1
|
Liu T, Ji X, Zang H, Li Z, Yao W, Wan L, Zhang C, Zhang Y. Endoplasmic reticulum stress: The underlying mechanism of chronic pain. Neurobiol Dis 2024; 202:106697. [PMID: 39389155 DOI: 10.1016/j.nbd.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Chronic pain (CP) affects over 30 % of the global population, imposing significant financial burdens on individuals and society. However, existing treatments for CP offer limited efficacy and troublesome side effects, primarily owing to a lack of knowledge of its precise underlying mechanism. Pathological stimuli disrupt the intricate process of protein folding and endoplasmic reticulum (ER) homeostasis. This disruption leads to the accumulation of misfolded or unfolded proteins in the ER, generating a condition termed ER stress. Emerging data have indicated that ER stress, occurring in the peripheral and central nervous systems, contributes to the development and maintenance of CP. This review aimed to comprehensively explore the intersection of ER stress and CP within the lower and upper nervous systems and highlight the cell-specific contributions of the unfolded protein response in different CP types. We provide a comprehensive synthesis of evidence from animal models, examining neuronal and non-neuronal mechanisms and discuss the damaging ER stress-linked inflammation, autophagy, oxidative stress, and apoptosis, which collectively drive disease progression and contribute to a neurotoxic environment. However, the mechanisms through which ER stress influences the most advanced centre-of-pain projections in the brain remain unclear. Further investigation in this area is crucial to elucidate the relationship between ER stress and CP and facilitate the development of novel therapeutic drugs for this intractable dilemma.
Collapse
Affiliation(s)
- Tongtong Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ji
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuofan Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhan Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Turnbull J, Chapman V. Targeting the soluble epoxide hydrolase pathway as a novel therapeutic approach for the treatment of pain. Curr Opin Pharmacol 2024; 78:102477. [PMID: 39197248 DOI: 10.1016/j.coph.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024]
Abstract
Chronic pain is a major burden and the complexities of chronic pain pathophysiology, including both peripheral and central sensitisation mechanisms, involves multiple cell types (neuronal, immune, neuroimmune, and vascular) which substantially complicates the development of new effective analgesic treatments. The epoxy fatty acids (EpFAs), including the epoxyeicosatrienoic acids (EETs), are derived from the metabolism of polyunsaturated fatty acids (PUFAs) via the cytochrome P450 enzymatic pathway and act to shut-down inflammatory signalling and provide analgesia. The EpFAs are rapidly metabolised by the enzyme soluble epoxide hydrolase (sEH) into their corresponding diol metabolites, which recent studies suggest are pro-inflammatory and pro-nociceptive. This review discusses clinical and mechanistic evidence for targeting the sEH pathway for the treatment of pain.
Collapse
Affiliation(s)
- James Turnbull
- Pain Centre Versus Arthritis & NIHR Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Pain Centre Versus Arthritis & NIHR Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
3
|
Yuan X, Hu S, Fan X, Jiang C, Xu Y, Hao R, Xu Z, Yu Y, Rastegar-Kashkooli Y, Huang L, Wang TJ, Wang Q, Su S, Wang L, Wang J, Wang M, Kim YT, Bhawal UK, Wang F, Zhao T, Wang J, Chen X, Wang J. Central post-stroke pain: advances in clinical and preclinical research. Stroke Vasc Neurol 2024:svn-2024-003418. [PMID: 39343438 DOI: 10.1136/svn-2024-003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Central poststroke pain (CPSP) is a medical complication that arises poststroke and significantly impacts the quality of life and social functioning of affected individuals. Despite ongoing research, the exact pathomechanisms of CPSP remain unclear, and practical treatments are still unavailable. Our review aims to systematically analyse current clinical and preclinical studies on CPSP, which is critical for identifying gaps in knowledge and guiding the development of effective therapies. The review will clarify the clinical characteristics, evaluation scales and contemporary therapeutic approaches for CPSP based on clinical investigations. It will particularly emphasise the CPSP model initiated by stroke, shedding light on its underlying mechanisms and evaluating treatments validated in preclinical studies. Furthermore, the review will not only highlight methodological limitations in animal trials but also offer specific recommendations to researchers to improve the quality of future investigations and guide the development of effective therapies. This review is expected to provide valuable insights into the current knowledge regarding CPSP and can serve as a guide for future research and clinical practice. The review will contribute to the scientific understanding of CPSP and help develop effective clinical interventions.
Collapse
Affiliation(s)
- Xiqian Yuan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Hu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruochen Hao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zili Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yiyang Yu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- School of International Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Tom J Wang
- Program in Behavioral Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Qiao Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Songxue Su
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Wanju Jeollabuk-do, Korea (the Republic of)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Korea (the Republic of)
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil nadu, India
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Fushun Wang
- Department of Psychology, Sichuan Normal University, Chengdu, Sichuan, China
| | - Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
White TD, Almutairi A, Gai-Tusing Y, Stephenson DJ, Stephenson BD, Chalfant CE, Lei X, Lu B, Hammock BD, DiLorenzo TP, Ramanadham S. Differential lipid signaling from CD4 + and CD8 + T cells contributes to type 1 diabetes development. Front Immunol 2024; 15:1444639. [PMID: 39359722 PMCID: PMC11445035 DOI: 10.3389/fimmu.2024.1444639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction We reported that Ca2+-independent phospholipase A2β (iPLA2β)-derived lipids (iDLs) contribute to type 1 diabetes (T1D) onset. As CD4+ and CD8+ T cells are critical in promoting β-cell death, we tested the hypothesis that iDL signaling from these cells participates in T1D development. Methods CD4+ and CD8+ T cells from wild-type non-obese diabetic (NOD) and NOD.iPLA2β+/- (NOD.HET) mice were administered in different combinations to immunodeficient NOD.scid. Results In mice receiving only NOD T cells, T1D onset was rapid (5 weeks), incidence 100% by 20 weeks, and islets absent. In contrast, onset was delayed 1 week and incidence reduced 40%-50% in mice receiving combinations that included NOD.HET T cells. Consistently, islets from these non-diabetic mice were devoid of infiltrate and contained insulin-positive β-cells. Reduced iPLA2β led to decreased production of proinflammatory lipids from CD4+ T cells including prostaglandins and dihydroxyeicosatrienoic acids (DHETs), products of soluble epoxide hydrolase (sEH), and inhibition of their signaling decreased (by 82%) IFNγ+CD4+ cells abundance. However, only DHETs production was reduced from CD8+ T cells and was accompanied by decreases in sEH and granzyme B. Discussion These findings suggest that differential select iDL signaling in CD4+ and CD8+ T cells contributes to T1D development, and that therapeutics targeting such signaling might be considered to counter T1D.
Collapse
Affiliation(s)
- Tayleur D. White
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Abdulaziz Almutairi
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ying Gai-Tusing
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel J. Stephenson
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
| | - Benjamin D. Stephenson
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
- Department of Medicine, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Charles E. Chalfant
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
- Department of Medicine, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian Lu
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bruce D. Hammock
- Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Teresa P. DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
6
|
Liu C, Ju R. Potential Role of Endoplasmic Reticulum Stress in Modulating Protein Homeostasis in Oligodendrocytes to Improve White Matter Injury in Preterm Infants. Mol Neurobiol 2024; 61:5295-5307. [PMID: 38180617 DOI: 10.1007/s12035-023-03905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Preterm white matter injury (WMI) is a demyelinating disease with high incidence and mortality in premature infants. Oligodendrocyte cells (OLs) are a specialized glial cell that produces myelin proteins and adheres to the axons providing energy and metabolic support which susceptible to endoplasmic reticulum protein quality control. Disruption of cellular protein homeostasis led to OLs dysfunction and cell death, immediately, the unfolded protein response (UPR) activated to attempt to restore the protein homeostasis via IRE1/XBP1s, PERK/eIF2α and ATF6 pathway that reduced protein translation, strengthen protein-folding capacity, and degraded unfolding/misfolded protein. Moreover, recent works have revealed the conspicuousness function of ER signaling pathways in regulating influenced factors such as calcium homeostasis, mitochondrial reactive oxygen generation, and autophagy activation to regulate protein hemostasis and improve the myelination function of OLs. Each of the regulation modes and their corresponding molecular mechanisms provides unique opportunities and distinct perspectives to obtain a deep understanding of different actions of ER stress in maintaining OLs' health and function. Therefore, our review focuses on summarizing the current understanding of ER stress on OLs' protein homeostasis micro-environment in myelination during white matter development, as well as the pathophysiology of WMI, and discussing the further potential experimental therapeutics targeting these factors that restore the function of the UPR in OLs myelination function.
Collapse
Affiliation(s)
- Chang Liu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
7
|
Li S, Song H, Sun Y, Sun Y, Zhang H, Gao Z. Inhibition of soluble epoxide hydrolase as a therapeutic approach for blood-brain barrier dysfunction. Biochimie 2024; 223:13-22. [PMID: 38531484 DOI: 10.1016/j.biochi.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
The blood-brain barrier (BBB) is a protective semi-permeable structure that regulates the exchange of biomolecules between the peripheral blood and the central nervous system (CNS). Due to its specialized tight junctions and low vesicle trafficking, the BBB strictly limits the paracellular passage and transcellular transport of molecules to maintain the physiological condition of brain tissues. BBB breakdown is associated with many CNS disorders. Soluble epoxide hydrolase (sEH) is a hydrolase enzyme that converts epoxy-fatty acids (EpFAs) to their corresponding diols and is involved in the onset and progression of multiple diseases. EpFAs play a protective role in the central nervous system via preventing neuroinflammation, making sEH a potential therapeutic target for CNS diseases. Recent studies showed that sEH inhibition prevented BBB impairment caused by stroke, hemorrhage, traumatic brain injury, hyperglycemia and sepsis via regulating the expression of tight junctions. In this review, the protective actions of sEH inhibition on BBB and potential mechanisms are summarized, and some important questions that remain to be resolved are also addressed.
Collapse
Affiliation(s)
- Shuo Li
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Huijia Song
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yanping Sun
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yongjun Sun
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Huimin Zhang
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Zibin Gao
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China.
| |
Collapse
|
8
|
Kawanaka R, Jin H, Aoe T. Unraveling the Connection: Pain and Endoplasmic Reticulum Stress. Int J Mol Sci 2024; 25:4995. [PMID: 38732214 PMCID: PMC11084550 DOI: 10.3390/ijms25094995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Pain is a complex and multifaceted experience. Recent research has increasingly focused on the role of endoplasmic reticulum (ER) stress in the induction and modulation of pain. The ER is an essential organelle for cells and plays a key role in protein folding and calcium dynamics. Various pathological conditions, such as ischemia, hypoxia, toxic substances, and increased protein production, may disturb protein folding, causing an increase in misfolding proteins in the ER. Such an overload of the folding process leads to ER stress and causes the unfolded protein response (UPR), which increases folding capacity in the ER. Uncompensated ER stress impairs intracellular signaling and cell function, resulting in various diseases, such as diabetes and degenerative neurological diseases. ER stress may be a critical universal mechanism underlying human diseases. Pain sensations involve the central as well as peripheral nervous systems. Several preclinical studies indicate that ER stress in the nervous system is enhanced in various painful states, especially in neuropathic pain conditions. The purpose of this narrative review is to uncover the intricate relationship between ER stress and pain, exploring molecular pathways, implications for various pain conditions, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Ryoko Kawanaka
- Department of Anesthesiology, Chiba Medical Center, Teikyo University, Ichihara 299-0111, Japan
| | - Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomohiko Aoe
- Pain Center, Chiba Medical Center, Teikyo University, Ichihara 299-0111, Japan
| |
Collapse
|
9
|
Kim HS, Lee D, Shen S. Endoplasmic reticular stress as an emerging therapeutic target for chronic pain: a narrative review. Br J Anaesth 2024; 132:707-724. [PMID: 38378384 PMCID: PMC10925894 DOI: 10.1016/j.bja.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic pain is a severely debilitating condition with enormous socioeconomic costs. Current treatment regimens with nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, or opioids have been largely unsatisfactory with uncertain benefits or severe long-term side effects. This is mainly because chronic pain has a multifactorial aetiology. Although conventional pain medications can alleviate pain by keeping several dysfunctional pathways under control, they can mask other underlying pathological causes, ultimately worsening nerve pathologies and pain outcome. Recent preclinical studies have shown that endoplasmic reticulum (ER) stress could be a central hub for triggering multiple molecular cascades involved in the development of chronic pain. Several ER stress inhibitors and unfolded protein response modulators, which have been tested in randomised clinical trials or apprpoved by the US Food and Drug Administration for other chronic diseases, significantly alleviated hyperalgesia in multiple preclinical pain models. Although the role of ER stress in neurodegenerative disorders, metabolic disorders, and cancer has been well established, research on ER stress and chronic pain is still in its infancy. Here, we critically analyse preclinical studies and explore how ER stress can mechanistically act as a central node to drive development and progression of chronic pain. We also discuss therapeutic prospects, benefits, and pitfalls of using ER stress inhibitors and unfolded protein response modulators for managing intractable chronic pain. In the future, targeting ER stress to impact multiple molecular networks might be an attractive therapeutic strategy against chronic pain refractory to steroids, NSAIDs, or opioids. This novel therapeutic strategy could provide solutions for the opioid crisis and public health challenge.
Collapse
Affiliation(s)
- Harper S Kim
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donghwan Lee
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Bu Y, Yang S, Wang D, Hu S, Zhang Q, Wu Z, Yang C. Role of soluble epoxide hydrolase in pain and depression comorbidity. Neurobiol Dis 2024; 193:106443. [PMID: 38395315 DOI: 10.1016/j.nbd.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
The coexistence of chronic pain and depression in clinical practice places a substantial social burden and profoundly impacts in patients. Although a clear correlation exists, the underlying mechanism of comorbidity between chronic pain and depression remains elusive. Research conducted in recent decades has uncovered that soluble epoxide hydrolase, a pivotal enzyme in the metabolism of polyunsaturated fatty acids, plays a crucial role in inflammation. Interestingly, this enzyme is intricately linked to the development of both pain and depression. With this understanding, this review aims to summarize the roles of soluble epoxide hydrolase in pain, depression, and their comorbidity. Simultaneously, we will also explore the underlying mechanisms, providing guidance for future research and drug development.
Collapse
Affiliation(s)
- Yuchen Bu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
11
|
Zhou Y, Zhang Y, Botchway BOA, Huang M, Liu X. Sestrin2 can alleviate endoplasmic reticulum stress to improve traumatic brain injury by activating AMPK/mTORC1 signaling pathway. Metab Brain Dis 2024; 39:439-452. [PMID: 38047978 DOI: 10.1007/s11011-023-01323-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Traumatic brain injury (TBI), as a serious central nervous system disease, can result in severe neurological dysfunction or even disability and death of patients. The early and effective intervention of secondary brain injury can improve the prognosis of TBI. Endoplasmic reticulum (ER) stress is one of the main reasons to recover TBI. ER stress inhibition may be beneficial in treating TBI. Sestrin2 is a crucial regulator of ER stress, and its activation can significantly improve TBI. In this paper, we analyze the biological function of sestrin2, the latest findings on ER stress, and the relationship between ER stress and TBI. We elucidate the relationship of sestrin2 inhibiting ER stress via activating the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (MTORC1) signaling. Finally, we elaborate on the possible role of sestrin2 in TBI and explain how its activation potentially improves TBI.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | | | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China.
| |
Collapse
|
12
|
Jiao B, Zhang W, Zhang C, Zhang K, Cao X, Yu S, Zhang X. Protein tyrosine phosphatase 1B contributes to neuropathic pain by aggravating NF-κB and glial cells activation-mediated neuroinflammation via promoting endoplasmic reticulum stress. CNS Neurosci Ther 2024; 30:e14609. [PMID: 38334011 PMCID: PMC10853896 DOI: 10.1111/cns.14609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Neuropathic pain is a prevalent and highly debilitating condition that impacts millions of individuals globally. Neuroinflammation is considered a key factor in the development of neuropathic pain. Accumulating evidence suggests that protein tyrosine phosphatase 1B (PTP1B) plays a crucial role in regulating neuroinflammation. Nevertheless, the specific involvement of PTP1B in neuropathic pain remains largely unknown. This study aims to examine the impact of PTP1B on neuropathic pain and unravel the underlying molecular mechanisms implicated. METHODS In the current study, we evaluated the paw withdrawal threshold (PWT) of male rats following spared nerve injury (SNI) to assess the presence of neuropathic pain. To elucidate the underlying mechanisms, western blotting, immunofluorescence, and electron microscopy techniques were employed. RESULTS Our results showed that SNI significantly elevated PTP1B levels, which was accompanied by an increase in the expression of endoplasmic reticulum (ER) stress markers (BIP, p-PERK, p-IRE1α, and ATF6) and phosphorylated NF-κB in the spinal dorsal horn. SNI-induced mechanical allodynia was impaired by the treatment of intrathecal injection of PTP1B siRNA or PTP1B-IN-1, a specific inhibitor of PTP1B. Moreover, the intrathecal administration of PTP1B-IN-1 effectively suppressed the expression of ER stress markers (BIP, p-PERK/p-eIF2α, p-IRE1α, and ATF6), leading to the inhibition of NF-κB, microglia, and astrocytes activation, as well as a decrease in pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. However, these effects were reversed by intrathecal administration of tunicamycin (Tm, an inducer of ER stress). Additionally, intrathecal administration of Tm in healthy rats resulted in the development of mechanical allodynia and the activation of NF-κB-mediated neuroinflammatory signaling. CONCLUSIONS The upregulation of PTP1B induced by SNI facilitates the activation of NF-κB and glial cells via ER stress in the spinal dorsal horn. This, in turn, leads to an increase in the production of pro-inflammatory cytokines, thereby contributing to the development and maintenance of neuropathic pain. Therefore, targeting PTP1B could be a promising therapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Bo Jiao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Caixia Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Kaiwen Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xueqin Cao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Shangchen Yu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
13
|
Tan J, Shi M, Li B, Liu Y, Luo S, Cheng X. Role of arachidonic acid metabolism in intervertebral disc degeneration: identification of potential biomarkers and therapeutic targets via multi-omics analysis and artificial intelligence strategies. Lipids Health Dis 2023; 22:204. [PMID: 38007425 PMCID: PMC10675942 DOI: 10.1186/s12944-023-01962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/05/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is widely recognized as the primary etiological factor underlying low back pain, often necessitating surgical intervention as the sole recourse in severe cases. The metabolic pathway of arachidonic acid (AA), a pivotal regulator of inflammatory responses, influences the development and progression of IVDD. METHODS Initially, a comparative analysis was conducted to investigate the relationship between AA expression patterns and different stages of IVDD using single-cell sequencing (scRNA-seq) data. Additionally, three machine learning methods (LASSO, random forest, and support vector machine recursive feature elimination) were employed to identify hub genes associated with IVDD. Subsequently, a novel artificial intelligence prediction model was developed for IVDD based on an artificial neural network algorithm and validated using an independent dataset. The identified hub genes were further subjected to functional enrichment, immune infiltration, and Connectivity Map analysis. Moreover, external validation was performed using flow cytometry and real-time reverse transcription polymerase chain reaction analysis. RESULTS Both scRNA-seq and bulk RNA-seq data revealed a positive correlation between the severity of IVDD and the AA metabolic pathway. They also revealed increased AA metabolic activity in macrophages and neutrophils, as well as enhanced intercellular communication with nucleus pulposus cells. Utilizing advanced machine learning algorithms, five hub genes (AKR1C3, ALOX5, CYP2B6, EPHX2, and PLB1) were identified, and an incipient diagnostic model was developed with an AUC of 0.961 in the training cohort and 0.72 in the validation cohort. An in-depth exploration of the functionality of these hub genes revealed their notable association with inflammatory responses and immune cell infiltration. Lastly, AH6809 was found to delay IVDD by inhibiting AKR1C3. CONCLUSIONS This study offers comprehensive insights into potential biomarkers and small molecules associated with the early pathogenesis of IVDD. The identified biomarkers and the developed integrated diagnostic model hold great promise in predicting the onset of early IVDD. AH6809 was established as a therapeutic target for AKR1C3 in the treatment of IVDD, as evidenced by computer simulations and biological experiments.
Collapse
Affiliation(s)
- Jianye Tan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Meiling Shi
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Bin Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yuan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Shengzhong Luo
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China.
| |
Collapse
|
14
|
Yu Y, Yang A, He X, Wu B, Wu Y, Li Y, Nie S, Xu B, Wang H, Yu G. Soluble epoxide hydrolase deficiency attenuates airway inflammation in COPD via IRE1α/JNK/AP-1 signaling pathway. J Inflamm (Lond) 2023; 20:36. [PMID: 37915073 PMCID: PMC10621191 DOI: 10.1186/s12950-023-00361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Soluble Epoxide Hydrolase (sEH) metabolizes anti-inflammatory epoxyeicosatrienoic acids and critically affects airway inflammation in chronic obstructive pulmonary disease (COPD). Considering the excessive endoplasmic reticulum stress is associated with the earlier onset of COPD. The role of sEH and endoplasmic reticulum stress in the pathogenesis of COPD remains unknown. METHOD 16 weeks of cigarette-exposed mice were used to detect the relationship between sEH and endoplasmic reticulum stress in COPD. Human epithelial cells were used in vitro to determine the regulation mechanism of sEH in endoplasmic reticulum stress induced by cigarette smoke. RESULTS sEH deficiency helps reduce emphysema formation after smoke exposure by alleviating endoplasmic reticulum stress response. sEH deficiency effectively reverses the upregulation of phosphorylation IRE1α and JNK and the nuclear expression of AP-1, alleviating the secretion of inflammatory factors induced by cigarette smoke extract. Furthermore, the treatment with endoplasmic reticulum stress and IRE1α inhibitor downregulated cigarette smoke extract-induced sEH expression and the secretion of inflammatory factors. CONCLUSION sEH probably alleviates airway inflammatory response and endoplasmic reticulum stress via the IRE1α/JNK/AP-1 pathway, which might attenuate lung injury caused by long-term smoking and provide a new pharmacological target for preventing and treating COPD.
Collapse
Affiliation(s)
- Yue Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Ailin Yang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Xin He
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Bo Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Yunxiao Li
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Shan Nie
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China
| | - Bo Xu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China.
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, No, 95 Yong An Road, Xichen District, Beijing, 100050, China.
| |
Collapse
|
15
|
Cheng Y, Wu B, Huang J, Chen Y. Research Progress on the Mechanisms of Central Post-Stroke Pain: A Review. Cell Mol Neurobiol 2023; 43:3083-3098. [PMID: 37166685 DOI: 10.1007/s10571-023-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Central Post-Stroke Pain (CPSP) is a primary sequelae of stroke that can develop in the body part corresponding to the cerebrovascular lesion after stroke, most typically after ischemic stroke but also after hemorrhagic stroke. The pathogenesis of CPSP is currently unknown, and research into its mechanism is ongoing. To summarize current research on the CPSP mechanism and provide guidance for future studies. Use "central post-stroke pain," "stroke AND thalamic pain," "stroke AND neuropathic pain," "post-stroke thalamic pain" as the search term. The search was conducted in the PubMed and China National Knowledge Infrastructure databases, summarizing and classifying the retrieved mechanism studies. The mechanistic studies on CPSP are extensive, and we categorized the included mechanistic studies and summarized them in terms of relevant pathway studies, relevant signals and receptors, relevant neural tissues, and described endoplasmic reticulum stress and other relevant studies, as well as summarized the mechanisms of acupuncture treatment. Studies have shown that the pathogenesis of CPSP involves the entire spinal-thalamo-cortical pathway and that multiple substances in the nervous system are involved in the formation and development of CPSP. Among them, the relevant receptors and signals are the hotspot of research, and the discovery and exploration of different receptors and signals have provided a wide range of therapeutic ideas for CPSP. As a very effective treatment, acupuncture is less studied regarding the analgesic mechanism of CPSP, and further experimental studies are still needed.
Collapse
Affiliation(s)
- Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China.
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Yameng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| |
Collapse
|
16
|
Tarkany Basting R, Henrique Napimoga M, Antônio Trindade Silva C, Ballassini Abdalla H, Campos Durso B, Henrique Barboza Martins L, de Abreu Cavalcanti H, Hammock BD, Trindade Clemente-Napimoga J. Soluble epoxide hydrolase inhibitor blockage microglial cell activation in subnucleus caudalis in a persistent model of arthritis. Int Immunopharmacol 2023; 120:110320. [PMID: 37230034 PMCID: PMC10631565 DOI: 10.1016/j.intimp.2023.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic condition characterized by pain and infiltration of immune cells into the joint. Immune cells can be activated, producing inflammatory cytokines, leading to continuously degenerative and inflammatory reactions and the temporomandibular joint (TMJ) can be affected by RA. In this scenario, novel targets are needed to increase treatment efficacy with minimized side effects. The epoxy-eicosatrienoic acids (EETs), are endogenous signaling molecules, playing important roles in diminishing inflammation and pain but are promptly metabolized by soluble epoxide hydrolase (sEH), generating less-bioactive acids.Therefore, sEH inhibitors is an interest therapeutic target to enhance the beneficial effect of natural EETs. TPPU is a potent sEH inhibitor that is capable of dampening EETs hydrolysis. Thus, we aimed to assess the impact of pharmacological sEH inhibition on a persistent model of albumin-induced arthritis in the TMJ, in two scenarios: first, as post-treatment, in an installed arthritic condition, and second, the protective role, in preventing the development of an arthritic condition. In addition, we investigate the influence of sEH inhibition on microglia cell activation in the trigeminal subnucleus caudalis (TSC) and in vitro experiments. Finally, we examined the astrocyte phenotype. Oral administration of TPPU, acts in multiple pathways, in a protective and reparative post-treatment, ameliorating the preservation of the TMJ morphology, reducing the hypernociception, with an immunosuppressive action reducing neutrophil and lymphocytes and pro-inflammatory cytokines in the TMJ of rats. In TSC, TPPU reduces the cytokine storm and attenuates the microglia activated P2X7/Cathepsin S/Fractalkine pathway and reduces the astrocyte activation and glutamate levels. Collectively, our findings revealed that sEH inhibition mitigates hypersensitive nociception through the regulation of microglia activation and astrocyte modulation, demonstrating the potential use of sEH inhibitors as immunoresolvents in the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Rosanna Tarkany Basting
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | - Marcelo Henrique Napimoga
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | - Carlos Antônio Trindade Silva
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | - Henrique Ballassini Abdalla
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | - Braz Campos Durso
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | | | - Herbert de Abreu Cavalcanti
- São Leopoldo Mandic Institute and Research Center, Laboratory of Neuroimmune Interface of Pain Research, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, United States of America; EicOsis LLC, Davis, CA, United States of America
| | | |
Collapse
|
17
|
Deng W, Hu T, Xiong W, Jiang X, Cao Y, Li Z, Jiang H, Wang X. Soluble epoxide hydrolase deficiency promotes liver regeneration and ameliorates liver injury in mice by regulating angiocrine factors and angiogenesis. Biochim Biophys Acta Gen Subj 2023:130394. [PMID: 37315719 DOI: 10.1016/j.bbagen.2023.130394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Soluble epoxide hydrolase (sEH) is a key enzyme for the hydrolysis of epoxyeicosatrienoic acids (EETs) and has been implicated in the pathogenesis of hepatic inflammation, fibrosis, cancer, and nonalcoholic fatty liver disease. However, the role of sEH in liver regeneration and injury remains unclear. METHODS This study used sEH-deficient (sEH-/-) mice and wild-type (WT) mice. Hepatocyte proliferation was assessed by immunohistochemical (IHC) staining for Ki67. Liver injury was evaluated by histological staining with hematoxylin and eosin (H&E), Masson's trichrome, and Sirius red, as well as IHC staining for α-SMA. Hepatic macrophage infiltration and angiogenesis were reflected by IHC staining for CD68 and CD31. Liver angiocrine levels were detected by ELISA. The mRNA levels of angiocrine or cell cycle-related genes were measured by quantitative real-time RT-PCR (qPCR). The protein levels of cell proliferation-related protein and phosphorylated signal transducer and activator of transcription 3 (STAT3) were detected by western blotting. RESULTS sEH mRNA and protein levels were significantly upregulated in mice after 2/3 partial hepatectomy (PHx). Compared with WT mice, sEH-/- mice exhibited a higher liver/body weight ratio and more Ki67-positive cells on days 2 and 3 after PHx. The accelerated liver regeneration in sEH-/- mice was attributed to angiogenesis and endothelial-derived angiocrine (HGF) production. Subsequently, hepatic protein expression of cyclinD1 (CYCD1) and the downstream direct targets of the STAT3 pathway, such as c-fos, c-jun, and c-myc, were also suppressed post-PHx in sEH-/- compared to WT mice. Furthermore, sEH deficiency attenuated CCl4-induced acute liver injury and reduced fibrosis in both CCl4 and bile duct ligation (BDL)-induced liver fibrosis rodent models. Compared with WT mice, sEH-/- mice had slightly decreased hepatic macrophage infiltration and angiogenesis. Meanwhile, sEH-/- BDL mice had more Ki67-positive cells in the liver than WT BDL mice. CONCLUSIONS sEH deficiency alters the angiocrine profile of liver endothelial to accelerate hepatocyte proliferation and liver regeneration, and blunts acute liver injury and fibrosis by inhibiting inflammation and angiogenesis. sEH inhibition is a promising target for liver diseases to improve liver regeneration and damage.
Collapse
Affiliation(s)
- Wensheng Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China
| | - Tengcheng Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China
| | - Weixin Xiong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 33006, China
| | - Xiaohua Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China
| | - Yi Cao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China
| | - Zhengrong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China
| | - Hai Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China.
| | - Xinxin Wang
- Department of Radiotherapy, The Third Hospital of Nanchang, Nanchang 330002, China.
| |
Collapse
|
18
|
Li J, Wen Z, Lou Y, Chen J, Gao L, Li X, Wang F. Soluble epoxide hydrolase inhibitor promotes the healing of oral ulcers. Clinics (Sao Paulo) 2023; 78:100208. [PMID: 37148830 DOI: 10.1016/j.clinsp.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
OBJECTIVE Oral ulcers are a lesion in the oral mucosa that impacts chewing or drinking. Epoxyeicosatrienoic Acids (EETs) have enhanced angiogenic, regenerative, anti-inflammatory, and analgesic effects. The present study aims to evaluate the effects of 1-Trifluoromethoxyphenyl-3-(1-Propionylpiperidin-4-yl) Urea (TPPU), a soluble epoxide hydrolase inhibitor for increasing EETs level, on the healing of oral ulcers. METHODS The chemically-induced oral ulcers were established in Sprague Dawley rats. The ulcer area was treated with TPPU to evaluate the healing time and pain threshold of ulcers. The expression of angiogenesis and cell proliferation-related protein in the ulcer area was detected using immunohistochemical staining. The effects of TPPU on migration and angiogenesis capability were measured with scratch assay and tube formation. RESULTS Compared with the control group, TPPU promoted wound healing of oral ulcers with a shorter healing time, and raised pain thresholds. Immunohistochemical staining showed that TPPU increased the expression of angiogenesis and cell proliferation-related protein with reduced inflammatory cell infiltration in the ulcer area. TPPU enhanced cell migration and tube-forming potential in vitro. CONCLUSIONS The present results support the potential of TPPU with multiple biological effects for the treatment of oral ulcers by targeting soluble epoxide hydrolase.
Collapse
Affiliation(s)
- Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, China; The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Zihan Wen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Yue Lou
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Jili Chen
- School of Stomatology, Dalian Medical University, Dalian, China; Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China; The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Xiaojie Li
- School of Stomatology, Dalian Medical University, Dalian, China; The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China.
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, China; The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.
| |
Collapse
|
19
|
Yang F, Jing JJ, Fu SY, Su XZ, Zhong YL, Chen DS, Wu XZ, Zou YQ. Spinal MCP-1 Contributes to Central Post-stroke Pain by Inducing Central Sensitization in Rats. Mol Neurobiol 2023; 60:2086-2098. [PMID: 36602702 DOI: 10.1007/s12035-022-03184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/18/2022] [Indexed: 01/06/2023]
Abstract
Central post-stroke pain (CPSP) is a highly refractory form of central neuropathic pain that has been poorly studied mechanistically. Recent observations have emphasized the critical role of the spinal dorsal horn in CPSP. However, the underlying mechanisms remain unclear. In this study, rats were subjected to thalamic hemorrhage to investigate the role of spinal monocyte chemoattractant protein-1 (MCP-1) and C-C motif chemokine receptor 2 (CCR2) in the development of CPSP. Immunohistochemical staining and ELISA were used to assess the expression changes of c-Fos, Iba-1, GFAP, MCP-1, and CCR2 in the dorsal horn of the lumbar spinal cord following thalamic hemorrhage, and the involvement of spinal MCP-1 in CPSP was examined by performing intrathecal anti-MCP-1 mAb injection to neutralize the spinal extracellular MCP-1. We demonstrated that intra-thalamic collagenase microinjection induced persistent bilateral mechanical pain hypersensitivity and facilitated the spontaneous pain behaviors evoked by intraplantar bee venom injection. Accompanying CPSP, the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn was significantly increased up to 28 days post-intra-thalamic collagenase microinjection. Intrathecal injection of minocycline and fluorocitrate dramatically reverses the bilateral mechanical pain hypersensitivity. Moreover, intra-thalamic collagenase microinjection dramatically induced the up-regulation of MCP-1 but had no effect on the expression of CCR2 in the bilateral lumbar spinal dorsal horn, and MCP-1 was primarily localized in the neuron. Intrathecal injection of anti-MCP-1 mAb was also able to reverse CPSP and reduce the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn. These findings indicated that spinal MCP-1 contributes to CPSP by mediating the activation of spinal neurons and glial cells following thalamic hemorrhage stroke, which may provide insights into pharmacologic treatment for CPSP.
Collapse
Affiliation(s)
- Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.,Pain Research Institute, Fujian Medical University, Fuzhou, 350025, China
| | - Jun-Jie Jing
- Department of Neurosurgery, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350025, China
| | - Si-Yin Fu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Xiu-Zhu Su
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Yu-Ling Zhong
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Dong-Sheng Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| |
Collapse
|
20
|
Shi ZM, Jing JJ, Xue ZJ, Chen WJ, Tang YB, Chen DJ, Qi XY, Huang L, Zou YQ, Wu XZ, Yang F. Stellate ganglion block ameliorated central post-stroke pain with comorbid anxiety and depression through inhibiting HIF-1α/NLRP3 signaling following thalamic hemorrhagic stroke. J Neuroinflammation 2023; 20:82. [PMID: 36944982 PMCID: PMC10031944 DOI: 10.1186/s12974-023-02765-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Central post-stroke pain (CPSP) is an intractable and disabling central neuropathic pain that severely affects patients' lives, well-being, and socialization abilities. However, CPSP has been poorly studied mechanistically and its treatment remains challenging. Here, we used a rat model of CPSP induced by thalamic hemorrhage to investigate its underlying mechanisms and the effect of stellate ganglion block (SGB) on CPSP and emotional comorbidities. METHODS Thalamic hemorrhage was produced by injecting collagenase IV into the ventral-posterolateral nucleus (VPL) of the right thalamus. The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Behavioral tests were carried out to examine depressive and anxiety-like behaviors including the open field test (OFT), elevated plus maze test (EPMT), novelty-suppressed feeding test (NSFT), and forced swim test (FST). The peri-thalamic lesion tissues were collected for immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA). Genetic knockdown of thalamic hypoxia-inducible factor-1α (HIF-1α) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) with microinjection of HIF-1α siRNA and NLRP3 siRNA into the VPL of thalamus were performed 3 days before collagenase injection into the same regions. Microinjection of lificiguat (YC-1) and MCC950 into the VPL of thalamus were administrated 30 min before the collagenase injection in order to inhibited HIF-1α and NLRP3 pharmacologically. Repetitive right SGB was performed daily for 5 days and laser speckle contrast imaging (LSCI) was conducted to examine cerebral blood flow. RESULTS Thalamic hemorrhage caused persistent mechanical allodynia and anxiety- and depression-like behaviors. Accompanying the persistent mechanical allodynia, the expression of HIF-1α and NLRP3, as well as the activities of microglia and astrocytes in the peri-thalamic lesion sites, were significantly increased. Genetic knockdown of thalamic HIF-1α and NLRP3 significantly attenuated mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. Further studies revealed that intra-thalamic injection of YC-1, or MCC950 significantly suppressed the activation of microglia and astrocytes, the release of pro-inflammatory cytokines, the upregulation of malondialdehyde (MDA), and the downregulation of superoxide dismutase (SOD), as well as mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. In addition, repetitive ipsilateral SGB significantly restored the upregulated HIF-1α/NLRP3 signaling and the hyperactivated microglia and astrocytes following thalamic hemorrhage. The enhanced expression of pro-inflammatory cytokines and the oxidative stress in the peri-thalamic lesion sites were also reversed by SGB. Moreover, LSCI showed that repetitive SGB significantly increased cerebral blood flow following thalamic hemorrhage. Most strikingly, SGB not only prevented, but also reversed the development of mechanical allodynia and anxiety- and depression-like behaviors induced by thalamic hemorrhage. However, pharmacological activation of thalamic HIF-1α and NLRP3 with specific agonists significantly eliminated the therapeutic effects of SGB on mechanical allodynia and anxiety- and depression-like behaviors following thalamic hemorrhage. CONCLUSION This study demonstrated for the first time that SGB could improve CPSP with comorbid anxiety and depression by increasing cerebral blood flow and inhibiting HIF-1α/NLRP3 inflammatory signaling.
Collapse
Affiliation(s)
- Zhong-Mou Shi
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Jun-Jie Jing
- Department of Neurosurgery, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350025, China
| | - Zheng-Jie Xue
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Wen-Jun Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Yan-Bin Tang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Du-Juan Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Xin-Yi Qi
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Li Huang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China.
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China.
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, 350025, China.
- Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
- Pain Research Institute, Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
21
|
Soluble Epoxide Hydrolase Inhibitor TPPU Alleviates Nab-Paclitaxel-Induced Peripheral Neuropathic Pain via Suppressing NF- κB Signalling in the Spinal Cord of a Rat. Pain Res Manag 2023; 2023:9058774. [PMID: 36819745 PMCID: PMC9931472 DOI: 10.1155/2023/9058774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/31/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
Objective Paclitaxel-induced peripheral neuropathy (PIPN) is a debilitating and difficult-to-treat side effect of paclitaxel. Soluble epoxide hydrolase (sEH) can rapidly metabolize the endogenous anti-inflammatory mediators' epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. This study aimed to assess whether the sEH inhibitor N-(1-(1-oxopropy)-4-piperidinyl]-N'-(trifluoromethoxy) phenyl)-urea (TPPU) plays a critical role in PIPN of rats and provides a new target for treatment. Methods A Sprague-Dawley male rat model of PIPN induced by nab-paclitaxel was established. Rats were randomly divided into a control group, nab-paclitaxel group, and nab-paclitaxel + TPPU (sEH inhibitor) group, with 36 rats in each group. The effects of the sEH inhibitor TPPU on behavioural assays, apoptosis, glial activation, axonal injury, microstructure, and permeability of the blood-spinal cord barrier were detected, and the underlying mechanisms were explored by examining the expression of NF-κB signalling pathways, inflammatory cytokines, and oxidative stress. Results The results showed that the mechanical and thermal pain thresholds of rats were decreased after nab-paclitaxel treatment, accompanied by an increased expression of axonal injury-related proteins, enhanced cell apoptosis, aggravated destruction of vascular permeability, intense glial responses, and elevated inflammatory cytokines and oxidative stress in the L4-L6 spinal cord. TPPU restored the mechanical and thermal thresholds, decreased cell apoptosis, alleviated axonal injury and glial responses, and protected vascular permeability by increasing the expression of tight junction proteins. TPPU relieved PIPN by inhibiting the activation of the sEH and NF-κB signalling pathways by decreasing the levels of inflammatory cytokines and oxidative stress. Conclusion These findings support a role for sEH in PIPN and suggest that the inhibition of sEH represents a potential new therapeutic target for PIPN.
Collapse
|
22
|
Gao L, Chen W, Li L, Li J, Kongling W, Zhang Y, Yang X, Zhao Y, Bai J, Wang F. Targeting soluble epoxide hydrolase promotes osteogenic-angiogenic coupling via activating SLIT3/HIF-1α signalling pathway. Cell Prolif 2023:e13403. [PMID: 36636821 DOI: 10.1111/cpr.13403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Type H vessels have recently been identified to modulate osteogenesis. Epoxyeicostrioleic acids (EETs) have an essential contribution to vascular homeostasis. However, whether increased EETs with soluble epoxide hydrolase (sEH) inhibitor TPPU enhance the coupling of angiogenesis and osteogenesis remains largely unknown. The effects of TPPU on cross-talk between co-cultured human umbilical vein endothelial cells (HUVECs) and human dental pulp stem cells (hDPSCs), and on long bone growth and calvarial defect repair in mice were investigated in vitro and in vivo. TPPU enhanced osteogenic differentiation of co-cultured HUVECs and hDPSCs in vitro and increased type H vessels, and long bone growth and bone repair of calvarial defect. Mechanistically, TPPU promoted cell proliferation and angiogenesis, reclined cell apoptosis, and significantly increased CD31hi EMCNhi endothelial cells (ECs) and SLIT3 and HIF-1α expression levels in co-cultured HUVECs and hDPSCs. Knockdown of Slit3 in hDPSCs or Hif-1α in HUVECs impaired the formation of CD31hi EMCNhi ECs and reversed TPPU-induced osteogenesis. We defined a previously unidentified effect of TPPU coupling angiogenesis and osteogenesis. TPPU induced type H vessels by upregulating the expression of hDPSCs-derived SLIT3, which resulted in the activation of ROBO1/YAP1/HIF-1α signalling pathway in ECs. Targeting metabolic pathways of EETs represents a new strategy to couple osteogenesis and angiogenesis, sEH is a promising therapeutic target for bone regeneration and repair.
Collapse
Affiliation(s)
- Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lijun Li
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Wenyao Kongling
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yaoyang Zhang
- School of Stomatology, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Xueping Yang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yanrong Zhao
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Jie Bai
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| |
Collapse
|
23
|
Takeshita AA, Hammock BD, Wagner KM. Soluble epoxide hydrolase inhibition alleviates chemotherapy induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1100524. [PMID: 36700145 PMCID: PMC9868926 DOI: 10.3389/fpain.2022.1100524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a particularly pernicious form of neuropathy and the associated pain is the primary dose-limiting factor of life-prolonging chemotherapy treatment. The prevalence of CIPN is high and can last long after treatment has been stopped. Currently, late in the COVID-19 pandemic, there are still increased psychological pressures on cancer patients as well as additional challenges in providing analgesia for them. These include the risks of nonsteroidal anti-inflammatory drug (NSAID) analgesics potentially masking early infection symptoms and the immunosuppression of steroidal and opiate based approaches. Even without these concerns, CIPN is often inadequately treated with few therapies that offer significant pain relief. The experiments we report use soluble epoxide hydrolase inhibitors (sEHI) which relieved this intractable pain in preclinical models. Doses of EC5026, an IND candidate intended to treat neuropathic pain, elicited dose dependent analgesic responses in multiple models including platinum-based, taxane, and vinca alkaloid-based CIPN pain in Sprague Dawley rats. At the same time as a class, the sEHI are known to result in fewer debilitating side effects of other analgesics, likely due to their novel mechanism of action. Overall, the observed dose-dependent analgesia in both male and female rats across multiple models of chemotherapy induced neuropathic pain holds promise as a useful tool when translated to the clinic.
Collapse
Affiliation(s)
| | - Bruce D. Hammock
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen M. Wagner
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States,Correspondence: Karen M. Wagner ;
| |
Collapse
|
24
|
Lipid mediators generated by the cytochrome P450—Epoxide hydrolase pathway. ADVANCES IN PHARMACOLOGY 2023; 97:327-373. [DOI: 10.1016/bs.apha.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Davis CM, Ibrahim AH, Alkayed NJ. Cytochrome P450-derived eicosanoids in brain: From basic discovery to clinical translation. ADVANCES IN PHARMACOLOGY 2023; 97:283-326. [DOI: 10.1016/bs.apha.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Chen X, Chen S, Ren Q, Niu S, Pan X, Yue L, Li Z, Zhu R, Jia Z, Chen X, Zhen R, Ban J. Metabolomics Provides Insights into Renoprotective Effects of Semaglutide in Obese Mice. Drug Des Devel Ther 2022; 16:3893-3913. [PMID: 36388084 PMCID: PMC9656502 DOI: 10.2147/dddt.s383537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/29/2022] [Indexed: 08/09/2024] Open
Abstract
PURPOSE Semaglutide, a new long-acting glucagon-like peptide-1 analogue, has shown benefits for renal diseases, but its direct role on kidney metabolism under obesity remains unclear. The study aims to elucidate the protective effect and metabolic modulation mechanism of semaglutide on obesity-related kidney injury. METHODS Male C57BL/6J mice were divided into control and obesity groups. Mice in the obesity group had a high-fat diet and were treated with or without semaglutide (30nmol/kg/day). The study assayed blood biochemistry and then evaluated renal pathological injury through Periodic Acid-Schiff staining and electron microscopy. Metabolomics was utilized to analyze obesity-related metabolites in kidney samples. RESULTS Semaglutide significantly improved glucose homeostasis, insulin resistance, and kidney injury in obese mice. We successfully identified 377 altered metabolites (P<0.05). It was suggested that semaglutide directly improved oxidative stress and inflammation-related metabolites such as nicotinamide adenine dinucleotide (NAD+) and adenosine in the kidney of obese mice, which have not been documented in obesity-related kidney injury. Relevant enriched pathways were included phospholipids and lysophospholipids metabolism, purine metabolism, NAD+ metabolism, and insulin resistance-related metabolism. They could serve as potential targets for intervention of obesity-related kidney injury. CONCLUSION Our study revealed the metabolomics-based renoprotective mechanism of semaglutide in obese mice for the first time. The innovation lied in the identified metabolites such as NAD+ and adenosine targeted by semaglutide, which have not been documented in obesity-related kidney injury. Semaglutide may be a promising therapy for obesity-related kidney diseases.
Collapse
Affiliation(s)
- Xing Chen
- Department of Nephrology, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Qingjuan Ren
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Shu Niu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Lin Yue
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Zelin Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Ruiyi Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Zhuoya Jia
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Xiaoyi Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Ruoxi Zhen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Jiangli Ban
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| |
Collapse
|
27
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
28
|
Kuo YM, Lee YH. Epoxyeicosatrienoic acids and soluble epoxide hydrolase in physiology and diseases of the central nervous system. CHINESE J PHYSIOL 2022; 65:1-11. [PMID: 35229747 DOI: 10.4103/cjp.cjp_80_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are fatty acid signaling molecules synthesized by cytochrome P450 epoxygenases from arachidonic acid. The biological activity of EETs is terminated when being metabolized by soluble epoxide hydrolase (sEH), a process that serves as a key regulator of tissue EETs levels. EETs act through several signaling pathways to mediate various beneficial effects, including anti-inflammation, anti-apoptosis, and anti-oxidation with relieve of endoplasmic reticulum stress, thereby sEH has become a potential therapeutic target in cardiovascular disease and cancer therapy. Enzymes for EET biosynthesis and metabolism are both widely detected in both neuron and glial cells in the central nervous system (CNS). Recent studies discovered that astrocyte-derived EETs not only mediate neurovascular coupling and neuronal excitability by maintaining glutamate homeostasis but also glia-dependent neuroprotection. Genetic ablation as well as pharmacologic inhibition of sEH has greatly helped to elucidate the physiologic actions of EETs, and maintaining or elevating brain EETs level has been demonstrated beneficial effects in CNS disease models. Here, we review the literature regarding the studies on the bioactivity of EETs and their metabolic enzyme sEH with special attention paid to their action mechanisms in the CNS, including their modulation of neuronal activity, attenuation of neuroinflammation, regulation of cerebral blood flow, and improvement of neuronal and glial cells survival. We further reviewed the recent advance on the potential application of sEH inhibition for treating cerebrovascular disease, epilepsy, and pain disorder.
Collapse
Affiliation(s)
- Yi-Min Kuo
- Department of Anesthesiology, Taipei Veterans General Hospital; Department of Anesthesiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|