1
|
Zhang J, Sheng X, Ding Q, Wang Y, Zhao J, Zhang J. Subretinal fibrosis secondary to neovascular age-related macular degeneration: mechanisms and potential therapeutic targets. Neural Regen Res 2025; 20:378-393. [PMID: 38819041 PMCID: PMC11317958 DOI: 10.4103/nrr.nrr-d-23-01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 06/01/2024] Open
Abstract
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration. It causes local damage to photoreceptors, retinal pigment epithelium, and choroidal vessels, which leads to permanent central vision loss of patients with neovascular age-related macular degeneration. The pathogenesis of subretinal fibrosis is complex, and the underlying mechanisms are largely unknown. Therefore, there are no effective treatment options. A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments. The current article reviews several aspects of subretinal fibrosis, including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis; multimodal imaging techniques for subretinal fibrosis; animal models for studying subretinal fibrosis; cellular and non-cellular constituents of subretinal fibrosis; pathophysiological mechanisms involved in subretinal fibrosis, such as aging, infiltration of macrophages, different sources of mesenchymal transition to myofibroblast, and activation of complement system and immune cells; and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis, such as vascular endothelial growth factor, connective tissue growth factor, fibroblast growth factor 2, platelet-derived growth factor and platelet-derived growth factor receptor-β, transforming growth factor-β signaling pathway, Wnt signaling pathway, and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10. This review will improve the understanding of the pathogenesis of subretinal fibrosis, allow the discovery of molecular targets, and explore potential treatments for the management of subretinal fibrosis.
Collapse
Affiliation(s)
- Jingxiang Zhang
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Xia Sheng
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Quanju Ding
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Yujun Wang
- Department of Urology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jiwei Zhao
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
2
|
Liu F, Zhu Z, Zou H, Huang Z, Xiao S, Li Z. Novel Insights from Comprehensive Bioinformatics Analysis Utilizing Large-Scale Human Transcriptomes and Experimental Validation: The Role of Autophagy in Periodontitis. J Inflamm Res 2024; 17:11861-11880. [PMID: 39758938 PMCID: PMC11697667 DOI: 10.2147/jir.s492048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
Objective Autophagy plays a crucial role in the pathophysiology of periodontitis, yet its precise involvement in the disease process remains elusive. The aim of the present study was thus to investigate the involvement of autophagy in the pathology of periodontitis. This investigation involved transcriptomic analysis of a broad range of human samples and complemented by in vitro experimentation. Materials and Methods We analyzed the transcriptomes of human gingival tissues from individuals with periodontitis and health controls to identify the differential expression of autophagy-related genes (DEARGs) and to investigate their potential interactions and functional pathways. Additionally, protein-protein interaction (PPI) networks were constructed to identify key functional modules and hub genes. Experimental validation of autophagy regulation in periodontitis and identification of key autophagy-regulating genes was accomplished through in vitro cellular experiments. Subsequently, a comprehensive analysis of immune cell infiltrate utilizing the CIBERSORT algorithm was performed. Finally, leveraging the DSigDB database, potential candidate drugs for periodontitis treatment targeting autophagy were predicted. Results A total of 79 genes have been identified as DEARGs in periodontitis. An intricate interplay among the DEARGs and their impact on the regulatory mechanisms of autophagy within the context of periodontitis was observed. Subsequently, 10 hub genes were discerned through the establishment of a PPI network. Furthermore, dysregulated autophagic activity in periodontitis was validated, and 9 key genes (APP, KDR, IL1B, CXCL12, CXCR4, IL6, FOS, LCK, and SHC1) were identified through in vitro experiments. Our analysis unveiled an association between these genes and altered immune cell infiltration in periodontitis. Additionally, we predicted potential therapeutic agents such as curcumin, 27-hydroxycholesterol, and Trolox, showing promise in the treatment of periodontitis by modulating the autophagic process. Conclusion This study identified nine key genes for autophagy regulation and potential therapeutic agents in periodontitis. These findings not only enhance our comprehension of the pathological mechanisms of periodontitis but also provide substantial evidence for the advancement of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fen Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Zhipeng Zhu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Huaxi Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhen Huang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Shengkai Xiao
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Zhihua Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
3
|
Zhang J, Huang J, Yang Q, Zeng L, Deng K. Regulatory mechanisms of macrophage-myofibroblast transdifferentiation: A potential therapeutic strategy for fibrosis. Biochem Biophys Res Commun 2024; 737:150915. [PMID: 39486135 DOI: 10.1016/j.bbrc.2024.150915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Macrophage-myofibroblast transdifferentiation (MMT), a fibrotic process impacting diverse tissue types, has garnered recent scholarly interest. Within damaged tissues, the role of myofibroblasts is pivotal in the accumulation of excessive fibrous connective tissue, leading to persistent scarring or organ dysfunction. Consequently, the examination of MMT-related fibrosis is imperative. This review underscores MMT as a fundamental mechanism in myofibroblast generation during tissue fibrosis, and its exploration is crucial for elucidating the regulatory mechanisms underlying this process. Gaining insight into these mechanisms promises to facilitate the development of therapeutic approaches aimed at inhibiting and reversing fibrosis, thereby offering potential avenues for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Junchao Zhang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jinfa Huang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Qian Yang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Lingling Zeng
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Kaixian Deng
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.
| |
Collapse
|
4
|
Zhang S, Fan Y, Cao X, Deng C, Xu J, Zhou Q, Li Y, Yin Y, Chen H. Treadmill exercise improves cerebral ischemia injury by regulating microglia polarization via downregulation of MMP12. Int Immunopharmacol 2024; 142:113210. [PMID: 39340990 DOI: 10.1016/j.intimp.2024.113210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/24/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUD Exercise training is the main strategy for stroke rehabilitation, and it has shown that shifting microglia toward M2 phenotype is beneficial for the recovery of neurological function after stroke. The mechanisms governing exercise training and inflammatory response after cerebral ischemia remain largely unexplored. Herein, the aim of this study was to investigate the role of exercise training in immune response after cerebral ischemia. METHODS The transient middle cerebral artery occlusion (MCAO) rat model and primary microglia under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions were used to mimic the ischemic stroke in vivo and in vitro respectively. Treadmill exercise with gradually increased intensity was initiated the second day after MCAO for a maximum of 14 days. The beam balance test, forelimb placement test, cornering test, modified adhesive removal test were used to assess the behavioral recovery. The right peri-infarct cortex was taken from 3 rats per group for RNA sequencing (RNA-seq) analysis. Real-time PCR, western blot, immunofluorescence, and phagocytosis assay was performed after MCAO and/or OGD/R. RESULTS Treadmill exercise could significantly improve behavioral outcomes and reduce the infarct volumes. In addition, treadmill exercise switched microglia polarization toward M2 phenotype (Iba+/CD206+) in the peri-infarct cortex, and significantly increased the levels of anti-inflammatory factors (TGF-β, IL10, Arg-1, CD206) and decreased a pool of pro-inflammatory factors (IL-1β, IL-6, TNF-α, iNOS, CD68) in the peri-infarct areas. RNA-seq analysis and further studies demonstrated that exercise training could significantly reduce the expression of MMP12. Through further immunofluorescence co-labeling analysis, we found that treadmill exercise predominantly reduced the expression of MMP-12 in microglia but not in neuron after MCAO. In primary microglia after OGD/R, MMP12 inhibition switched microglia polarization toward to M2 phenotype, increased the expression of M2 markers, and enhanced its phagocytic capacities. CONCLUSIONS Our data demonstrate that treadmill exercise could improve the inflammatory microenvironment in the brain after ischemic stroke, which may be caused by inhibition of MMP12 expression. MMP12 suppression in primary microglia could remodel microglia immune functions. In summary, this study may provide novel insights into the immune mechanism of exercise training for stroke and suggests potential targets for therapeutic approaches.
Collapse
Affiliation(s)
- Song Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Yuanteng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaojian Cao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Qiuzhi Zhou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Yatao Yin
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China.
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China.
| |
Collapse
|
5
|
Ding X, Yu Y, Su D, Lin M, Chen M, Xing Y, Li J. IL-33/ST2 enhances MMP-12 expression by macrophages to mediate inflammatory and immune response in IgG4-Related Ophthalmic Disease. Cytokine 2024; 184:156754. [PMID: 39299101 DOI: 10.1016/j.cyto.2024.156754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
IgG4-Related Ophthalmic Disease (IgG4-ROD) is a chronic autoimmune-mediated fibrotic disease that predominantly affects the lacrimal glands, often leading to loss of function in the involved tissues or organs. Recent studies have demonstrated that MMP-12 is highly expressed in IgG4-ROD and plays a significant role in regulating immune responses. In this study, we reviewed nine patients diagnosed with IgG4-ROD based on clinical manifestations and histological analysis, and we investigated the expression of IL-33/ST2 and MMP-12 in IgG4-ROD lacrimal gland tissues using IHC. We found that IL-33 interacts with its specific receptor ST2, both of which are significantly overexpressed in IgG4-ROD tissues. Additionally, we successfully constructed a mouse model by introducing the LatY136F mutation into C57BL/6 mice to mimic IgG4-ROD lacrimal gland involvement, which helped elucidate the mechanisms involved in the induction of MMP-12. Furthermore, immunofluorescence staining confirmed that most MMP-12+ cells were derived from M2 macrophages, and an ELISA assay demonstrated that IL-33 upregulates MMP-12 in IgG4-ROD. Collectively, these data suggest that the IL-33/ST2/MMP-12 signaling pathway is activated in IgG4-ROD, with IL-33/ST2 potentially promoting M2 macrophage polarization and activation to produce MMP-12, which may serve as a novel therapeutic target for IgG4-ROD.
Collapse
Affiliation(s)
- Xia Ding
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 ZhizaojuRoad, Shanghai 200025, P.R. China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yu Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 ZhizaojuRoad, Shanghai 200025, P.R. China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Dai Su
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 ZhizaojuRoad, Shanghai 200025, P.R. China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ming Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 ZhizaojuRoad, Shanghai 200025, P.R. China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Mingjiao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 ZhizaojuRoad, Shanghai 200025, P.R. China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yue Xing
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 ZhizaojuRoad, Shanghai 200025, P.R. China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jin Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, No.639 ZhizaojuRoad, Shanghai 200025, P.R. China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
6
|
Xie Z, Wang X, Ren X, Ge X. MMP12 disrupts epithelial barrier integrity in oral lichen planus by degrading fibronectin. Sci Rep 2024; 14:27511. [PMID: 39528584 PMCID: PMC11555042 DOI: 10.1038/s41598-024-78930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disorder featured with T lymphocytes infiltration and epithelial basement membrane breakdown. Although matrix metalloproteinase-12 (MMP12) is reported to be involved in the pathogenesis of oral diseases such as oral squamous cell carcinoma and periodontitis, the roles of MMP12 in the context of OLP remain poorly understood. Here, we demonstrate that MMP12 in macrophages derived from mucosal diseased tissues compromises the epithelial barrier integrity in OLP. The increased MMP12 facilitates fibronectin degradation in keratinocytes, leading to oral epithelial barrier disruption. Overexpression of fibronectin in oral keratinocytes prevents epithelial barrier from MMP12-induced damage. In addition, pharmacological inhibition of MMP12 reverses keratinocyte barrier disruption in a cell model. Altogether, our study reveals that MMP12 mediates oral epithelial barrier integrity in the setting of OLP.
Collapse
Affiliation(s)
- Zhouqiao Xie
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, NO. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, NO. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xiuyun Ren
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, NO. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| | - Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, NO. 63 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
7
|
Lin B, Fan Y, Yang X, Pathak JL, Zhong M. MMP-12 and Periodontitis: Unraveling the Molecular Pathways of Periodontal Tissue Destruction. J Inflamm Res 2024; 17:7793-7806. [PMID: 39494211 PMCID: PMC11529342 DOI: 10.2147/jir.s480466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Periodontal disease is a common disorder affecting a wide range of people and has a high prevalence globally. Periodontitis comprises a series of inflammatory conditions affecting periodontal support tissue, which could ultimately lead to tooth loss and reduce life quality and add to the financial burden of society. Matrix metalloproteinase-12 (MMP-12) is an elastase that is produced mostly by macrophages and could degrade a wide spectrum of extracellular matrix (ECM) and also contribute to several systematic pathological conditions. Recently, researchers have reported higher expression of MMP-12 in chronic periodontitis patients. However, there are few reports on the role of MMP-12 in periodontitis pathogenicity, and the interaction between MMP-12, periodontal pathogens, and periodontal tissues remains unclear. In this review, we introduce the potentially unique role of MMP-12 in the context of periodontal inflammation earlier, summarize the possible effects of MMP-12 on the pathological process of periodontitis and the interaction of host response under the challenge of various inflammatory factors, and provide possible diagnostic and therapeutic strategies targeting MMP-12 for the management of periodontitis. Future research and policies should focus on and implement effective chairside testing methods to reduce the prevalence of periodontal diseases.
Collapse
Affiliation(s)
- Bingpeng Lin
- Department of Orthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Yufei Fan
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Xuechao Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Janak L Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Mei Zhong
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| |
Collapse
|
8
|
Ban JQ, Ao LH, He X, Zhao H, Li J. Advances in macrophage-myofibroblast transformation in fibrotic diseases. Front Immunol 2024; 15:1461919. [PMID: 39445007 PMCID: PMC11496091 DOI: 10.3389/fimmu.2024.1461919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) has emerged as a discovery in the field of fibrotic disease research. MMT is the process by which macrophages differentiate into myofibroblasts, leading to organ fibrosis following organ damage and playing an important role in fibrosis formation and progression. Recently, many new advances have been made in studying the mechanisms of MMT occurrence in fibrotic diseases. This article reviews some critical recent findings on MMT, including the origin of MMT in myofibroblasts, the specific mechanisms by which MMT develops, and the mechanisms and effects of MMT in the kidneys, lungs, heart, retina, and other fibrosis. By summarizing the latest research related to MMT, this paper provides a theoretical basis for elucidating the mechanisms of fibrosis in various organs and developing effective therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and
Disease Control, Ministry of Education, Guizhou Medical University,
Guiyang, China
| |
Collapse
|
9
|
Kang H, Gu X, Cao S, Tong Z, Song N. Integrated multi-omics analyses reveal the pro-inflammatory and pro-fibrotic pulmonary macrophage subcluster in silicosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116899. [PMID: 39181076 DOI: 10.1016/j.ecoenv.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Silicosis is a lethal occupational disease caused by long-term exposure to respirable silica dust. Pulmonary macrophages play a crucial role in mediating the initiation of silicosis. However, the phenotypic and functional heterogeneities of pulmonary macrophages in silicosis have not been well-studied. METHODS The silicosis mouse model was established by intratracheal administration of silica suspension. Bronchoalveolar lavage fluids (BALFs) of mice were collected for the multiplex cytokine analysis. Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics were performed to reveal the heterogeneity and spatial localization of macrophages in the lung tissues. The formation of the fibrotic nodules was characterized by histology, hydroxyproline assay, and immunohistochemical staining, respectively. The expression of the pro-inflammatory or pro-fibrotic genes was investigated by quantitative polymerase chain reaction (qPCR). RESULTS We found that the level of pro-inflammatory cytokines and chemokines is significantly increased in the BALFs of silicosis mice. Apparent collagen deposition can also be observed in the silicotic lung tissues. By scRNA-seq, we have identified a subpopulation of Mmp12hi macrophages significantly expanding in the lung tissues of mice with silicosis. Spatial transcriptomics analysis further confirmed that the Mmp12hi macrophages are mainly enriched in silicosis nodules. Pseudotime trajectory showed that these Mmp12hi macrophages, highly expressing both pro-inflammatory and pro-fibrotic genes, are derived from Ly6c+ monocytes. Additionally, 4-octyl itaconate (4-OI) treatment, which can alleviate pulmonary fibrosis in silicosis mice, also reduces the enrichment of the Mmp12hi macrophages. Moreover, we found a subset of macrophages in BALFs derived from patients with silicosis exhibited similar characteristics of Mmp12hi macrophages in silicosis mice models. CONCLUSIONS Our study suggested that a group of Mmp12hi macrophages highly express both pro-inflammatory and pro-fibrotic factors in silicosis mice, and thus may contribute to the progression of fibrosis. The findings have proposed new insights for understanding the heterogeneity of lung macrophages in silicosis, suggesting that the subset of Mmp12hi macrophages may be a potential therapy target to further halt the progression of silicosis.
Collapse
Affiliation(s)
- Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xueqing Gu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Siyu Cao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Nan Song
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
10
|
Gill K, Yoo HS, Chakravarthy H, Granville DJ, Matsubara JA. Exploring the role of granzyme B in subretinal fibrosis of age-related macular degeneration. Front Immunol 2024; 15:1421175. [PMID: 39091492 PMCID: PMC11291352 DOI: 10.3389/fimmu.2024.1421175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.
Collapse
Affiliation(s)
- Karanvir Gill
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Harshini Chakravarthy
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
11
|
Geng F, Xu J, Ren X, Zhao Y, Cai Y, Li Y, Jin F, Li T, Gao X, Cai W, Xu H, Wei Z, Mao N, Sun Y, Yang F. Effect of macrophage-to-myofibroblast transition on silicosis. Animal Model Exp Med 2024. [PMID: 38979656 DOI: 10.1002/ame2.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The aim was to explore the effect of macrophage polarization and macrophage-to-myofibroblast transition (MMT) in silicosis. METHODS Male Wistar rats were divided into a control group and a silicosis group developed using a HOPE MED 8050 dynamic automatic dusting system. Murine macrophage MH-S cells were randomly divided into a control group and an SiO2 group. The pathological changes in lung tissue were observed using hematoxylin and eosin (HE) and Van Gieson (VG) staining. The distribution and location of macrophage marker (F4/80), M1 macrophage marker (iNOS), M2 macrophage marker (CD206), and myofibroblast marker (α-smooth muscle actin [α-SMA]) were detected using immunohistochemical and immunofluorescent staining. The expression changes in iNOS, Arg, α-SMA, vimentin, and type I collagen (Col I) were measured using Western blot. RESULTS The results of HE and VG staining showed obvious silicon nodule formation and the distribution of thick collagen fibers in the lung tissue of the silicosis group. Macrophage marker F4/80 increased gradually from 8 to 32 weeks after exposure to silica. Immunohistochemical and immunofluorescent staining results revealed that there were more iNOS-positive cells and some CD206-positive cells in the lung tissue of the silicosis group at 8 weeks. More CD206-positive cells were found in the silicon nodules of the lung tissues in the silicosis group at 32 weeks. Western blot analysis showed that the expressions of Inducible nitric oxide synthase and Arg protein in the lung tissues of the silicosis group were upregulated compared with those of the control group. The results of immunofluorescence staining showed the co-expression of F4/80, α-SMA, and Col I, and CD206 and α-SMA were co-expressed in the lung tissue of the silicosis group. The extracted rat alveolar lavage fluid revealed F4/80+α-SMA+, CD206+α-SMA+, and F4/80+α-SMA+Col I+ cells using immunofluorescence staining. Similar results were also found in MH-S cells induced by SiO2. CONCLUSIONS The development of silicosis is accompanied by macrophage polarization and MMT.
Collapse
Affiliation(s)
- Fei Geng
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
- Department of Pathology, Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Jingrou Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xichen Ren
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ying Zhao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yuhao Cai
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yaqian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Fuyu Jin
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Tian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xuemin Gao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Wenchen Cai
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhongqiu Wei
- Department of Pathology, Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Na Mao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ying Sun
- Department of Pathology, Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Fang Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
12
|
Chen X, Qin X, Bai W, Ren J, Yu Y, Nie H, Li X, Liu Z, Huang J, Li J, Yao J, Jiang Q. Kavain Alleviates Choroidal Neovascularization Via Decreasing the Activity of the HIF-1α/VEGF-A/VEGFR2 Signaling Pathway and Inhibiting Inflammation. Adv Pharm Bull 2024; 14:469-482. [PMID: 39206403 PMCID: PMC11347728 DOI: 10.34172/apb.2024.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Neovascular age-related macular degeneration (nAMD) is a prevalent cause of blindness in the elderly. Standard treatment includes anti-vascular endothelial growth factor (anti-VEGF) drugs, such as aflibercept. However, anti-VEGF drugs may have limited efficacy and cause drug resistance. This study explores whether Kavain, an anti-inflammatory molecule from Piper methysticum, can treat choroidal neovascularization (CNV). Methods Various experiments were conducted to assess the Kavain's toxicity. The impact of Kavain on in vitro cultured endothelial cells was examined through 5-ethynyl-20-deoxyuridine (EdU) assays, transwell migration assays, and tube formation assays. The therapeutic effects of Kavain on CNV were investigated using a laser-induced CNV mice model. To elucidate the mechanism of Kavain, network pharmacology analysis, molecular docking, and western blots were performed. Results Kavain exhibited no apparent toxicity both in vitro and in vivo. Kavain significantly decreased endothelial cell viability, proliferation, migration, and tube formation ability in a dose-dependent manner compared to the hypoxia groups (P<0.05). Kavain alleviated CNV in the laser-induced CNV mouse model compared to the control groups (P<0.05). These effects were statistically significantly enhanced in the Kavain plus aflibercept groups (P<0.05). Following Kavain administration, the expression levels of various inflammatory factors were markedly reduced in retinal pigment epithelium (RPE)/choroid complexes (P<0.05). Mechanistically, Kavain decreased the activity of the hypoxia-inducible factor 1α (HIF-1α)/VEGF-A/ VEGF receptor 2 (VEGFR2) signaling pathway. Conclusion Our study is the first to demonstrate Kavain's potential as a promising treatment for nAMD, owing to its dual effects of anti-inflammation and anti-angiogenesis.
Collapse
Affiliation(s)
- Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Ophthalmology, Northern Jiangsu People’s Hospital, Yangzhou, 225001, China
| | - Xun Qin
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wen Bai
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Junsong Ren
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Yu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huiling Nie
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhangyu Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiayu Huang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
13
|
Jin X, Meng L, Qi Z, Mi L. Effects of dietary selenium deficiency and supplementation on liver in grazing sheep: insights from transcriptomic and metabolomic analysis. Front Vet Sci 2024; 11:1358975. [PMID: 38962704 PMCID: PMC11220315 DOI: 10.3389/fvets.2024.1358975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Background Mineral elements play a crucial role in supporting the life activities and physiological functions of animals. However, numerous studies have revealed that in some geographical areas and certain grazing situations, grazing livestock frequently suffers from mineral element deficiencies due to the loss of mineral elements from grassland forages, such as selenium (Se). To shed fresh light on this issue, this study aims to investigate the impact of dietary Se deficiency and supplementation on the liver of grazing sheep in these challenging conditions. Method This study involved 28 grazing Mongolian Wu Ranke sheep with an average body weight of about 32.20 ± 0.37 kg, which were divided into the Se treatment group and the control group. The Se treatment group was fed with the low-Se diet for 60 days and then continued to be fed with the high-Se diet for 41 days. The liver concentration of minerals, transcriptomic analysis, and untargeted metabolomic analysis were conducted to assess the impact of Se deficiency and supplementation on the liver of grazing sheep. Results Dietary Se deficiency and supplementation significantly reduced and elevated liver concentration of Se, respectively (p < 0.05). Gene functional enrichment analysis suggested that dietary Se deficiency might impair protein synthesis efficiency, while Se supplementation was found to enhance liver protein synthesis in grazing sheep. AGAP1, ERN1, MAL2, NFIC, and RERG were identified as critical genes through the weighted gene correlation network analysis, the quantitative real-time polymerase chain reaction, and the receiver operating characteristic curve validation that could potentially serve as biomarkers. Metabolomics analysis revealed that dietary Se deficiency significantly reduced the abundance of metabolites such as 5-hydroxytryptamine, while dietary Se supplementation significantly elevated the abundance of metabolites such as 5-hydroxytryptophan (p < 0.05). Conclusion Integrative analysis of the transcriptome and metabolome revealed that dietary Se deficiency led to reduced hepatic antioxidant and anti-inflammatory capacity, whereas Se supplementation increased the hepatic antioxidant and anti-inflammatory capacity in grazing Wu Ranke sheep. These findings provide new insights into the effects of dietary Se deficiency and supplementation on the liver of grazing sheep, potentially leading to improved overall health and well-being of grazing livestock.
Collapse
Affiliation(s)
| | | | - Zhi Qi
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lan Mi
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
14
|
Wang Y, Xue F, Cheng W, Zhao Q, Song N, Shi Z, Liu H, Li Y, Tang Q, Liu Q, Wang Y, Zhang F, Jiang X. Design and Synthesis of Novel Ultralong-Acting Peptides as EDP-EBP Interaction Inhibitors for Pulmonary Fibrosis Treatment. J Med Chem 2024; 67:6624-6637. [PMID: 38588467 DOI: 10.1021/acs.jmedchem.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.
Collapse
Affiliation(s)
- Yixiang Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
- The First School of Clinical Medicine & The First Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fanghan Xue
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Wei Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Qian Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Nazi Song
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Zihan Shi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Han Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Qinglin Tang
- Shenzhen Turier Biotech. Co. Ltd, Shenzhen 518000, China
| | - Qi Liu
- Shenzhen Turier Biotech. Co. Ltd, Shenzhen 518000, China
| | - Yiqing Wang
- The First School of Clinical Medicine & The First Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application & Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fangfang Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xianxing Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
15
|
Jin X, Meng L, Qi Z, Mi L. Transcriptomics and metabolomics analysis reveal the dietary copper deficiency and supplementation effects of liver gene expression and metabolite change in grazing sheep. BMC Genomics 2024; 25:220. [PMID: 38413895 PMCID: PMC10900733 DOI: 10.1186/s12864-024-10134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The appropriate mineral nutrients are essential for sheep growth and reproduction. However, traditional grazing sheep often experience mineral nutrient deficiencies, especially copper (Cu), due to inadequate mineral nutrients from natural pastures. RESULTS The results indicated that dietary Cu deficiency and supplementation significantly reduced and elevated liver concentration of Cu, respectively (p < 0.05). FOXO3, PLIN1, ACTN2, and GHRHR were identified as critical genes using the weighted gene co-expression network analysis (WGCNA), quantitative real-time polymerase chain reaction (qRT-PCR), and receiver operating characteristic curve (ROC) validation as potential biomarkers for evaluating Cu status in grazing sheep. Combining these critical genes with gene functional enrichment analysis, it was observed that dietary Cu deficiency may impair liver regeneration and compromise ribosomal function. Conversely, dietary Cu supplementation may enhance ribosomal function, promote lipid accumulation, and stimulate growth and metabolism in grazing sheep. Metabolomics analysis indicated that dietary Cu deficiency significantly decreased the abundance of metabolites such as cholic acid (p < 0.05). On the other hand, dietary Cu supplementation significantly increased the abundance of metabolites such as palmitic acid (p < 0.05). Integrative analysis of the transcriptome and metabolome revealed that dietary Cu deficiency may reduce liver lipid metabolism while Cu supplementation may elevate it in grazing sheep. CONCLUSIONS The Cu content in diets may have an impact on hepatic lipid metabolism in grazing sheep. These findings provide new insights into the consequences of dietary Cu deficiency and supplementation on sheep liver and can provide valuable guidance for herders to rationalize the use of mineral supplements.
Collapse
Affiliation(s)
- Xiwei Jin
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Lingbo Meng
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Zhi Qi
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Lan Mi
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China.
| |
Collapse
|
16
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
17
|
Peng M, Zhang C, Duan YY, Liu HB, Peng XY, Wei Q, Chen QY, Sang H, Kong QT. Antifungal activity of the repurposed drug disulfiram against Cryptococcus neoformans. Front Pharmacol 2024; 14:1268649. [PMID: 38273827 PMCID: PMC10808519 DOI: 10.3389/fphar.2023.1268649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Fungal infections have become clinically challenging owing to the emergence of drug resistance in invasive fungi and the rapid increase in the number of novel pathogens. The development of drug resistance further restricts the use of antifungal agents. Therefore, there is an urgent need to identify alternative treatments for Cryptococcus neoformans (C. neoformans). Disulfiram (DSF) has a good human safety profile and promising applications as an antiviral, antifungal, antiparasitic, and anticancer agent. However, the effect of DSF on Cryptococcus is yet to be thoroughly investigated. This study investigated the antifungal effects and the mechanism of action of DSF against C. neoformans to provide a new theoretical foundation for the treatment of Cryptococcal infections. In vitro studies demonstrated that DSF inhibited Cryptococcus growth at minimum inhibitory concentrations (MICs) ranging from 1.0 to 8.0 μg/mL. Combined antifungal effects have been observed for DSF with 5-fluorocytosine, amphotericin B, terbinafine, or ketoconazole. DSF exerts significant protective effects and synergistic effects combined with 5-FU for Galleria mellonella infected with C. neoformans. Mechanistic investigations showed that DSF dose-dependently inhibited melanin, urease, acetaldehyde dehydrogenase, capsule and biofilm viability of C. neoformans. Further studies indicated that DSF affected C. neoformans by interfering with multiple biological pathways, including replication, metabolism, membrane transport, and biological enzyme activity. Potentially essential targets of these pathways include acetaldehyde dehydrogenase, catalase, ATP-binding cassette transporter (ABC transporter), and iron-sulfur cluster transporter. These findings provide novel insights into the application of DSF and contribute to the understanding of its mechanisms of action in C. neoformans.
Collapse
Affiliation(s)
- Min Peng
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chen Zhang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuan-Yuan Duan
- Affiliated Hospital for Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hai-Bo Liu
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin-Yuan Peng
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Qi-Ying Chen
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hong Sang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing-Tao Kong
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Deng W, Yi C, Pan W, Liu J, Qi J, Chen J, Zhou Z, Duan Y, Ning X, Li J, Ye C, Chen Z, Xu H. Vascular Cell Adhesion Molecule-1 (VCAM-1) contributes to macular fibrosis in neovascular age-related macular degeneration through modulating macrophage functions. Immun Ageing 2023; 20:65. [PMID: 37985993 PMCID: PMC10659061 DOI: 10.1186/s12979-023-00389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Neovascular age-related macular degeneration (nAMD) is a major cause of blindness in the elderly. The disease is due to the growth of abnormal blood vessels into the macula, leading to the loss of central vision. Intravitreal injection of vascular endothelial growth factor (VEGF) inhibitors (e.g., anti-VEGF) is the standard of care for nAMD. However, nearly 50% of patients do not respond or respond poorly to the therapy. More importantly, up to 70% of nAMD patients develop macular fibrosis after 10 years of anti-VEGF therapy. The underlying mechanism of nAMD-mediated macular fibrosis is unknown although inflammation is known to play an important role in the development of abnormal macular blood vessels and its progression to fibro-vascular membrane. In this study, we measured the intraocular levels of adhesion molecule VCAM-1, ICAM-1, CD44, CD62L, and CD62P in nAMD patients with and without macular fibrosis and investigated the link between the levels of adhesion molecule and clinical features (e.g., visual improvement, retinal thickness, etc.). We further investigated the effect of VCAM-1 in macrophage function in vitro and the development of subretinal fibrosis in vivo using a two-stage laser-induced protocol. RESULTS The aqueous levels of ICAM-1, VCAM-1, CD44, and CD62L were significantly higher in nAMD patients compared to cataract controls. The aqueous level of VCAM-1 (but not other adhesion molecules) was significantly higher in patients with macular fibrosis than those without and the level correlated positively with the retinal thickness. VCAM-1 was highly expressed at the lesion site in the mouse model of subretinal fibrosis. Blocking VCAM-1 or its receptor VLA-4 significantly prevented macrophage infiltration and reduced subretinal fibrosis in vivo. VCAM-1 induced macrophage migration and upregulated the expression of Arg-1, Mmp12 and Il6 but down-regulated the expression of iNOS and Il1b in macrophages. CONCLUSIONS VCAM-1 may contribute to the development of macular fibrosis in nAMD patients by modulating macrophage functions, including migration and profibrotic polarization.
Collapse
Affiliation(s)
- Wen Deng
- Aier School of Ophthalmology, Central South University, Changsha, China
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Caijiao Yi
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Wei Pan
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Jian Liu
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Jinyan Qi
- Aier School of Ophthalmology, Central South University, Changsha, China
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Juan Chen
- Changsha Aier Eye Hospital, Changsha, China
| | | | - Yiqin Duan
- Changsha Aier Eye Hospital, Changsha, China
| | | | - Jun Li
- Changsha Aier Eye Hospital, Changsha, China
| | - Changhua Ye
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, China
| | - Zhongping Chen
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, China
| | - Heping Xu
- Aier School of Ophthalmology, Central South University, Changsha, China.
- Aier Institute of Optometry and Vision Science, Changsha, China.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
19
|
Hua Z, Yang W, Li D, Cui Y, Shen L, Rao L, Zheng Y, Zhang Q, Zeng W, Gong Y, Yuan L. Metformin regulates the LIN28B‑mediated JNK/STAT3 signaling pathway through miR‑140‑3p in subretinal fibrosis. Exp Ther Med 2023; 26:528. [PMID: 37869644 PMCID: PMC10587880 DOI: 10.3892/etm.2023.12227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
Subretinal fibrosis (SF) is an important cause of submacular neovascularization that leads to permanent vision loss, but has no effective clinical treatment. The present study examined the influence of metformin on SF, and investigated whether the mechanism involves the microRNA (miR)-140-3p/LIN28B/JNK/STAT3-mediated regulation of oxidative stress, angiogenesis and fibrosis-associated indicators. A mouse model of laser-induced SF was established. In addition, an ARPE-19 fibrotic cell model was established using TGF-β1. A Cell Counting Kit-8 assay was used to examine cell viability. Flow cytometry was used to measure reactive oxygen species levels, and western blotting was used to detect the levels of proteins associated with epithelial-mesenchymal transition (EMT), signaling and fibrosis. The levels of superoxide dismutase, malondialdehyde, glutathione-peroxidase and catalase were measured using kits. Scratch assays and Transwell assays were used to assess cell migration and invasion, respectively, and reverse transcription-quantitative PCR was used to determine the levels of miR-140-3p and LIN28B. Dual-luciferase assays were used to verify the targeting relationship between miR-140-3p and LIN28B, and coimmunoprecipitation was used to confirm the interaction between LIN28B and JNK. Masson staining and hematoxylin and eosin staining were used to examine collagenous fibers and the histopathology of eye tissue. In ARPE-19 cells induced by TGF-β1, metformin promoted miR-140-3p expression and inhibited LIN28B expression and JNK/STAT3 pathway activation, thereby inhibiting oxidative stress, EMT and fibrosis in ARPE-19 cells. The overexpression of LIN28B or treatment with the JNK/STAT3 agonist anisomycin partially reversed the inhibitory effect of metformin on oxidative stress and fibrosis in ARPE-19 cells. The dual-luciferase reporter assay and coimmunoprecipitation assay showed that miR-140-3p targeted the 3' untranslated region of LIN28B mRNA and inhibited LIN28B expression. LIN28B targeted and bound to JNK and regulated the JNK/STAT3 pathway. Therefore, it may be concluded that metformin can promote miR-140-3p expression, inhibit LIN28B and then inhibit the JNK/STAT3 pathway to alleviate SF.
Collapse
Affiliation(s)
- Zhijuan Hua
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P.R. China
| | - Wenchang Yang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Dongli Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yixin Cui
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Lu Shen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Lingna Rao
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuxiang Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiying Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wenyi Zeng
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yi Gong
- Department of Physiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ling Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
20
|
Droho S, Voigt AP, Sterling JK, Rajesh A, Chan KS, Cuda CM, Perlman H, Lavine JA. NR4A1 deletion promotes pro-angiogenic polarization of macrophages derived from classical monocytes in a mouse model of neovascular age-related macular degeneration. J Neuroinflammation 2023; 20:238. [PMID: 37858232 PMCID: PMC10588116 DOI: 10.1186/s12974-023-02928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration causes vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Cx3cr1-/- mice display alterations in non-classical monocytes and microglia with increased CNV size, suggesting that non-classical monocytes may inhibit CNV formation. NR4A1 is a transcription factor that is necessary for maturation of non-classical monocytes from classical monocytes. While Nr4a1-/- mice are deficient in non-classical monocytes, results are confounded by macrophage hyper-activation. Nr4a1se2/se2 mice lack a transcriptional activator, resulting in non-classical monocyte loss without macrophage hyper-activation. MAIN BODY We subjected Nr4a1-/- and Nr4a1se2/se2 mice to the laser-induced CNV model and performed multi-parameter flow cytometry. We found that both models lack non-classical monocytes, but only Nr4a1-/- mice displayed increased CNV area. Additionally, CD11c+ macrophages were increased in Nr4a1-/- mice. Single-cell transcriptomic analysis uncovered that CD11c+ macrophages were enriched from Nr4a1-/- mice and expressed a pro-angiogenic transcriptomic profile that was disparate from prior reports of macrophage hyper-activation. CONCLUSIONS These results suggest that non-classical monocytes are dispensable during CNV, and NR4A1 deficiency results in increased recruitment of pro-angiogenic macrophages.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrew P Voigt
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jacob K Sterling
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amrita Rajesh
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle S Chan
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
21
|
Fan Q, Li H, Wang X, Tham YC, Teo KYC, Yasuda M, Lim WK, Kwan YP, Teo JX, Chen CJ, Chen LJ, Ahn J, Davila S, Miyake M, Tan P, Park KH, Pang CP, Khor CC, Wong TY, Yanagi Y, Cheung CMG, Cheng CY. Contribution of common and rare variants to Asian neovascular age-related macular degeneration subtypes. Nat Commun 2023; 14:5574. [PMID: 37696869 PMCID: PMC10495468 DOI: 10.1038/s41467-023-41256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD), along with its clinical subtype known as polypoidal choroidal vasculopathy (PCV), are among the leading causes of vision loss in elderly Asians. In a genome-wide association study (GWAS) comprising 3,128 nAMD (1,555 PCV and 1,573 typical nAMD), and 5,493 controls of East Asian ancestry, we identify twelve loci, of which four are novel ([Formula: see text]). Substantial genetic sharing between PCV and typical nAMD is noted (rg = 0.666), whereas collagen extracellular matrix and fibrosis-related pathways are more pronounced for PCV. Whole-exome sequencing in 259 PCV patients revealed functional rare variants burden in collagen type I alpha 1 chain gene (COL1A1; [Formula: see text]) and potential enrichment of functional rare mutations at AMD-associated loci. At the GATA binding protein 5 (GATA5) locus, the most significant GWAS novel loci, the expressions of genes including laminin subunit alpha 5 (Lama5), mitochondrial ribosome associated GTPase 2 (Mtg2), and collagen type IX alpha 3 chain (Col9A3), are significantly induced during retinal angiogenesis and subretinal fibrosis in murine models. Furthermore, retinoic acid increased the expression of LAMA5 and MTG2 in vitro. Taken together, our data provide insights into the genetic basis of AMD pathogenesis in the Asian population.
Collapse
Affiliation(s)
- Qiao Fan
- Center for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
| | - Hengtong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaomeng Wang
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Center for Vision Research, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Yih-Chung Tham
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kelvin Yi Chong Teo
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Laboratory of Genome Variation Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuet Ping Kwan
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
| | - Ching-Jou Chen
- Center for Vision Research, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sonia Davila
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Patrick Tan
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chiea Chuan Khor
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Yasuo Yanagi
- Department of Ophthalmology and Microtechnology, Yokohama City University, Yokohama, Japan
| | - Chui Ming Gemmy Cheung
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ching-Yu Cheng
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Liu D, Zhang C, Zhang J, Xu GT, Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis 2023; 185:106250. [PMID: 37536385 DOI: 10.1016/j.nbd.2023.106250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-β (TGF-β)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
23
|
Forysenkova AA, Konovalova MV, Fadeeva IV, Antonova OS, Kotsareva OD, Slonskaya TK, Rau JV, Svirshchevskaya EV. Polyvinylpyrrolidone-Alginate Film Barriers for Abdominal Surgery: Anti-Adhesion Effect in Murine Model. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5532. [PMID: 37629823 PMCID: PMC10456265 DOI: 10.3390/ma16165532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Surgical operations on the peritoneum are often associated with the formation of adhesions, which can interfere with the normal functioning of the internal organs. The effectiveness of existing barrier materials is relatively low. In this work, the effectiveness of soluble alginate-polyvinylpyrrolidone (PVP-Alg) and non-soluble Ca ion cross-linked (PVP-Alg-Ca) films in preventing these adhesions was evaluated. Experiments in vivo were performed on mice via mechanical injury to the adjacent peritoneum wall and the caecum, followed by the application of PVP-Alg or PVP-Alg-Ca films to the injured area. After 7 days, samples from the peritoneal wall and caecum were analyzed using histology and quantitative polymerase chain reaction (qPCR). It was shown that the expression of genes responsible for adhesion formation in the caecum in the PVP-Alg group was comparable to that in the control group, while in the PVP-Alg-Ca group, it increased by 5-10 times. These results were consistent with the histology: in the PVP-Alg group, the adhesions did not form, while in the PVP-Alg-Ca group, the adhesions corresponded to five points on the adhesion scale. Therefore, the formation of intraperitoneal adhesions can be effectively prevented by non-crosslinked, biodegradable PVP-Alg films, whereas cross-linked, not biodegradable PVP-Alg-Ca films cause inflammation and adhesion formation.
Collapse
Affiliation(s)
- Anna A. Forysenkova
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky Av., Build. 49, 119334 Moscow, Russia; (A.A.F.); (I.V.F.); (O.S.A.)
| | - Mariya V. Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maclay Str., Build. 16/10b, 117997 Moscow, Russia; (M.V.K.); (O.D.K.)
| | - Inna V. Fadeeva
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky Av., Build. 49, 119334 Moscow, Russia; (A.A.F.); (I.V.F.); (O.S.A.)
| | - Olga S. Antonova
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky Av., Build. 49, 119334 Moscow, Russia; (A.A.F.); (I.V.F.); (O.S.A.)
| | - Olga D. Kotsareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maclay Str., Build. 16/10b, 117997 Moscow, Russia; (M.V.K.); (O.D.K.)
| | - Tatiana K. Slonskaya
- Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., Build. 8/2, 119991 Moscow, Russia;
| | - Julietta V. Rau
- Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., Build. 8/2, 119991 Moscow, Russia;
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100, 00133 Rome, Italy
| | - Elena V. Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maclay Str., Build. 16/10b, 117997 Moscow, Russia; (M.V.K.); (O.D.K.)
| |
Collapse
|
24
|
Noddeland HK, Lind M, Petersson K, Caruso F, Malmsten M, Heinz A. Protease-Responsive Hydrogel Microparticles for Intradermal Drug Delivery. Biomacromolecules 2023. [PMID: 37307231 DOI: 10.1021/acs.biomac.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protease-responsive multi-arm polyethylene glycol-based microparticles with biscysteine peptide crosslinkers (CGPGG↓LAGGC) were obtained for intradermal drug delivery through inverse suspension photopolymerization. The average size of the spherical hydrated microparticles was ∼40 μm after crosslinking, making them attractive as a skin depot and suitable for intradermal injections, as they are readily dispensable through 27G needles. The effects of exposure to matrix metalloproteinase 9 (MMP-9) on the microparticles were evaluated by scanning electron microscopy and atomic force microscopy, demonstrating partial network destruction and decrease in elastic moduli. Given the recurring course of many skin diseases, the microparticles were exposed to MMP-9 in a flare-up mimicking fashion (multiple-time exposure), showing a significant increase in release of tofacitinib citrate (TC) from the MMP-responsive microparticles, which was not seen for the non-responsive microparticles (polyethylene glycol dithiol crosslinker). It was found that the degree of multi-arm complexity of the polyethylene glycol building blocks can be utilized to tune not only the release profile of TC but also the elastic moduli of the hydrogel microparticles, with Young's moduli ranging from 14 to 140 kPa going from 4-arm to 8-arm MMP-responsive microparticles. Finally, cytotoxicity studies conducted with skin fibroblasts showed no reduction in metabolic activity after 24 h exposure to the microparticles. Overall, these findings demonstrate that protease-responsive microparticles exhibit the properties of interest for intradermal drug delivery.
Collapse
Affiliation(s)
- Heidi K Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Navneet S, Brandon C, Simpson K, Rohrer B. Exploring the Therapeutic Potential of Elastase Inhibition in Age-Related Macular Degeneration in Mouse and Human. Cells 2023; 12:cells12091308. [PMID: 37174708 PMCID: PMC10177483 DOI: 10.3390/cells12091308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Abnormal turnover of the extracellular matrix (ECM) protein elastin has been linked to AMD pathology. Elastin is a critical component of Bruch's membrane (BrM), an ECM layer that separates the retinal pigment epithelium (RPE) from the underlying choriocapillaris. Reduced integrity of BrM's elastin layer corresponds to areas of choroidal neovascularization (CNV) in wet AMD. Serum levels of elastin-derived peptides and anti-elastin antibodies are significantly elevated in AMD patients along with the prevalence of polymorphisms of genes regulating elastin turnover. Despite these results indicating significant associations between abnormal elastin turnover and AMD, very little is known about its exact role in AMD pathogenesis. Here we report on results that suggest that elastase enzymes could play a direct role in the pathogenesis of AMD. We found significantly increased elastase activity in the retinas and RPE cells of AMD mouse models, and AMD patient-iPSC-derived RPE cells. A1AT, a protease inhibitor that inactivates elastase, reduced CNV lesion sizes in mouse models. A1AT completely inhibited elastase-induced VEGFA expression and secretion, and restored RPE monolayer integrity in ARPE-19 monolayers. A1AT also mitigated RPE thickening, an early AMD phenotype, in HTRA1 overexpressing mice, HTRA1 being a serine protease with elastase activity. Finally, in an exploratory study, examining archival records from large patient data sets, we identified an association between A1AT use, age and AMD risk. Our results suggest that repurposing A1AT may have therapeutic potential in modifying the progression to AMD.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kit Simpson
- Department of Healthcare Leadership and Management, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC 29425, USA
| |
Collapse
|
26
|
Yi C, Liu J, Deng W, Luo C, Qi J, Chen M, Xu H. Old age promotes retinal fibrosis in choroidal neovascularization through circulating fibrocytes and profibrotic macrophages. J Neuroinflammation 2023; 20:45. [PMID: 36823538 PMCID: PMC9947907 DOI: 10.1186/s12974-023-02731-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Retinal fibrosis affects 40-70% of neovascular age-related macular degeneration patients. This study investigated the effect of ageing on subretinal fibrosis secondary to choroidal neovascularization and the mechanism of action. METHODS Subretinal fibrosis was induced in young (2.5-month) and aged (15-16-month) C57BL/6J mice using the two-stage laser protocol. Five and 30 days later, eyes were collected and stained for CD45 and collagen-1 and observed by confocal microscopy. Fibrocytes (CD45+collagen-1+) were detected in the bone marrow (BM), blood and fibrotic lesions by flow cytometry and confocal microscopy, respectively. BM-derived macrophages (BMDMs) were cultured from young and aged mice with or without TGF-β1 (10 ng/mL) treatment. The expression of mesenchymal marker αSMA (Acta2), fibronectin (Fn1) and collagen-1 (Col1a1) was examined by qPCR and immunocytochemistry, whereas cytokine/chemokine production was measured using the Luminex multiplex cytokine assay. BM were transplanted from 22-month (Ly5.2) aged mice into 2.5-month (Ly5.1) young mice and vice versa. Six weeks later, subretinal fibrosis was induced in recipient mice and eyes were collected for evaluation of fibrotic lesion size. RESULTS Under normal conditions, the number of circulating fibrocytes (CD45+collagen-1+) and the expression levels of Tgfb1, Col1a1, Acta2 and Fn1 in BMDMs were significantly higher in aged mice compared to young mice. Induction of subretinal fibrosis significantly increased the number of circulating fibrocytes, enhanced the expression of Col1a1, Acta2 and Fn1 and the production of soluble urokinase plasminogen activator surface receptor (suPAR) but decreased the production of CXCL10 in BMDMs. BMDMs from aged subretinal fibrosis mice produced significantly higher levels of VEGF, angiopoietin-2 and osteopontin than cells from young subretinal fibrosis mice. The subretinal fibrotic lesion in 15-16-month aged mice was 62% larger than that in 2.5-month young mice. The lesion in aged mice contained a significantly higher number of fibrocytes compared to that in young mice. The number of circulating fibrocytes positively correlated with the size of subretinal fibrotic lesion. Transplantation of BM from aged mice significantly increased subretinal fibrosis in young mice. CONCLUSIONS A retina-BM-blood-retina pathway of fibrocyte/macrophage recruitment exists during retinal injury. Ageing promotes subretinal fibrosis through higher numbers of circulating fibrocytes and profibrotic potential of BM-derived macrophages.
Collapse
Affiliation(s)
- Caijiao Yi
- Aier School of Ophthalmology, Central South University, Changsha, 410000 China
- Aier Institute of Optometry and Vision Science, Changsha, 410000 China
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
- Hunan Province Optometry Engineering and Technology Research Center, Changsha, 410009 China
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha, 410009 China
| | - Jian Liu
- Aier Institute of Optometry and Vision Science, Changsha, 410000 China
- Hunan Province Optometry Engineering and Technology Research Center, Changsha, 410009 China
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha, 410009 China
| | - Wen Deng
- Aier School of Ophthalmology, Central South University, Changsha, 410000 China
- Aier Institute of Optometry and Vision Science, Changsha, 410000 China
| | - Chang Luo
- Aier School of Ophthalmology, Central South University, Changsha, 410000 China
| | - Jinyan Qi
- Aier School of Ophthalmology, Central South University, Changsha, 410000 China
- Aier Institute of Optometry and Vision Science, Changsha, 410000 China
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL UK
| | - Heping Xu
- Aier School of Ophthalmology, Central South University, Changsha, 410000 China
- Aier Institute of Optometry and Vision Science, Changsha, 410000 China
- Hunan Province Optometry Engineering and Technology Research Center, Changsha, 410009 China
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha, 410009 China
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL UK
| |
Collapse
|
27
|
Wang W, Xiao D, Lin L, Gao X, Peng L, Chen J, Xiao K, Zhu S, Chen J, Zhang F, Xiong Y, Chen H, Liao B, Zhou L, Lin Y. Antifibrotic Effects of Tetrahedral Framework Nucleic Acids by Inhibiting Macrophage Polarization and Macrophage-Myofibroblast Transition in Bladder Remodeling. Adv Healthc Mater 2023; 12:e2203076. [PMID: 36603196 DOI: 10.1002/adhm.202203076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Bladder outlet obstruction (BOO) is a prevalent condition arising from urethral stricture, posterior urethral valves, and benign prostatic hyperplasia. Long-term obstruction can lead to bladder remodeling, which is characterized by inflammatory cell infiltration, detrusor hypertrophy, and fibrosis. Until now, there are no efficacious therapeutic options for BOO-induced remodeling. Tetrahedral framework nucleic acids (tFNAs) are a type of novel 3D DNA nanomaterials that possess excellent antifibrotic effects. Here, to determine the treatment effects of tFNAs on BOO-induced remodeling is aimed. Four single-strand DNAs are self-assembled to form tetrahedral framework DNA nanostructures, and the antifibrotic effects of tFNAs are investigated in an in vivo BOO animal model and an in vitro transforming growth factor beta1 (TGF-β1)-induced fibrosis model. The results demonstrated that tFNAs could ameliorate BOO-induced bladder fibrosis and dysfunction by inhibiting M2 macrophage polarization and the macrophage-myofibroblast transition (MMT) process. Furthermore, tFNAs regulate M2 polarization and the MMT process by deactivating the signal transducer and activator of transcription (Stat) and TGF-β1/small mothers against decapentaplegic (Smad) pathways, respectively. This is the first study to reveal that tFNAs might be a promising nanomaterial for the treatment of BOO-induced remodeling.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Lede Lin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoshuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Liao Peng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Jiawei Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Shiyu Zhu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Jixiang Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Yang Xiong
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Huiling Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|