1
|
Crawford JL, Berry AS. Examining resilience to Alzheimer's disease through the lens of monoaminergic neuromodulator systems. Trends Neurosci 2024; 47:892-903. [PMID: 39368845 PMCID: PMC11563896 DOI: 10.1016/j.tins.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
The monoaminergic nuclei are thought to be some of the earliest sites of Alzheimer's disease (AD) pathology in the brain, with tau-containing pretangles appearing in these nuclei decades before the onset of clinical impairments. It has increasingly been recognized that monoamine systems represent a critical target of investigation towards understanding the progression of AD and designing early detection and treatment approaches. This review synthesizes evidence across animal studies, human neuropathology, and state-of-the-art neuroimaging and daily life assessment methods in humans, which demonstrate robust relationships between monoamine systems and AD pathophysiology and behavior. Further, the review highlights the promise of multimethod, multisystem approaches to studying monoaminergic mechanisms of resilience to AD pathology.
Collapse
Affiliation(s)
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
2
|
Montiel-Mora JR, Méndez-Rivera M, Ramírez-Morales D, Cambronero-Heinrichs JC, Rodríguez-Rodríguez CE. Toxicity of selected pharmaceuticals and their mixtures to the aquatic indicators Daphnia magna and Aliivibrio fischeri. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1047-1061. [PMID: 39264549 DOI: 10.1007/s10646-024-02798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Despite the benefits derived from the use of pharmaceuticals, these compounds are currently considered contaminants of emerging concern because of their presence and persistence in the environment. This study aimed to determine the toxicity of 27 pharmaceuticals and the interaction effects of binary mixtures of selected compounds towards two model organisms: the microcrustacean Daphnia magna and the bacterium Aliivibrio fischeri (Microtox test). Six compounds, namely polymyxin B, polymyxin E, fluoxetine, diphenhydramine, clenbuterol and ketoprofen exhibited moderate toxicity towards D. magna. Additionally, three compounds (cefotaxime, polymyxin B, polymyxin E) also showed a moderate toxic effect on A. fischeri. The comparison of such results with model estimations showed inaccuracy in the predicted data, highlighting the relevance of experimental ecotoxicological assays. The assayed mixtures contained four selected drugs of high-hazard according to their reported concentrations in wastewater and surface water (diphenhydramine, trimethoprim, ketoprofen, and fluoxetine); data revealed interactions only in the fluoxetine-containing mixtures for D. magna, while all mixtures showed interactions (mostly synergistic) for Microtox. Chronic effects on the reproduction of D. magna were observed after exposure to fluoxetine and diphenhydramine, although higher sensitivity was determined for the latter, while the mixture of these compounds (which showed acute synergy in both models) also affected the reproduction patterns. Nonetheless, all the effects described at the acute or chronic level (for individual compounds or mixtures) were determined at concentrations higher than commonly reported at environmental levels. This work provides valuable ecotoxicological information for the risk assessment of pharmaceuticals and their mixtures in the environment.
Collapse
Affiliation(s)
- José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro, PD, 35020, Italy
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica.
| |
Collapse
|
3
|
Yang J, Yuan M, Zhang W. The major biogenic amine metabolites in mood disorders. Front Psychiatry 2024; 15:1460631. [PMID: 39381610 PMCID: PMC11458445 DOI: 10.3389/fpsyt.2024.1460631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, have a profound impact on more than 300 million people worldwide. It has been demonstrated mood disorders were closely associated with deviations in biogenic amine metabolites, which are involved in numerous critical physiological processes. The peripheral and central alteration of biogenic amine metabolites in patients may be one of the potential pathogeneses of mood disorders. This review provides a concise overview of the latest research on biogenic amine metabolites in mood disorders, such as histamine, kynurenine, and creatine. Further studies need larger sample sizes and multi-center collaboration. Investigating the changes of biogenic amine metabolites in mood disorders can provide biological foundation for diagnosis, offer guidance for more potent treatments, and aid in elucidating the biological mechanisms underlying mood disorders.
Collapse
Affiliation(s)
- Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Xue Z, Patel K, Bhatia P, Miller CL, Shergill RS, Patel BA. 3D-Printed Microelectrodes for Biological Measurement. Anal Chem 2024; 96:12701-12709. [PMID: 39039062 DOI: 10.1021/acs.analchem.4c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Microelectrodes are useful electrochemical sensors that can provide spatial biological monitoring. Carbon fiber has been by far the most widely used microelectrode; however, a vast number of different materials and modification strategies have been developed to broaden the scope of microelectrodes. Carbon composite electrodes provide a simple approach to making microelectrodes with a wide range of materials, but manufacturing strategies are complex. 3D printing can provide the ability to make microelectrodes with high precision. We used fused filament fabrication to print single strands of carbon black/polylactic acid (CB/PLA) and multiwall carbon nanotube/polylactic acid (MWCNT/PLA), which were then made into microelectrodes. Microelectrodes ranged from 70 μm in diameter to 400 μm in diameter and were assessed using standard redox probes. MWCNT/PLA electrodes exhibited greater sensitivity, a lower limit of detection, and stability for the measurement of serotonin (5-HT). Both CB/PLA and MWCNT/PLA microelectrodes were able to monitor 5-HT overflow from the ex vivo ileum tissue. MWCNT/PLA microelectrodes were utilized to show differences in 5-HT overflow from ex vivo ileum and colon following exposure to odorants present in spices. These findings highlight that any conductive thermoplastic material can be fabricated into a microelectrode. This simple strategy can utilize a wide range of materials to make 3D-printed microelectrodes for a diverse range of applications.
Collapse
Affiliation(s)
- Zehao Xue
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Kanisha Patel
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Paankhuri Bhatia
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Chloe L Miller
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Ricoveer Singh Shergill
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
- Centre for Lifelong Health, University of Brighton, Brighton, East Sussex BN2 4GJ, U.K
| |
Collapse
|
5
|
Zhang BB, Ling XY, Shen QY, Zhang YX, Li QX, Xie ST, Li HZ, Zhang QP, Yung WH, Wang JJ, Ke Y, Zhang XY, Zhu JN. Suppression of excitatory synaptic transmission in the centrolateral amygdala via presynaptic histamine H3 heteroreceptors. J Physiol 2024. [PMID: 38953534 DOI: 10.1113/jp286392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons. The histamine-induced effect is mediated by H3 receptors expressed on VGLUT1-/VGLUT2-positive presynaptic terminals in CeL. Furthermore, optoactivation of histaminergic afferent terminals from the hypothalamic tuberomammillary nucleus (TMN) also significantly suppresses glutamatergic transmissions in CeL via H3 receptors. Histamine neither modulates inhibitory synaptic transmission by presynaptic H3 receptors nor directly excites CeL neurons by postsynaptic H1, H2 or H4 receptors. These results suggest that histaminergic afferent inputs and presynaptic H3 heteroreceptors may hold a critical position in balancing excitatory and inhibitory synaptic transmissions in CeL by selective modulation of glutamatergic drive, which may not only account for the pathophysiology of psychiatric disorders but also provide potential psychotherapeutic targets. KEY POINTS: Histamine selectively suppresses the excitatory, rather than inhibitory, synaptic transmissions on both PKC-δ- and SOM-positive neurons in the centrolateral amygdala (CeL). H3 receptors expressed on VGLUT1- or VGLUT2-positive afferent terminals mediate the suppression of histamine on glutamatergic synaptic transmission in CeL. Optogenetic activation of hypothalamic tuberomammillary nucleus (TMN)-CeL histaminergic projections inhibits glutamatergic transmission in CeL via H3 receptors.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Yu Ling
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing-Yi Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xiao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Mena S, Cruikshank A, Best J, Nijhout HF, Reed MC, Hashemi P. Modulation of serotonin transporter expression by escitalopram under inflammation. Commun Biol 2024; 7:710. [PMID: 38851804 PMCID: PMC11162477 DOI: 10.1038/s42003-024-06240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/24/2024] [Indexed: 06/10/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used for depression based on the monoamine deficiency hypothesis. However, the clinical use of these agents is controversial, in part because of their variable clinical efficacy and in part because of their delayed onset of action. Because of the complexities involved in replicating human disease and clinical dosing in animal models, the scientific community has not reached a consensus on the reasons for these phenomena. In this work, we create a theoretical hippocampal model incorporating escitalopram's pharmacokinetics, pharmacodynamics (competitive and non-competitive inhibition, and serotonin transporter (SERT) internalization), inflammation, and receptor dynamics. With this model, we simulate chronic oral escitalopram in mice showing that days to weeks are needed for serotonin levels to reach steady-state. We show escitalopram's chemical efficacy is diminished under inflammation. Our model thus offers mechanisms for how chronic escitalopram affects brain serotonin, emphasizing the importance of optimized dose and time for future antidepressant discoveries.
Collapse
Affiliation(s)
- Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - H F Nijhout
- Department of Biology, Duke University, Durham, NC, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Parastoo Hashemi
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Bove M, Morgese MG, Dimonte S, Sikora V, Agosti LP, Palmieri MA, Tucci P, Schiavone S, Trabace L. Increased stress vulnerability in the offspring of socially isolated rats: Behavioural, neurochemical and redox dysfunctions. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110945. [PMID: 38242425 DOI: 10.1016/j.pnpbp.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Stressful events during pregnancy impact on the progeny neurodevelopment. However, little is known about preconceptional stress effects. The rat social isolation represents an animal model of chronic stress inducing a variety of dysfunctions. Moreover, social deprivation during adolescence interferes with key neurodevelopmental processes. Here, we investigated the development of behavioural, neurochemical and redox alterations in the male offspring of socially isolated female rats before pregnancy, reared in group (GRP) or in social isolation (ISO) from weaning until young-adulthood. To this aim, females were reared in GRP or in ISO conditions, from PND21 to PND70, when they were mated. Their male offspring was housed in GRP or ISO conditions through adolescence and until PND70, when passive avoidance-PA, novel object recognition-NOR and open field-OF tests were performed. Levels of noradrenaline (NA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), glutamate (GLU) and GABA were assessed in the prefrontal cortex (PFC). Moreover, cortical ROS levels were quantified, as well as NF-kB and the NADPH oxidase NOX2 expression, redox status (expressed as GSH:GSSG ratio) and SOD1 amount. A significant decrease of the latency time in the PA was observed in the offspring of ISO females. In the NOR test, while a significant increase in the exploratory activity towards the novel object was observed in the offspring of GRP females, no significant differences were found in the offspring of ISO females. No significant differences were found in the OF test among experimental groups. Theoffspring of ISO females showed increased NA and 5-HIAA levels, whereas in the offspring persistently housed in isolation condition from weaninguntil adulthood, we detected reduced 5-HT levels and ehnanced 5-HIAA amount. No significant changes in GLU concentrations were detected, while decreased GABA content was observed in the offspring of ISO females exposed to social isolation. Increased ROS levels as well as reduced NF-κB, NOX2 expression were detected in the offspring of ISO females. This was accompanied by reduced redox status and enhanced SOD1 levels. In conclusion, our results suggest that female exposure to chronic social stress before pregnancy might have a profound influence on the offspring neurodevelopment in terms of cognitive, neurochemical and redox-related alterations, identifying this specific time window for possible preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| |
Collapse
|
8
|
Tsimpolis A, Kalafatakis K, Charalampopoulos I. Recent advances in the crosstalk between the brain-derived neurotrophic factor and glucocorticoids. Front Endocrinol (Lausanne) 2024; 15:1362573. [PMID: 38645426 PMCID: PMC11027069 DOI: 10.3389/fendo.2024.1362573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a key neurotrophin within the brain, by selectively activating the TrkB receptor, exerts multimodal effects on neurodevelopment, synaptic plasticity, cellular integrity and neural network dynamics. In parallel, glucocorticoids (GCs), vital steroid hormones, which are secreted by adrenal glands and rapidly diffused across the mammalian body (including the brain), activate two different groups of intracellular receptors, the mineralocorticoid and the glucocorticoid receptors, modulating a wide range of genomic, epigenomic and postgenomic events, also expressed in the neural tissue and implicated in neurodevelopment, synaptic plasticity, cellular homeostasis, cognitive and emotional processing. Recent research evidences indicate that these two major regulatory systems interact at various levels: they share common intracellular downstream pathways, GCs differentially regulate BDNF expression, under certain conditions BDNF antagonises the GC-induced effects on long-term potentiation, neuritic outgrowth and cellular death, while GCs regulate the intraneuronal transportation and the lysosomal degradation of BDNF. Currently, the BDNF-GC crosstalk features have been mainly studied in neurons, although initial findings show that this crosstalk could be equally important for other brain cell types, such as astrocytes. Elucidating the precise neurobiological significance of BDNF-GC interactions in a tempospatial manner, is crucial for understanding the subtleties of brain function and dysfunction, with implications for neurodegenerative and neuroinflammatory diseases, mood disorders and cognitive enhancement strategies.
Collapse
Affiliation(s)
- Alexandros Tsimpolis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantinos Kalafatakis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Faculty of Medicine and Dentistry (Malta Campus), Queen Mary University of London, Victoria, Malta
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
9
|
Dunham KE, Venton BJ. Electrochemical and biosensor techniques to monitor neurotransmitter changes with depression. Anal Bioanal Chem 2024; 416:2301-2318. [PMID: 38289354 PMCID: PMC10950978 DOI: 10.1007/s00216-024-05136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Depression is a common mental illness. However, its current treatments, like selective serotonin reuptake inhibitors (SSRIs) and micro-dosing ketamine, are extremely variable between patients and not well understood. Three neurotransmitters: serotonin, histamine, and glutamate, have been proposed to be key mediators of depression. This review focuses on analytical methods to quantify these neurotransmitters to better understand neurological mechanisms of depression and how they are altered during treatment. To quantitatively measure serotonin and histamine, electrochemical techniques such as chronoamperometry and fast-scan cyclic voltammetry (FSCV) have been improved to study how specific molecular targets, like transporters and receptors, change with antidepressants and inflammation. Specifically, these studies show that different SSRIs have unique effects on serotonin reuptake and release. Histamine is normally elevated during stress, and a new inflammation hypothesis of depression links histamine and cytokine release. Electrochemical measurements revealed that stress increases histamine, decreases serotonin, and leads to changes in cytokines, like interleukin-6. Biosensors can also measure non-electroactive neurotransmitters, including glutamate and cytokines. In particular, new genetic sensors have shown how glutamate changes with chronic stress, as well as with ketamine treatment. These techniques have been used to characterize how ketamine changes glutamate and serotonin, and to understand how it is different from SSRIs. This review briefly outlines how these electrochemical techniques work, but primarily highlights how they have been used to understand the mechanisms of depression. Future studies should explore multiplexing techniques and personalized medicine using biomarkers in order to investigate multi-analyte changes to antidepressants.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
10
|
Buchanan AM, Mena S, Choukari I, Vasa A, Crawford JN, Fadel J, Maxwell N, Reagan L, Cruikshank A, Best J, Nijhout HF, Reed M, Hashemi P. Serotonin as a biomarker of toxin-induced Parkinsonism. Mol Med 2024; 30:33. [PMID: 38429661 PMCID: PMC10908133 DOI: 10.1186/s10020-023-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/18/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Loss of dopaminergic neurons underlies the motor symptoms of Parkinson's disease (PD). However stereotypical PD symptoms only manifest after approximately 80% of dopamine neurons have died making dopamine-related motor phenotypes unreliable markers of the earlier stages of the disease. There are other non-motor symptoms, such as depression, that may present decades before motor symptoms. METHODS Because serotonin is implicated in depression, here we use niche, fast electrochemistry paired with mathematical modelling and machine learning to, for the first time, robustly evaluate serotonin neurochemistry in vivo in real time in a toxicological model of Parkinsonism, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). RESULTS Mice treated with acute MPTP had lower concentrations of in vivo, evoked and ambient serotonin in the hippocampus, consistent with the clinical comorbidity of depression with PD. These mice did not chemically respond to SSRI, as strongly as control animals did, following the clinical literature showing that antidepressant success during PD is highly variable. Following L-DOPA administration, using a novel machine learning analysis tool, we observed a dynamic shift from evoked serotonin release in the hippocampus to dopamine release. We hypothesize that this finding shows, in real time, that serotonergic neurons uptake L-DOPA and produce dopamine at the expense of serotonin, supporting the significant clinical correlation between L-DOPA and depression. Finally, we found that this post L-DOPA dopamine release was less regulated, staying in the synapse for longer. This finding is perhaps due to lack of autoreceptor control and may provide a ground from which to study L-DOPA induced dyskinesia. CONCLUSIONS These results validate key prior hypotheses about the roles of serotonin during PD and open an avenue to study to potentially improve therapeutics for levodopa-induced dyskinesia and depression.
Collapse
Affiliation(s)
- Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Iman Choukari
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Aditya Vasa
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jesseca N Crawford
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Jim Fadel
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Nick Maxwell
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Lawrence Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
- Columbia VA Health Care System, Columbia, SC, 29208, USA
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
11
|
Malkani R, Paramasivam S, Wolfensohn S. A Multidimensional Evaluation of the Factors in the Animal Welfare Assessment Grid (AWAG) That Are Associated with, and Predictive of, Behaviour Disorders in Dogs. Animals (Basel) 2024; 14:528. [PMID: 38396496 PMCID: PMC10886356 DOI: 10.3390/ani14040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Behavioural disorders in dogs are common and have severe welfare consequences for dogs. This study aimed to assess the factors that are significant and predictive of behaviour problems in dogs using the animal welfare assessment grid (AWAG) to further understand what factors influence their welfare. 177 AWAG assessments were undertaken across 129 dogs that clinicians deemed to have a behavioural disorder. Wilcoxon rank-sum tests were used to assess the difference in scores between dogs with behaviour disorders and a cohort of healthy dogs (n = 117). This analysis showed that all physical factors besides body condition, all procedural factors besides procedure pain, and all psychological, and environmental factors were significantly different between healthy dogs and dogs with behaviour disorders. Spearman rank correlation coefficient (RS) revealed several significant strong positive correlations including the procedural impact on the dog's daily routine with aggression towards unfamiliar people and procedure pain, as well as other correlations between the dog's behaviour during assessment with the frequency at which they encounter fears and anxieties, clinical assessment and procedure pain, and reaction to stressors and social interactions. These findings highlight the interdependent nature of the various influences of welfare. Logistic regression analysis identified that aggression towards the caregiver, fears and anxieties frequency, and choice, control, and predictability were all significant predictors of behaviour disorders. The findings have important implications for veterinary, behaviour, and animal welfare professionals as any changes across these factors may indicate poor welfare linked to emotional disorders in dogs.
Collapse
Affiliation(s)
- Rachel Malkani
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.P.); (S.W.)
| | | | | |
Collapse
|
12
|
Witt CE, Mena S, Holmes J, Hersey M, Buchanan AM, Parke B, Saylor R, Honan LE, Berger SN, Lumbreras S, Nijhout FH, Reed MC, Best J, Fadel J, Schloss P, Lau T, Hashemi P. Serotonin is a common thread linking different classes of antidepressants. Cell Chem Biol 2023; 30:1557-1570.e6. [PMID: 37992715 DOI: 10.1016/j.chembiol.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/24/2023]
Abstract
Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of escitalopram, fluoxetine, reboxetine, and ketamine. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking, and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis, and the monoamine hypothesis).
Collapse
Affiliation(s)
- Colby E Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, UK
| | - Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, UK
| | - Rachel Saylor
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lauren E Honan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - James Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany; Department of Neuroanatomy, Mannheim Centre for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
13
|
Traina G, Tuszynski JA. The Neurotransmission Basis of Post-Traumatic Stress Disorders by the Fear Conditioning Paradigm. Int J Mol Sci 2023; 24:16327. [PMID: 38003517 PMCID: PMC10671801 DOI: 10.3390/ijms242216327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Fear conditioning constitutes the best and most reproducible paradigm to study the neurobiological mechanisms underlying emotions. On the other hand, studies on the synaptic plasticity phenomena underlying fear conditioning present neural circuits enforcing this learning pattern related to post-traumatic stress disorder (PTSD). Notably, in both humans and the rodent model, fear conditioning and context rely on dependent neurocircuitry in the amygdala and prefrontal cortex, cingulate gyrus, and hippocampus. In this review, an overview of the role that classical neurotransmitters play in the contextual conditioning model of fear, and therefore in PTSD, was reported.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Via Romana, 06126 Perugia, Italy
| | - Jack A. Tuszynski
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy;
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| |
Collapse
|
14
|
Coles TA, Briggs AM, Hambly MG, Céspedes N, Fellows AM, Kaylor HL, Adams AD, Van Susteren G, Bentil RE, Robert MA, Riffell JA, Lewis EE, Luckhart S. Ingested histamine and serotonin interact to alter Anopheles stephensi feeding and flight behavior and infection with Plasmodium parasites. Front Physiol 2023; 14:1247316. [PMID: 37555020 PMCID: PMC10405175 DOI: 10.3389/fphys.2023.1247316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Blood levels of histamine and serotonin (5-HT) are altered in human malaria, and, at these levels, we have shown they have broad, independent effects on Anopheles stephensi following ingestion by this invasive mosquito. Given that histamine and 5-HT are ingested together under natural conditions and that histaminergic and serotonergic signaling are networked in other organisms, we examined effects of combinations of these biogenic amines provisioned to A. stephensi at healthy human levels (high 5-HT, low histamine) or levels associated with severe malaria (low 5-HT, high histamine). Treatments were delivered in water (priming) before feeding A. stephensi on Plasmodium yoelii-infected mice or via artificial blood meal. Relative to effects of histamine and 5-HT alone, effects of biogenic amine combinations were complex. Biogenic amine treatments had the greatest impact on the first oviposition cycle, with high histamine moderating low 5-HT effects in combination. In contrast, clutch sizes were similar across combination and individual treatments. While high histamine alone increased uninfected A. stephensi weekly lifetime blood feeding, neither combination altered this tendency relative to controls. The tendency to re-feed 2 weeks after the first blood meal was altered by combination treatments, but this depended on mode of delivery. For blood delivery, malaria-associated treatments yielded higher percentages of fed females relative to healthy-associated treatments, but the converse was true for priming. Female mosquitoes treated with the malaria-associated combination exhibited enhanced flight behavior and object inspection relative to controls and healthy combination treatment. Mosquitoes primed with the malaria-associated combination exhibited higher mean oocysts and sporozoite infection prevalence relative to the healthy combination, with high histamine having a dominant effect on these patterns. Compared with uninfected A. stephensi, the tendency of infected mosquitoes to take a second blood meal revealed an interaction of biogenic amines with infection. We used a mathematical model to project the impacts of different levels of biogenic amines and associated changes on outbreaks in human populations. While not all outbreak parameters were impacted the same, the sum of effects suggests that histamine and 5-HT alter the likelihood of transmission by mosquitoes that feed on hosts with symptomatic malaria versus a healthy host.
Collapse
Affiliation(s)
- Taylor A. Coles
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Anna M. Briggs
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Nora Céspedes
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Abigail M. Fellows
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Alexandria D. Adams
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Grace Van Susteren
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Ronald E. Bentil
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Michael A. Robert
- Department of Mathematics, Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens (CeZAP), Virginia Tech, Blacksburg, VA, United States
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
15
|
Wallace T, Myers B. Prefrontal representation of affective stimuli: importance of stress, sex, and context. Cereb Cortex 2023; 33:8232-8246. [PMID: 37032618 PMCID: PMC10321111 DOI: 10.1093/cercor/bhad110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Stress-related disorders such as depression and anxiety exhibit sex differences in prevalence and negatively impact both mental and physical health. Affective illness is also frequently accompanied by changes in ventromedial prefrontal cortical (vmPFC) function. However, the neurobiology that underlies sex-specific cortical processing of affective stimuli is poorly understood. Although rodent studies have investigated the prefrontal impact of chronic stress, postmortem studies have focused largely on males and yielded mixed results. Therefore, genetically defined population recordings in behaving animals of both sexes were used to test the hypothesis that chronic variable stress (CVS) impairs the neural processing of affective stimuli in the rodent infralimbic region. Here, we targeted expression of a calcium indicator, GCaMP6s, to infralimbic pyramidal cells. In males, CVS reduced infralimbic responses to social interaction and restraint stress but increased responses to novel objects and food reward. In contrast, females did not have CVS-induced changes in infralimbic activity, which was partially dependent on the ovarian status. These results indicate that both male and female vmPFC cells encode social, stress, and reward stimuli. However, chronic stress effects are sex-dependent and behavior-specific. Ultimately, these findings extend the understanding of chronic stress-induced prefrontal dysfunction and indicate that sex is a critical factor for cortical processing of affective stimuli.
Collapse
Affiliation(s)
- Tyler Wallace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Rastoldo G, Tighilet B. Thyroid Axis and Vestibular Physiopathology: From Animal Model to Pathology. Int J Mol Sci 2023; 24:9826. [PMID: 37372973 DOI: 10.3390/ijms24129826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
A recent work of our group has shown the significant effects of thyroxine treatment on the restoration of postural balance function in a rodent model of acute peripheral vestibulopathy. Based on these findings, we attempt to shed light in this review on the interaction between the hypothalamic-pituitary-thyroid axis and the vestibular system in normal and pathological situations. Pubmed database and relevant websites were searched from inception through to 4 February 2023. All studies relevant to each subsection of this review have been included. After describing the role of thyroid hormones in the development of the inner ear, we investigated the possible link between the thyroid axis and the vestibular system in normal and pathological conditions. The mechanisms and cellular sites of action of thyroid hormones on animal models of vestibulopathy are postulated and therapeutic options are proposed. In view of their pleiotropic action, thyroid hormones represent a target of choice to promote vestibular compensation at different levels. However, very few studies have investigated the relationship between thyroid hormones and the vestibular system. It seems then important to more extensively investigate the link between the endocrine system and the vestibule in order to better understand the vestibular physiopathology and to find new therapeutic leads.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
17
|
Bowles KR, Pugh DA, Pedicone C, Oja L, Weitzman SA, Liu Y, Chen JL, Disney MD, Goate AM. Development of MAPT S305 mutation models exhibiting elevated 4R tau expression, resulting in altered neuronal and astrocytic function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543224. [PMID: 37333200 PMCID: PMC10274740 DOI: 10.1101/2023.06.02.543224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Due to the importance of 4R tau in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in iPSC-derived neurons, which express very low levels of 4R tau. To address this problem we have developed a panel of isogenic iPSC lines carrying the MAPT splice-site mutations S305S, S305I or S305N, derived from four different donors. All three mutations significantly increased the proportion of 4R tau expression in iPSC-neurons and astrocytes, with up to 80% 4R transcripts in S305N neurons from as early as 4 weeks of differentiation. Transcriptomic and functional analyses of S305 mutant neurons revealed shared disruption in glutamate signaling and synaptic maturity, but divergent effects on mitochondrial bioenergetics. In iPSC-astrocytes, S305 mutations induced lysosomal disruption and inflammation and exacerbated internalization of exogenous tau that may be a precursor to the glial pathologies observed in many tauopathies. In conclusion, we present a novel panel of human iPSC lines that express unprecedented levels of 4R tau in neurons and astrocytes. These lines recapitulate previously characterized tauopathy-relevant phenotypes, but also highlight functional differences between the wild type 4R and mutant 4R proteins. We also highlight the functional importance of MAPT expression in astrocytes. These lines will be highly beneficial to tauopathy researchers enabling a more complete understanding of the pathogenic mechanisms underlying 4R tauopathies across different cell types.
Collapse
Affiliation(s)
- KR Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - DA Pugh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - C Pedicone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - L Oja
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - SA Weitzman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Y Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - JL Chen
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, United States of America
| | - MD Disney
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, United States of America
| | - AM Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
18
|
Judd JM, Jasbi P, Winslow W, Serrano GE, Beach TG, Klein-Seetharaman J, Velazquez R. Low circulating choline, a modifiable dietary factor, is associated with the pathological progression and metabolome dysfunction in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539713. [PMID: 37214864 PMCID: PMC10197582 DOI: 10.1101/2023.05.06.539713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most Americans (∼90%) are deficient in dietary choline, an essential nutrient. Associations between circulating choline and pathological progression in Alzheimer's disease (AD) remain unknown. Here, we examined these associations and performed a metabolomic analysis in blood serum from severe AD, moderate AD, and healthy controls. Additionally, to gain mechanistic insight, we assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice. In humans, we found AD-associated reductions in choline, it's derivative acetylcholine (ACh), and elevated pro-inflammatory cytokine TNFα. Choline and ACh were negatively correlated with Plaque density, Braak stage, and TNFα, but positively correlated with MMSE and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were associated with choline levels. In mice, Ch-paralleled AD severe, but Ch+ was protective. In conclusion, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of dietary choline consumption to offset disease.
Collapse
|
19
|
Baumer Y, Pita M, Baez A, Ortiz-Whittingham L, Cintron M, Rose R, Gray V, Osei Baah F, Powell-Wiley T. By what molecular mechanisms do social determinants impact cardiometabolic risk? Clin Sci (Lond) 2023; 137:469-494. [PMID: 36960908 PMCID: PMC10039705 DOI: 10.1042/cs20220304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
While it is well known from numerous epidemiologic investigations that social determinants (socioeconomic, environmental, and psychosocial factors exposed to over the life-course) can dramatically impact cardiovascular health, the molecular mechanisms by which social determinants lead to poor cardiometabolic outcomes are not well understood. This review comprehensively summarizes a variety of current topics surrounding the biological effects of adverse social determinants (i.e., the biology of adversity), linking translational and laboratory studies with epidemiologic findings. With a strong focus on the biological effects of chronic stress, we highlight an array of studies on molecular and immunological signaling in the context of social determinants of health (SDoH). The main topics covered include biomarkers of sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation, and the role of inflammation in the biology of adversity focusing on glucocorticoid resistance and key inflammatory cytokines linked to psychosocial and environmental stressors (PSES). We then further discuss the effect of SDoH on immune cell distribution and characterization by subset, receptor expression, and function. Lastly, we describe epigenetic regulation of the chronic stress response and effects of SDoH on telomere length and aging. Ultimately, we highlight critical knowledge gaps for future research as we strive to develop more targeted interventions that account for SDoH to improve cardiometabolic health for at-risk, vulnerable populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rebecca R. Rose
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Veronica C. Gray
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
20
|
Witt CE, Mena S, Holmes J, Hersey M, Buchanan AM, Parke B, Saylor R, Honan LE, Berger SN, Lumbreras S, Nijhout FH, Reed MC, Best J, Fadel J, Schloss P, Lau T, Hashemi P. Serotonin is a Common Thread Linking Different Classes of Antidepressants. RESEARCH SQUARE 2023:rs.3.rs-2741902. [PMID: 37034599 PMCID: PMC10081366 DOI: 10.21203/rs.3.rs-2741902/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (synaptic plasticity and neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of antidepressants. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis and the monoamine hypothesis).
Collapse
Affiliation(s)
- Colby E. Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Rachel Saylor
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lauren E. Honan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shane N. Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - James Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
- Department of Neuroanatomy, Mannheim Centre for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|