAH, with specific focus on the mitochondrial ATP-sensitive K+ (mitoKATP) channels. Following SAH induction by endovascular perforation, rats were treated with inhalation of 2.9% hydrogen gas for 2 h post-perforation. Neurologic deficits, brain water content, reactive oxygen species (ROS) levels, neuronal pyroptosis, phosphorylation of ERK1/2, p38 MAPK and pyroptosis-associated proteins IL-1β and IL-18 were evaluated 24 h after perforation by a modified Garcia method, ratio of wet/dry weight, 2',7'-dichlorofluorescin diacetate, immunofluorescence and western blot assays, respectively. An inhibitor of the mitoKATP channel, 5-hydroxydecanoate sodium (5-HD), was used to assess the potential role of the mitoKATP-ERK1/2-p38 MAPK signal pathway. Hydrogen gas post-conditioning significantly alleviated brain edema and improved neurologic function, reduced ROS production and neuronal pyroptosis, suppressed the expression of IL-1β and IL-18 whilst upregulating ERK1/2 phosphorylation, but downregulated p38 MAPK activation 24 h post-SAH. These aforementioned effects neuroprotective were partially reversed by 5-HD treatment. Therefore, these observations suggest that post-conditioning with hydrogen gas ameliorated SAH-induced neuronal pyroptosis at least in part through the mitoKATP/ERK1/2/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chuan-Suo Zhang
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Qian Han
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zhao-Wei Song
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Hong-Yan Jia
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Tian-Peng Shao
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yan-Peng Chen
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
48
|
Weiland J, Beez A, Westermaier T, Kunze E, Sirén AL, Lilla N. Neuroprotective Strategies in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2021; 22:5442. [PMID: 34064048 PMCID: PMC8196706 DOI: 10.3390/ijms22115442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.
Collapse
Affiliation(s)
- Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Alexandra Beez
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, Helios-Amper Klinikum Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Ekkehard Kunze
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
49
|
Yao Y, Fang X, Yuan J, Qin F, Yu T, Xia D, Li Z, Lai N. Interleukin-6 in Cerebrospinal Fluid Small Extracellular Vesicles as a Potential Biomarker for Prognosis of Aneurysmal Subarachnoid Haemorrhage. Neuropsychiatr Dis Treat 2021; 17:1423-1431. [PMID: 34012263 PMCID: PMC8128493 DOI: 10.2147/ndt.s304394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke characterized by high rates of mortality and disability. Identifying circulating biomarkers is helpful to improve outcomes. In this study, for the first time, we identify interleukin-6 (IL-6) in cerebrospinal fluid (CSF) small extracellular vesicles (sEVs) as potential biomarkers for prognosis of aSAH. METHODS We extracted small extracellular vesicles from the CSF of 103 aSAH patients and 40 healthy controls in a prospective observational study. Subsequently, we measured IL-6sEVs levels using an enzyme-linked immunosorbent assay. Results were statistically analyzed to determine the function of IL-6sEVs for disease monitoring of aSAH. RESULTS CSF IL-6 sEVs showed distinct pattern differences between healthy controls and aSAH patients. The concentration of IL-6sEVs in CSF is significantly correlated with the severity of aSAH patients. The areas under the receiver operating characteristic curves of IL-6sEVs for identifying severe aSAH patient from aSAH patients were 0.900. After multivariate logistic regression analysis, IL-6sEVs were associated with neurological outcome at 1 year. IL-6sEVs levels were greater and positively associated with disease processes and outcome. CONCLUSION There is a neuroinflammatory cascade in aSAH patients. IL-6sEVs in CSF may be a biomarker for the progression of aSAH.
Collapse
Affiliation(s)
- Yang Yao
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Xinggen Fang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Jinlong Yuan
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Feiyun Qin
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Tao Yu
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Dayong Xia
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Zhenbao Li
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| | - Niansheng Lai
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, Anhui Province, People’s Republic of China
| |
Collapse
|
50
|
Interleukin 6 and Aneurysmal Subarachnoid Hemorrhage. A Narrative Review. Int J Mol Sci 2021; 22:ijms22084133. [PMID: 33923626 PMCID: PMC8073154 DOI: 10.3390/ijms22084133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Interleukin 6 (IL-6) is a prominent proinflammatory cytokine. Neuroinflammation in general, and IL-6 signaling in particular, appear to play a major role in the pathobiology and pathophysiology of aneurysm formation and aneurysmal subarachnoid hemorrhage (SAH). Most importantly, elevated IL-6 CSF (rather than serum) levels appear to correlate with delayed cerebral ischemia (DCI, “vasospasm”) and secondary (“vasospastic”) infarctions. IL-6 CSF levels may also reflect other forms of injury to the brain following SAH, i.e., early brain damage and septic complications of SAH and aneurysm treatment. This would explain why many researchers have found an association between IL-6 levels and patient outcomes. These findings clearly suggest CSF IL-6 as a candidate biomarker in SAH patients. However, at this point, discrepant findings in variable study settings, as well as timing and other issues, e.g., defining proper clinical endpoints (i.e., secondary clinical deterioration vs. angiographic vasospasm vs. secondary vasospastic infarct) do not allow for its routine use. It is also tempting to speculate about potential therapeutic measures targeting elevated IL-6 CSF levels and neuroinflammation in SAH patients. Corticosteroids and anti-platelet drugs are indeed used in many SAH cases (not necessarily with the intention to interfere with detrimental inflammatory signaling), however, no convincing benefit has been demonstrated yet. The lack of a robust clinical perspective against the background of a relatively large body of data linking IL-6 and neuroinflammation with the pathophysiology of SAH is somewhat disappointing. One underlying reason might be that most relevant studies only report correlative data. The specific molecular pathways behind elevated IL-6 levels in SAH patients and their various interactions still remain to be delineated. We are optimistic that future research in this field will result in a better understanding of the role of neuroinflammation in the pathophysiology of SAH, which in turn, will translate into the identification of suitable biomarkers and even potential therapeutic targets.
Collapse
|