1
|
Tan J, Feng L, Ragavan ND, Chai Theam O, Li X. The promotive effect of Caspase-11 overexpression in a rat model of chronic kidney disease and the therapeutic efficacy of exosome-delivered siRNA in inhibiting Caspase-11. Biochem Biophys Res Commun 2024; 741:151013. [PMID: 39591906 DOI: 10.1016/j.bbrc.2024.151013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
This study investigates the role of Caspase-11 in Chronic Kidney Disease (CKD) and examines the therapeutic potential of inhibiting Caspase-11 using exosome-mediated siRNA. We established a CKD rat model and analyzed the expression of Caspase-11 through immunohistochemistry. The study involved overexpressing Caspase-11 using an adeno-associated virus (AAV) and constructing exosomes loaded with siRNA targeting Caspase-11 (exo-si-Caspase-11). Renal tissue damage and fibrosis were assessed using H&E staining, Masson's trichrome, TUNEL assay, and Sirius Red staining. Additionally, urinary protein and blood urea nitrogen (BUN) levels were measured, alongside analyses of serum calcium and phosphorus levels. H&E staining was performed to evaluate the effects of exo-si-Caspase-11 on damage to the heart, liver, spleen, and lungs. The results showed that the CKD model group experienced significant weight loss, increased blood pressure, and elevated Caspase-11 expression. AAV-mediated Caspase-11 overexpression led to substantial renal fibrosis, increased apoptosis, and elevated urinary protein and BUN levels. Additionally, the group with Caspase-11 overexpression exhibited elevated serum calcium and phosphorus levels. Conversely, treatment with exo-si-Caspase-11 reduced these pathological changes in renal tissue without causing damage to other major organs. These findings suggest that exosome-mediated siRNA delivery targeting Caspase-11 is an effective therapeutic strategy for CKD.
Collapse
MESH Headings
- Animals
- Renal Insufficiency, Chronic/therapy
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Exosomes/metabolism
- Exosomes/genetics
- Disease Models, Animal
- Male
- Rats
- Rats, Sprague-Dawley
- Caspases, Initiator/genetics
- Caspases, Initiator/metabolism
- Kidney/pathology
- Kidney/metabolism
- Apoptosis/genetics
- Fibrosis
- Dependovirus/genetics
- Caspase 12
Collapse
Affiliation(s)
- Junhua Tan
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China; Faculty of Medicine, MAHSA University, Jalan SP 2, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia; Key Laboratory of Medical Research Basic Guaranteefor Immune-Related Diseases Research of Guangxi (Cultivation), Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Liyin Feng
- Graduate School of Youjiang Medical College for Nationalities, Baise, Guangxi, 533000, China
| | - Nanthiney Devi Ragavan
- School of Bioscience, Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Jalan SP2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Ooi Chai Theam
- Departmental of Preclinical Science,Faculty of Dentistry, MAHSA University Jalan SP 2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia.
| | - Xuebin Li
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China; Department of Neurology, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| |
Collapse
|
2
|
Yang Q, Su S, Luo N, Cao G. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail 2024; 46:2336128. [PMID: 38575340 PMCID: PMC10997364 DOI: 10.1080/0886022x.2024.2336128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.
Collapse
Affiliation(s)
- Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songya Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Ogata A, Ogasawara K, Nishihara M, Takamori A, Furukawa T, Ide T, Ito H, Yoshioka F, Nakahara Y, Masuoka J, Koike H, Irie H, Abe T. Subarachnoid iodine leakage on dual-energy computed tomography after mechanical thrombectomy is associated with malignant brain edema. J Neurointerv Surg 2024:jnis-2023-021413. [PMID: 38479800 DOI: 10.1136/jnis-2023-021413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Dual-energy computed tomography (DE-CT) can differentiate between hemorrhage and iodine contrast medium leakage following mechanical thrombectomy (MT) for acute ischemic stroke (AIS). We determined whether subarachnoid hemorrhage (SAH) and subarachnoid iodine leakage (SAIL) on DE-CT following MT were associated with malignant brain edema (MBE). METHODS We analyzed the medical records of 81 consecutive anterior circulation AIS patients who underwent MT. SAH or SAIL was diagnosed via DE-CT performed immediately after MT. We compared the procedural data, infarct volumes, MBE, and modified Rankin scale 0-2 at 90 days between patients with and without SAH and between patients with and without SAIL. Furthermore, we evaluated the association between patient characteristics and MBE. RESULTS A total of 20 (25%) patients had SAH and 51 (63%) had SAIL. No difference in diffusion-weighted imaging (DWI)-infarct volume before MT was observed between patients with and without SAH or patients with and without SAIL. However, patients with SAIL had larger DWI-infarct volumes 1 day following MT than patients without SAIL (95 mL vs 29 mL; p=0.003). MBE occurred in 12 of 81 patients (15%); more patients with SAIL had MBE than patients without SAIL (22% vs 3%; p=0.027). Severe SAIL was significantly associated with MBE (OR, 12.5; 95% CI, 1.20-131; p=0.006), whereas SAH was not associated with MBE. CONCLUSION This study demonstrated that SAIL on DE-CT immediately after MT was associated with infarct volume expansion and MBE.
Collapse
Affiliation(s)
- Atsushi Ogata
- Department of Neurosurgery, Saga University Faculty of Medicine, Saga, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Masashi Nishihara
- Department of Radiology, Saga University Faculty of Medicine, Saga, Japan
| | - Ayako Takamori
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Takashi Furukawa
- Department of Neurosurgery, Saga University Faculty of Medicine, Saga, Japan
| | - Toshihiro Ide
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Hiroshi Ito
- Department of Neurosurgery, Saga University Faculty of Medicine, Saga, Japan
| | - Fumitaka Yoshioka
- Department of Neurosurgery, Saga University Faculty of Medicine, Saga, Japan
| | - Yukiko Nakahara
- Department of Neurosurgery, Saga University Faculty of Medicine, Saga, Japan
| | - Jun Masuoka
- Department of Neurosurgery, Saga University Faculty of Medicine, Saga, Japan
| | - Haruki Koike
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Hiroyuki Irie
- Department of Radiology, Saga University Faculty of Medicine, Saga, Japan
| | - Tatsuya Abe
- Department of Neurosurgery, Saga University Faculty of Medicine, Saga, Japan
| |
Collapse
|
4
|
Liu X, Pan Z, Li Y, Huang X, Zhang X, Xiong F. Logistic regression model for predicting risk factors and contribution of cerebral microbleeds using renal function indicators. Front Neurol 2024; 15:1428625. [PMID: 39364422 PMCID: PMC11447291 DOI: 10.3389/fneur.2024.1428625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Background The brain and kidneys share similar low-resistance microvascular structures, receiving blood at consistently high flow rates and thus, are vulnerable to blood pressure fluctuations. This study investigates the causative factors of cerebral microbleeds (CMBs), aiming to quantify the contribution of each risk factor by constructing a multivariate model via stepwise regression. Methods A total of 164 hospitalized patients were enrolled from January 2022 to March 2023 in this study, employing magnetic susceptibility-weighted imaging (SWI) to assess the presence of CMBs. The presence of CMBs in patients was determined by SWI, and history, renal function related to CMBs were analyzed. Results Out of 164 participants in the safety analysis, 36 (21.96%) exhibited CMBs and 128 (78.04%) did not exhibit CMBs, and the median age of the patients was 66 years (range: 49-86 years). Multivariate logistic regression identified hypertension (OR = 13.95%, 95% CI: 4.52, 50.07%), blood urea nitrogen (BUN) (OR = 1.57, 95% CI: 1.06-2.40), cystatin C (CyC) (OR = 4.90, 95% CI: 1.20-22.16), and urinary β-2 microglobulin, (OR = 2.11, 95% CI: 1.45-3.49) as significant risk factors for CMBs. The marginal R-square (R M 2 ) was 0.25. Among all determinants, hypertension (47.81%) had the highest weight, followed by UN (11.42%). Quasi-curves plotted using the bootstrap method (999 times) showed good agreement between the predictive model and actual observations. Conclusion Hypertension, BUN, urinary β-2 microglobulin, CyC were risk factors for CMBs morbidity, and controlling the above indicators within a reasonable range will help to reduce the incidence of CMBs.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Neurology of the Second Hospital Affiliated to Lanzhou University, Lanzhou, China
| | - Zheng Pan
- Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Yilan Li
- Tianjin 4th Center Hospital, Tianjin, China
| | - Xiaoyong Huang
- Department of Cardiology, Lishui People’s Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xiner Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, China
| | - Feng Xiong
- Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
5
|
Nash PS, Fandler-Höfler S, Ambler G, Zhang W, Ozkan H, Locatelli M, Du Y, Obergottsberger L, Wünsch G, Jäger HR, Enzinger C, Wheeler DC, Simister RJ, Gattringer T, Werring DJ. Associations of Cerebral Small Vessel Disease and Chronic Kidney Disease in Patients With Acute Intracerebral Hemorrhage: A Cross-Sectional Study. Neurology 2024; 103:e209540. [PMID: 38889380 PMCID: PMC11254447 DOI: 10.1212/wnl.0000000000209540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Chronic kidney disease (CKD) may be associated with the pathogenesis and phenotype of cerebral small vessel disease (SVD), which is the commonest cause of intracerebral hemorrhage (ICH). The purpose of this study was to investigate the associations of CKD with ICH neuroimaging phenotype, volume, and location, total burden of small vessel disease, and its individual components. METHODS In 2 cohorts of consecutive patients with ICH evaluated with MRI, we investigated the frequency and severity of CKD based on established Kidney Disease Improving Global Outcomes criteria, requiring estimated glomerular filtration rate (eGFR) measurements <60 mL/min/1.732 ≥ 3 months apart to define CKD. MRI scans were rated for ICH neuroimaging phenotype (arteriolosclerosis, cerebral amyloid angiopathy, mixed location SVD, or cryptogenic ICH) and the presence of markers of SVD (white matter hyperintensities [WMHs], cerebral microbleeds [CMBs], lacunes, and enlarged perivascular spaces, defined according to the STandards for ReportIng Vascular changes on nEuroimaging criteria). We used multinomial, binomial logistic, and ordinal logistic regression models adjusted for age, sex, hypertension, and diabetes to account for possible confounding caused by shared risk factors of CKD and SVD. RESULTS Of 875 patients (mean age 66 years, 42% female), 146 (16.7%) had CKD. After adjusting for age, sex, and comorbidities, patients with CKD had higher rates of mixed SVD than those with eGFR >60 (relative risk ratio 2.39, 95% CI 1.16-4.94, p = 0.019). Severe WMHs, deep microbleeds, and lacunes were more frequent in patients with CKD, as was a higher overall SVD burden score (odds ratio 1.83 for each point on the ordinal scale, 95% CI 1.31-2.56, p < 0.001). Patients with eGFR ≤30 had more CMBs (median 7 [interquartile range 1-23] vs 2 [0-8] for those with eGFR >30, p = 0.007). DISCUSSION In patients with ICH, CKD was associated with SVD burden, a mixed SVD phenotype, and markers of arteriolosclerosis. Our findings indicate that CKD might independently contribute to the pathogenesis of arteriolosclerosis and mixed SVD, although we could not definitively account for the severity of shared risk factors. Longitudinal and experimental studies are, therefore, needed to investigate causal associations. Nevertheless, stroke clinicians should be aware of CKD as a potentially independent and modifiable risk factor of SVD.
Collapse
Affiliation(s)
- Philip S Nash
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Simon Fandler-Höfler
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Gareth Ambler
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Wenpeng Zhang
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Hatice Ozkan
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Martina Locatelli
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Yang Du
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Lena Obergottsberger
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Gerit Wünsch
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Hans Rolf Jäger
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Christian Enzinger
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - David C Wheeler
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Robert J Simister
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Thomas Gattringer
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - David J Werring
- From the UCL Stroke Research Centre (P.S.N., S.F.-H., W.Z., H.O., M.L., Y.D., R.J.S., D.J.W.), Department of Brain Repair and Rehabilitation, and Comprehensive Stroke Service (P.S.N., H.O., R.J.S., D.J.W.), National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.F.-H., L.O., C.E., T.G.), Medical University of Graz, Austria; Department of Statistical Science (G.A.), University College London, United Kingdom; Institute for Medical Informatics (G.W.), Statistics and Documentation, Medical University of Graz, Austria; Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit (H.R.J.), Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; Department of Renal Medicine (D.C.W.), University College London, United Kingdom; and Division of Neuroradiology (T.G.), Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| |
Collapse
|
6
|
Dulam V, Katta S, Nakka VP. Stroke and Distal Organ Damage: Exploring Brain-Kidney Crosstalk. Neurochem Res 2024; 49:1617-1627. [PMID: 38376748 DOI: 10.1007/s11064-024-04126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Stroke and kidney dysfunction represent significant public health challenges, yet the precise mechanisms connecting these conditions and their severe consequences remain unclear. Individuals experiencing chronic kidney disease (CKD) and acute kidney injury (AKI) are at heightened susceptibility to experiencing repeated strokes. Similarly, a reduced glomerular filtration rate is associated with an elevated risk of suffering a stroke. Prior strokes independently contribute to mortality, end-stage kidney disease, and cardiovascular complications, underscoring the pathological connection between the brain and the kidneys. In cases of AKI, various mechanisms, such as cytokine signaling, leukocyte infiltration, and oxidative stress, establish communication between the brain and the kidneys. The bidirectional relationship between stroke and kidney pathologies involves key factors such as uremic toxins, proteinuria, inflammatory responses, decreased glomerular filtration, impairment of the blood-brain barrier (BBB), oxidative stress, and metabolites produced by the gut microbiota. This review examines potential mechanisms of brain-kidney crosstalk underlying stroke and kidney diseases. It holds significance for comprehending multi-organ dysfunction associated with stroke and for formulating therapeutic strategies to address stroke-induced kidney dysfunction and the bidirectional pathological connection between the kidney and stroke.
Collapse
Affiliation(s)
- Vandana Dulam
- Department of Biochemistry, Acharya Nagarjuna University, Andhra Pradesh, 522510, India
| | - Sireesha Katta
- Department of Biochemistry, Acharya Nagarjuna University, Andhra Pradesh, 522510, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Andhra Pradesh, 522510, India.
| |
Collapse
|
7
|
Liu Y, Qin Y, Zhang Y. circRNA-PTPN4 mediated regulation of FOXO3 and ZO-1 expression: implications for blood-brain barrier integrity and cognitive function in uremic encephalopathy. Cell Biol Toxicol 2024; 40:22. [PMID: 38630149 PMCID: PMC11024022 DOI: 10.1007/s10565-024-09865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Uremic encephalopathy (UE) poses a significant challenge in neurology, leading to the need to investigate the involvement of non-coding RNA (ncRNA) in its development. This study employed ncRNA-seq and RNA-seq approaches to identify fundamental ncRNAs, specifically circRNA and miRNA, in the pathogenesis of UE using a mouse model. In vitro and in vivo experiments were conducted to explore the circRNA-PTPN4/miR-301a-3p/FOXO3 axis and its effects on blood-brain barrier (BBB) function and cognitive abilities. The research revealed that circRNA-PTPN4 binds to and inhibits miR-301a-3p, leading to an increase in FOXO3 expression. This upregulation results in alterations in the transcriptional regulation of ZO-1, affecting the permeability of human brain microvascular endothelial cells (HBMECs). The axis also influences the growth, proliferation, and migration of HBMECs. Mice with UE exhibited cognitive deficits, which were reversed by overexpression of circRNA-PTPN4, whereas silencing FOXO3 exacerbated these deficits. Furthermore, the uremic mice showed neuronal loss, inflammation, and dysfunction in the BBB, with the expression of circRNA-PTPN4 demonstrating therapeutic effects. In conclusion, circRNA-PTPN4 plays a role in promoting FOXO3 expression by sequestering miR-301a-3p, ultimately leading to the upregulation of ZO-1 expression and restoration of BBB function in mice with UE. This process contributes to the restoration of cognitive abilities.
Collapse
Affiliation(s)
- Yuhan Liu
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yanling Qin
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yanning Zhang
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China.
| |
Collapse
|
8
|
Vlasschaert C, Lanktree MB, Rauh MJ, Kelly TN, Natarajan P. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 2024; 20:161-174. [PMID: 37884787 PMCID: PMC10922936 DOI: 10.1038/s41581-023-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual's circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing - more than 10% of individuals over 65 years of age are affected - and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.
Collapse
Affiliation(s)
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Li N, Li YL, Li LT. Development and validation of a nomogram predictive model for cerebral small vessel disease: a comprehensive retrospective analysis. Front Neurol 2024; 14:1340492. [PMID: 38259650 PMCID: PMC10801164 DOI: 10.3389/fneur.2023.1340492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background Cerebral small vessel disease (CSVD) is a significant contributor to stroke, intracerebral hemorrhages, and vascular dementia, particularly in the elderly. Early diagnosis remains challenging. This study aimed to develop and validate a novel nomogram for the early diagnosis of cerebral small vessel disease (CSVD). We focused on integrating cerebrovascular risk factors and blood biochemical markers to identify individuals at high risk of CSVD, thus enabling early intervention. Methods In a retrospective study conducted at the neurology department of the Affiliated Hospital of Hebei University from January 2020 to June 2022, 587 patients were enrolled. The patients were randomly divided into a training set (70%, n = 412) and a validation set (30%, n = 175). The nomogram was developed using multivariable logistic regression analysis, with variables selected through the Least Absolute Shrinkage and Selection Operator (LASSO) technique. The performance of the nomogram was evaluated based on the area under the receiver operating characteristic curve (AUC-ROC), calibration plots, and decision curve analysis (DCA). Results Out of 88 analyzed biomarkers, 32 showed significant differences between the CSVD and non-CSVD groups. The LASSO regression identified 12 significant indicators, with nine being independent clinical predictors of CSVD. The AUC-ROC values of the nomogram were 0.849 (95% CI: 0.821-0.894) in the training set and 0.863 (95% CI: 0.810-0.917) in the validation set, indicating excellent discriminative ability. Calibration plots demonstrated good agreement between predicted and observed probabilities in both sets. DCA showed that the nomogram had significant clinical utility. Conclusions The study successfully developed a nomogram predictive model for CSVD, incorporating nine clinical predictive factors. This model offers a valuable tool for early identification and risk assessment of CSVD, potentially enhancing clinical decision-making and patient outcomes.
Collapse
Affiliation(s)
- Ning Li
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Ying-lei Li
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Emergency Medicine, Baoding First Central Hospital, Baoding, China
| | - Li-tao Li
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
10
|
Shah SN, Knausenberger TBA, Pontifex MG, Connell E, Le Gall G, Hardy TA, Randall DW, McCafferty K, Yaqoob MM, Solito E, Müller M, Stachulski AV, Glen RC, Vauzour D, Hoyles L, McArthur S. Cerebrovascular damage caused by the gut microbe/host co-metabolite p-cresol sulfate is prevented by blockade of the EGF receptor. Gut Microbes 2024; 16:2431651. [PMID: 39582109 PMCID: PMC11591591 DOI: 10.1080/19490976.2024.2431651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
The gut microbiota-brain axis has been associated with the pathogenesis of numerous disorders, but the mechanism(s) underlying these links are generally poorly understood. Accumulating evidence indicates the involvement of gut microbe-derived metabolites. Circulating levels of the gut microbe/host co-metabolite p-cresol sulfate (pCS) correlate with cerebrovascular event risk in individuals with chronic kidney disease (CKD), but whether this relationship is mechanistic is unclear. We hypothesized that pCS would impair the function of the blood-brain barrier (BBB), the primary brain vasculature interface. We report that pCS exposure impairs BBB integrity in human cells in vitro and both acutely (≤6 hours) and chronically (28 days) in mice, enhancing tracer extravasation, disrupting barrier-regulating tight junction components and ultimately exerting a suppressive effect upon whole-brain transcriptomic activity. In vitro and in vivo mechanistic studies showed that pCS activated epidermal growth factor receptor (EGFR) signaling, sequentially activating the intracellular signaling proteins annexin A1 and STAT3 to induce mobilization of matrix metalloproteinase MMP-2/9 and disruption to the integrity of the BBB. This effect was confirmed as specific to the EGFR through the use of both pharmacological and RNA interference approaches. Confirming the translational relevance of this work, exposure of the cerebromicrovascular endothelia to serum from hemodialysis patients in vitro led to a significant increase in paracellular permeability, with the magnitude of permeabilization closely correlating with serum pCS, but not most other uremic toxin, content. Notably, this damaging effect of hemodialysis patient serum was prevented by pharmacological blockade of the EGFR. Our results define a pathway linking the co-metabolite pCS with BBB damage and suggest that targeting the EGFR may mitigate against cerebrovascular damage in CKD. This work further provides mechanistic evidence indicating the role of gut microbe-derived metabolites in human disease.
Collapse
Affiliation(s)
- Sita N. Shah
- Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | | | - Matthew G. Pontifex
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Emily Connell
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Gwénaëlle Le Gall
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Tom A.J. Hardy
- Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - David W. Randall
- Department of Renal Medicine and Transplantation, Royal London Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Kieran McCafferty
- Department of Renal Medicine and Transplantation, Royal London Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Muhammad M. Yaqoob
- Department of Renal Medicine and Transplantation, Royal London Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Michael Müller
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Andrew V. Stachulski
- Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Robert C. Glen
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Lesley Hoyles
- Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| |
Collapse
|
11
|
Rajesh K, Spring KJ, Beran RG, Bhaskar SMM. Chronic kidney disease prevalence and clinical outcomes in anterior circulation acute ischemic stroke patients with reperfusion therapy: A meta-analysis. Nephrology (Carlton) 2024; 29:21-33. [PMID: 37964507 DOI: 10.1111/nep.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
AIM Chronic Kidney Disease (CKD) is a common comorbidity among acute ischaemic stroke (AIS) patients undergoing reperfusion therapies, including intravenous thrombolysis (IVT) and endovascular thrombectomy (EVT). Acknowledging CKD's prevalence in this cohort and understanding its influence on outcomes is crucial for prognosis and optimizing care. This study aims to determine the prevalence of CKD among anterior circulation AIS (acAIS) patients undergoing reperfusion therapies and to analyse the role of CKD in mediating outcomes. METHODS A random-effects meta-analysis was conducted to pool and examine prevalence data. A total of 263 633 patients were included in the meta-analysis. The study assessed CKD's association with functional outcomes, symptomatic intracranial haemorrhage (sICH) and mortality. RESULTS The overall pooled prevalence of CKD among acAIS ranged from 30% to 56% in IVT-treated patients and 16%-42% for EVT-treated patients. CKD was associated with increased odds of unfavourable functional outcome at 90 days in both IVT (OR 1.837; 95% CI: [1.599; 2.110]; p < .001) and EVT (OR 1.804; 95% CI: [1.525; 2.133]; p < .001) groups. In IVT-treated patients, CKD was associated with increased odds of 30-day mortality (OR 6.211; 95% CI: [1.105; 34.909]; p = .038). CKD in IVT-treated patients exhibited increased odds of sICH, albeit statistically non-significant (OR 1.595; 95% CI: [0.567; 3.275]). CONCLUSIONS The high prevalence of CKD and its significant impact on outcomes in acAIS patients treated with reperfusion therapies underscore its clinical significance. This insight can guide personalised care strategies and potentially improve the prognosis in the management of acAIS.
Collapse
Affiliation(s)
- Kruthajn Rajesh
- Global Health Neurology Lab, Sydney, New South Wales, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, New South Wales, Australia
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, New South Wales, Australia
| | - Kevin J Spring
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, New South Wales, Australia
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, New South Wales, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, New South Wales, Australia
- Medical Oncology Group, Liverpool Clinical School, Ingham Institute for Applied Medical Research and Western Sydney University (WSU), Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Roy G Beran
- Global Health Neurology Lab, Sydney, New South Wales, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, New South Wales, Australia
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, New South Wales, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, New South Wales, Australia
- Griffith Health, School of Medicine and Dentistry, Griffith University, Southport, Queensland, Australia
- Department of Neurology and Neurophysiology, Liverpool Hospital and South Western Sydney Local Health District (SWSLHD), Sydney, New South Wales, Australia
| | - Sonu M M Bhaskar
- Global Health Neurology Lab, Sydney, New South Wales, Australia
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, New South Wales, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, New South Wales, Australia
- Department of Neurology and Neurophysiology, Liverpool Hospital and South Western Sydney Local Health District (SWSLHD), Sydney, New South Wales, Australia
- Department of Neurology, National Cerebral and Cardiovascular Centre (NCVC), Suita, Osaka, Japan
| |
Collapse
|
12
|
Shafqat A, Khan S, Omer MH, Niaz M, Albalkhi I, AlKattan K, Yaqinuddin A, Tchkonia T, Kirkland JL, Hashmi SK. Cellular senescence in brain aging and cognitive decline. Front Aging Neurosci 2023; 15:1281581. [PMID: 38076538 PMCID: PMC10702235 DOI: 10.3389/fnagi.2023.1281581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 10/16/2024] Open
Abstract
Cellular senescence is a biological aging hallmark that plays a key role in the development of neurodegenerative diseases. Clinical trials are currently underway to evaluate the effectiveness of senotherapies for these diseases. However, the impact of senescence on brain aging and cognitive decline in the absence of neurodegeneration remains uncertain. Moreover, patient populations like cancer survivors, traumatic brain injury survivors, obese individuals, obstructive sleep apnea patients, and chronic kidney disease patients can suffer age-related brain changes like cognitive decline prematurely, suggesting that they may suffer accelerated senescence in the brain. Understanding the role of senescence in neurocognitive deficits linked to these conditions is crucial, especially considering the rapidly evolving field of senotherapeutics. Such treatments could help alleviate early brain aging in these patients, significantly reducing patient morbidity and healthcare costs. This review provides a translational perspective on how cellular senescence plays a role in brain aging and age-related cognitive decline. We also discuss important caveats surrounding mainstream senotherapies like senolytics and senomorphics, and present emerging evidence of hyperbaric oxygen therapy and immune-directed therapies as viable modalities for reducing senescent cell burden.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Clinical Affairs, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Medicine, SSMC, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Zhang H, Sumbria RK, Chang R, Sun J, Cribbs DH, Holmes TC, Fisher MJ, Xu X. Erythrocyte-brain endothelial interactions induce microglial responses and cerebral microhemorrhages in vivo. J Neuroinflammation 2023; 20:265. [PMID: 37968737 PMCID: PMC10647121 DOI: 10.1186/s12974-023-02932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Cerebral microhemorrhages (CMH) are associated with stroke, cognitive decline, and normal aging. Our previous study shows that the interaction between oxidatively stressed red blood cells (RBC) and cerebral endothelium may underlie CMH development. However, the real-time examination of altered RBC-brain endothelial interactions in vivo, and their relationship with clearance of stalled RBC, microglial responses, and CMH development, has not been reported. METHODS RBC were oxidatively stressed using tert-butylhydroperoxide (t-BHP), fluorescently labeled and injected into adult Tie2-GFP mice. In vivo two-photon imaging and ex vivo confocal microscopy were used to evaluate the temporal profile of RBC-brain endothelial interactions associated with oxidatively stressed RBC. Their relationship with microglial activation and CMH was examined with post-mortem histology. RESULTS Oxidatively stressed RBC stall significantly and rapidly in cerebral vessels in mice, accompanied by decreased blood flow velocity which recovers at 5 days. Post-mortem histology confirms significantly greater RBC-cerebral endothelial interactions and microglial activation at 24 h after t-BHP-treated RBC injection, which persist at 7 days. Furthermore, significant CMH develop in the absence of blood-brain barrier leakage after t-BHP-RBC injection. CONCLUSIONS Our in vivo and ex vivo findings show the stalling and clearance of oxidatively stressed RBC in cerebral capillaries, highlighting the significance of microglial responses and altered RBC-brain endothelial interactions in CMH development. Our study provides novel mechanistic insight into CMH associated with pathological conditions with increased RBC-brain endothelial interactions.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA.
- Department of Neurology, University of California, Irvine, CA, 92697, USA.
| | - Rudy Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Mark J Fisher
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Department of Neurology, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Beckman Laser Institute, University of California, Irvine, CA, 92697, USA.
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697, USA.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|