1
|
Stojanovic M, Kalanj-Bognar S. Toll-like receptors as a missing link in Notch signaling cascade during neurodevelopment. Front Mol Neurosci 2024; 17:1465023. [PMID: 39664114 PMCID: PMC11631889 DOI: 10.3389/fnmol.2024.1465023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024] Open
Abstract
Neurodevelopment encompasses a complex series of molecular events occuring at defined time points distinguishable by the specific genetic readout and active protein machinery. Due to immense intricacy of intertwined molecular pathways, extracting and describing all the components of a single pathway is a demanding task. In other words, there is always a risk of leaving potential transient molecular partners unnoticed while investigating signaling cascades with core functions-and the very neglected ones could be the turning point in understanding the context and regulation of the signaling events. For example, signaling pathways of Notch and Toll-like receptors (TLRs) have been so far unrelated in the vast body of knowledge about neurodevelopment, however evidence from available literature points to their remarkable overlap in influence on identical molecular processes and reveals their potential functional links. Based on data demonstrating Notch and TLR structural engagement and functions during neurodevelopment, along with our description of novel molecular binding models, here we hypothesize that TLR proteins act as likely crucial components in the Notch signaling cascade. We advocate for the hypothesized role of TLRs in Notch signaling by: elaborating components and features of their pathways; reviewing their effects on fates of neural progenitor cells during neurodevelopment; proposing molecular and functional aspects of the hypothesis, along with venues for testing it. Finally, we discuss substantial indications of environmental influence on the proposed Notch-TLR system and its impact on neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Mario Stojanovic
- Laboratory for Neurochemistry and Molecular Neurobiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Laboratory for Cell Biology and Signalling, Department for Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- Laboratory for Neurochemistry and Molecular Neurobiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Bansal Y, Codeluppi SA, Banasr M. Astroglial Dysfunctions in Mood Disorders and Rodent Stress Models: Consequences on Behavior and Potential as Treatment Target. Int J Mol Sci 2024; 25:6357. [PMID: 38928062 PMCID: PMC11204179 DOI: 10.3390/ijms25126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M2J 4A6, Canada
| |
Collapse
|
3
|
Lee EJ, Suh M, Choi H, Choi Y, Hwang DW, Bae S, Lee DS. Spatial transcriptomic brain imaging reveals the effects of immunomodulation therapy on specific regional brain cells in a mouse dementia model. BMC Genomics 2024; 25:516. [PMID: 38796425 PMCID: PMC11128132 DOI: 10.1186/s12864-024-10434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Increasing evidence of brain-immune crosstalk raises expectations for the efficacy of novel immunotherapies in Alzheimer's disease (AD), but the lack of methods to examine brain tissues makes it difficult to evaluate therapeutics. Here, we investigated the changes in spatial transcriptomic signatures and brain cell types using the 10x Genomics Visium platform in immune-modulated AD models after various treatments. To proceed with an analysis suitable for barcode-based spatial transcriptomics, we first organized a workflow for segmentation of neuroanatomical regions, establishment of appropriate gene combinations, and comprehensive review of altered brain cell signatures. Ultimately, we investigated spatial transcriptomic changes following administration of immunomodulators, NK cell supplements and an anti-CD4 antibody, which ameliorated behavior impairment, and designated brain cells and regions showing probable associations with behavior changes. We provided the customized analytic pipeline into an application named STquantool. Thus, we anticipate that our approach can help researchers interpret the real action of drug candidates by simultaneously investigating the dynamics of all transcripts for the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Minseok Suh
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cliniclal Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do Won Hwang
- Research and Development Center, THERABEST Inc., Seocho-daero 40-gil, Seoul, 06657, Republic of Korea
| | - Sungwoo Bae
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Medical Science and Engineering, School of Convergence Science and Technology, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
4
|
Riboni-Verri G, Chen BS, McMurran CE, Halliwell GJ, Brown JWL, Coles AJ, Cunniffe NG. Visual outcome measures in clinical trials of remyelinating drugs. BMJ Neurol Open 2024; 6:e000560. [PMID: 38389586 PMCID: PMC10882304 DOI: 10.1136/bmjno-2023-000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
One of the most promising approaches to delay, prevent or reverse disability progression in multiple sclerosis (MS) is to enhance endogenous remyelination and limit axonal degeneration. In clinical trials of remyelinating drugs, there is a need for reliable, sensitive and clinically relevant outcome measures. The visual pathway, which is frequently affected by MS, provides a unique model system to evaluate remyelination of acute and chronic MS lesions in vivo and non-invasively. In this review, we discuss the different measures that have been used and scrutinise visual outcome measure selection in current and future remyelination trials.
Collapse
Affiliation(s)
- Gioia Riboni-Verri
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| | - Benson S Chen
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| | - Christopher E McMurran
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gregory J Halliwell
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - J William L Brown
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Clinical Outcomes Research Unit (CORe), University of Melbourne, Melborune, Melborune, Australia
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| | - Nick G Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Ammitzbøll C, Dyrby TB, Börnsen L, Schreiber K, Ratzer R, Romme Christensen J, Iversen P, Magyari M, Lundell H, Jensen PEH, Sørensen PS, Siebner HR, Sellebjerg F. NfL and GFAP in serum are associated with microstructural brain damage in progressive multiple sclerosis. Mult Scler Relat Disord 2023; 77:104854. [PMID: 37418931 DOI: 10.1016/j.msard.2023.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The potential of neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) as biomarkers of disease activity and severity in progressive forms of multiple sclerosis (MS) is unclear. OBJECTIVE To investigate the relationship between serum concentrations of NfL, GFAP, and magnetic resonance imaging (MRI) in progressive MS. METHODS Serum concentrations of NfL and GFAP were measured in 32 healthy controls and 32 patients with progressive MS from whom clinical and MRI data including diffusion tensor imaging (DTI) were obtained during three years of follow-up. RESULTS Serum concentrations of NfL and GFAP at follow-up were higher in progressive MS patients than in healthy controls and serum NfL correlated with the EDSS score. Decreasing fractional anisotropy (FA) in normal-appearing white matter (NAWM) correlated with worsening EDSS scores and higher serum NfL. Higher serum NfL and increasing T2 lesion volume correlated with worsening paced autitory serial addition test scores. In multivariable regression analyses with serum GFAP and NfL as independent factors and DTI measures of NAWM as dependent factors, we showed that high serum NfL at follow-up was independently associated with decreasing FA and increasing MD in NAWM. Moreover, we found that high serum GFAP was independently associated with decreasing MD in NAWM and with decreasing MD and increasing FA in cortical gray matter. CONCLUSION Serum concentrations of NfL and GFAP are increased in progressive MS and are associated with distinct microstructural changes in NAWM and CGM.
Collapse
Affiliation(s)
- C Ammitzbøll
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 17, Glostrup 2600, Denmark.
| | - T B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - L Börnsen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 17, Glostrup 2600, Denmark
| | - K Schreiber
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 17, Glostrup 2600, Denmark
| | - R Ratzer
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 17, Glostrup 2600, Denmark
| | - J Romme Christensen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 17, Glostrup 2600, Denmark
| | - P Iversen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - M Magyari
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 17, Glostrup 2600, Denmark
| | - H Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - P E H Jensen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 17, Glostrup 2600, Denmark
| | - P S Sørensen
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 17, Glostrup 2600, Denmark
| | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - F Sellebjerg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 17, Glostrup 2600, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Timmerman R, Zuiderwijk-Sick EA, Baron W, Bajramovic JJ. In silico-in vitro modeling to uncover cues involved in establishing microglia identity: TGF-β3 and laminin can drive microglia signature gene expression. Front Cell Neurosci 2023; 17:1178504. [PMID: 37435046 PMCID: PMC10330817 DOI: 10.3389/fncel.2023.1178504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS) and play a key role in CNS development, homeostasis, and disease. Good in vitro models are indispensable to study their cellular biology, and although much progress has been made, in vitro cultures of primary microglia still only partially recapitulate the transcriptome of in vivo microglia. In this study, we explored a combination of in silico and in vitro methodologies to gain insight into cues that are involved in the induction or maintenance of the ex vivo microglia reference transcriptome. First, we used the in silico tool NicheNet to investigate which (CNS-derived) cues could underlie the differences between the transcriptomes of ex vivo and in vitro microglia. Modeling on basis of gene products that were found to be upregulated in vitro, predicted that high mobility group box 2 (HMGB2)- and interleukin (IL)-1β-associated signaling pathways were driving their expression. Modeling on basis of gene products that were found to be downregulated in vitro, did not lead to predictions on the involvement of specific signaling pathways. This is consistent with the idea that in vivo microenvironmental cues that determine microglial identity are for most part of inhibitory nature. In a second approach, primary microglia were exposed to conditioned medium from different CNS cell types. Conditioned medium from spheres composed of microglia, oligodendrocytes, and radial glia, increased the mRNA expression levels of the microglia signature gene P2RY12. NicheNet analyses of ligands expressed by oligodendrocytes and radial glia predicted transforming growth factor beta 3 (TGF-β3) and LAMA2 as drivers of microglia signature gene expression. In a third approach, we exposed microglia to TGF-β3 and laminin. In vitro exposure to TGF-β3 increased the mRNA expression levels of the microglia signature gene TREM2. Microglia cultured on laminin-coated substrates were characterized by reduced mRNA expression levels of extracellular matrix-associated genes MMP3 and MMP7, and by increased mRNA expression levels of the microglia signature genes GPR34 and P2RY13. Together, our results suggest to explore inhibition of HMGB2- and IL-1β-associated pathways in in vitro microglia. In addition, exposure to TGF-β3 and cultivation on laminin-coated substrates are suggested as potential improvements to current in vitro microglia culture protocols.
Collapse
Affiliation(s)
- Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jeffrey John Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
- 3Rs Centre Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Frankle L, Riley A, Tomor R, Lee H, Jarzembak K, Benedict O, Sternbach S, Shelestak J, McDonough J, Clements R. Changes to Astrocyte-associated Protein Expression at Different Timepoints of Cuprizone Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537627. [PMID: 37131767 PMCID: PMC10153238 DOI: 10.1101/2023.04.20.537627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glial cells, including astrocytes, microglia, and oligodendrocytes, are brain cells that support and dynamically interact with neurons and each other. These intercellular dynamics undergo changes during stress and disease states. In response to most forms of stress, astrocytes will undergo some variation of activation, meaning upregulation in certain proteins expressed and secreted and either upregulations or downregulations to various constitutive and normal functions. While types of activation are many and contingent on the particular disturbance that triggers these changes, there are two main overarching categories that have been delineated thus far: A1 and A2. Named in the convention of microglial activation subtypes, and with the acknowledgement that the types are not completely distinct or completely comprehensive, the A1 subtype is generically associated with toxic and pro-inflammatory factors, and the A2 phenotype is broadly associated with anti-inflammatory and neurogenic factors. The present study served to measure and document dynamic changes in these subtypes at multiple timepoints using an established experimental model of cuprizone toxic demyelination. The authors found increases in proteins associated with both cell types at different timepoints, with protein increases in the A1 marker C3d and the A2 marker Emp1 in the cortex at one week and protein increases in Emp1 in the corpus callosum at three days and four weeks. There were also increases in Emp1 staining specifically colocalized with astrocyte staining in the corpus callosum at the same timepoints as the protein increases, and in the cortex weeks later at four weeks. C3d colocalization with astrocytes also increased most at four weeks. This indicates simultaneous increases of both types of activation as well as the likely existence of astrocytes expressing both markers. The authors also found the increase in two A1 associated proteins (TNF alpha and C3d) did not show a linear relationship in line with findings from other research and indicating a more complex relationship between cuprizone toxicity and astrocyte activation. The increases in TNF alpha and IFN gamma did not occur at timepoints preceding increases in C3d and Emp1, showing that other factors also precipitate the subtypes associated (A1 for C3d and A2 for Emp1). These findings add to the body of research showing the specific early timepoints at which A1 and A2 markers are most increased during the course of cuprizone treatment, including the fact that these increases can be non-linear in the case of Emp1. This provides additional information on optimal times for targeted interventions during the cuprizone model.
Collapse
Affiliation(s)
- Lana Frankle
- Kent State University Biological Sciences Department
| | - Amanda Riley
- Kent State University Biological Sciences Department
| | - Riely Tomor
- Kent State University Biological Sciences Department
| | - Hannah Lee
- Kent State University Biological Sciences Department
| | | | | | | | | | | | | |
Collapse
|
8
|
Mok KKS, Yeung SHS, Cheng GWY, Ma IWT, Lee RHS, Herrup K, Tse KH. Apolipoprotein E ε4 disrupts oligodendrocyte differentiation by interfering with astrocyte-derived lipid transport. J Neurochem 2023; 165:55-75. [PMID: 36549843 DOI: 10.1111/jnc.15748] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.
Collapse
Affiliation(s)
- Kingston King-Shi Mok
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
9
|
Drake SS, Zaman A, Simas T, Fournier AE. Comparing RNA-sequencing datasets from astrocytes, oligodendrocytes, and microglia in multiple sclerosis identifies novel dysregulated genes relevant to inflammation and myelination. WIREs Mech Dis 2023; 15:e1594. [PMID: 36600404 DOI: 10.1002/wsbm.1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
Central nervous system (CNS) inflammation is a key factor in multiple sclerosis (MS). Invasion of peripheral immune cells into the CNS resulting from an unknown signal or combination of signals results in activation of resident immune cells and the hallmark feature of the disease: demyelinating lesions. These lesion sites are an amalgam of reactive peripheral and central immune cells, astrocytes, damaged and dying oligodendrocytes, and injured neurons and axons. Sustained inflammation affects cells directly located within the lesion site and further abnormalities are apparent diffusely throughout normal-appearing white matter and grey matter. It is only relatively recently, using animal models, new tissue sampling techniques, and next-generation sequencing, that molecular changes occurring in CNS resident cells have been broadly captured. Advances in cell isolation through Fluorescence Activated Cell Sorting (FACS) and laser-capture microdissection together with the emergence of single-cell sequencing have enabled researchers to investigate changes in gene expression in astrocytes, microglia, and oligodendrocytes derived from animal models of MS as well as from primary patient tissue. The contribution of some dysregulated pathways has been followed up in individual studies; however, corroborating results often go unreported between sequencing studies. To this end, we have consolidated results from numerous RNA-sequencing studies to identify and review novel patterns of differentially regulated genes and pathways occurring within CNS glial cells in MS. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Sienna S Drake
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Aliyah Zaman
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Tristan Simas
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Alyson E Fournier
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Brown TG, Thayer MN, VanTreeck JG, Zarate N, Hart DW, Heilbronner S, Gomez-Pastor R. Striatal spatial heterogeneity, clustering, and white matter association of GFAP + astrocytes in a mouse model of Huntington's disease. Front Cell Neurosci 2023; 17:1094503. [PMID: 37187609 PMCID: PMC10175581 DOI: 10.3389/fncel.2023.1094503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Huntington's disease (HD) is a neurodegenerative disease that primarily affects the striatum, a brain region that controls movement and some forms of cognition. Neuronal dysfunction and loss in HD is accompanied by increased astrocyte density and astrocyte pathology. Astrocytes are a heterogeneous population classified into multiple subtypes depending on the expression of different gene markers. Studying whether mutant Huntingtin (HTT) alters specific subtypes of astrocytes is necessary to understand their relative contribution to HD. Methods Here, we studied whether astrocytes expressing two different markers; glial fibrillary acidic protein (GFAP), associated with astrocyte activation, and S100 calcium-binding protein B (S100B), a marker of matured astrocytes and inflammation, were differentially altered in HD. Results First, we found three distinct populations in the striatum of WT and symptomatic zQ175 mice: GFAP+, S100B+, and dual GFAP+S100B+. The number of GFAP+ and S100B+ astrocytes throughout the striatum was increased in HD mice compared to WT, coinciding with an increase in HTT aggregation. Overlap between GFAP and S100B staining was expected, but dual GFAP+S100B+ astrocytes only accounted for less than 10% of all tested astrocytes and the number of GFAP+S100B+ astrocytes did not differ between WT and HD, suggesting that GFAP+ astrocytes and S100B+ astrocytes are distinct types of astrocytes. Interestingly, a spatial characterization of these astrocyte subtypes in HD mice showed that while S100B+ were homogeneously distributed throughout the striatum, GFAP+ preferentially accumulated in "patches" in the dorsomedial (dm) striatum, a region associated with goal-directed behaviors. In addition, GFAP+ astrocytes in the dm striatum of zQ175 mice showed increased clustering and association with white matter fascicles and were preferentially located in areas with low HTT aggregate load. Discussion In summary, we showed that GFAP+ and S100B+ astrocyte subtypes are distinctly affected in HD and exist in distinct spatial arrangements that may offer new insights to the function of these specific astrocytes subtypes and their potential implications in HD pathology.
Collapse
|
11
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
12
|
Kihara Y, Jonnalagadda D, Zhu Y, Ray M, Ngo T, Palmer C, Rivera R, Chun J. Ponesimod inhibits astrocyte-mediated neuroinflammation and protects against cingulum demyelination via S1P 1 -selective modulation. FASEB J 2022; 36:e22132. [PMID: 34986275 PMCID: PMC8740777 DOI: 10.1096/fj.202101531r] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 01/01/2023]
Abstract
Ponesimod is a sphingosine 1‐phosphate (S1P) receptor (S1PR) modulator that was recently approved for treating relapsing forms of multiple sclerosis (MS). Three other FDA‐approved S1PR modulators for MS—fingolimod, siponimod, and ozanimod—share peripheral immunological effects via common S1P1 interactions, yet ponesimod may access distinct central nervous system (CNS) mechanisms through its selectivity for the S1P1 receptor. Here, ponesimod was examined for S1PR internalization and binding, human astrocyte signaling and single‐cell RNA‐seq (scRNA‐seq) gene expression, and in vivo using murine cuprizone‐mediated demyelination. Studies confirmed ponesimod’s selectivity for S1P1 without comparable engagement to the other S1PR subtypes (S1P2,3,4,5). Ponesimod showed pharmacological properties of acute agonism followed by chronic functional antagonism of S1P1. A major locus of S1P1 expression in the CNS is on astrocytes, and scRNA‐seq of primary human astrocytes exposed to ponesimod identified a gene ontology relationship of reduced neuroinflammation and reduction in known astrocyte disease‐related genes including those of immediate early astrocytes that have been strongly associated with disease progression in MS animal models. Remarkably, ponesimod prevented cuprizone‐induced demyelination selectively in the cingulum, but not in the corpus callosum. These data support the CNS activities of ponesimod through S1P1, including protective, and likely selective, effects against demyelination in a major connection pathway of the brain, the limbic fibers of the cingulum, lesions of which have been associated with several neurologic impairments including MS fatigue.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Yunjiao Zhu
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Manisha Ray
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Tony Ngo
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Carter Palmer
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA.,Biomedical Sciences Program, University of California, San Diego, La Jolla, California, USA
| | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, Translational Neuroscience Initiative, La Jolla, California, USA
| |
Collapse
|
13
|
Sherafat A, Pfeiffer F, Nishiyama A. Shaping of Regional Differences in Oligodendrocyte Dynamics by Regional Heterogeneity of the Pericellular Microenvironment. Front Cell Neurosci 2021; 15:721376. [PMID: 34690700 PMCID: PMC8531270 DOI: 10.3389/fncel.2021.721376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into mature oligodendrocytes (OLs) to generate new myelin sheaths. While OPCs are distributed uniformly throughout the gray and white matter in the developing and adult brain, those in white matter proliferate and differentiate into oligodendrocytes at a greater rate than those in gray matter. There is currently lack of evidence to suggest that OPCs comprise genetically and transcriptionally distinct subtypes. Rather, the emerging view is that they exist in different cell and functional states, depending on their location and age. Contrary to the normal brain, demyelinated lesions in the gray matter of multiple sclerosis brains contain more OPCs and OLs and are remyelinated more robustly than those in white matter. The differences in the dynamic behavior of OL lineage cells are likely to be influenced by their microenvironment. There are regional differences in astrocytes, microglia, the vasculature, and the composition of the extracellular matrix (ECM). We will discuss how the regional differences in these elements surrounding OPCs might shape their phenotypic variability in normal and demyelinated states.
Collapse
Affiliation(s)
- Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Friederike Pfeiffer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States.,Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States.,Institute of Systems Genomics, University of Connecticut, Storrs, CT, United States.,The Institute of Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|