1
|
Qu H, Yuan X, Huang K, Liu D. AKT/mTOR mediated autophagy contributes to the self-replication of canine influenza virus in vivo and in vitro. Cell Signal 2025; 128:111648. [PMID: 39929352 DOI: 10.1016/j.cellsig.2025.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The prevalence and spread of canine influenza virus (CIV) pose a threat to the health of dogs and humans. Some studies have shown that autophagy is closely related to virus replication, but the exact relationship between CIV replication and autophagy is still unclear. Therefore, this study investigated the effects of autophagy on CIV replication in vitro and in vivo. The data showed that CIV infection significantly caused respiratory tract damage in mice, upregulated the mRNA/protein levels of CIV replication-related genes and autophagy-related genes. In addition, the activation of autophagy by rapamycin (Rapa) significantly intensified the CIV replication and the respiratory tract damage of mice, while the inhibition of autophagy by 3-Methyladenine (3-MA) significantly alleviated these effects. Data of MDCK cells also demonstrated that CIV promoted self-replication through activating autophagy, and the upregulation of AKT/mTOR by insulin significantly inhibited the CIV replication. In summary, this study showed that CIV could promote self-replication by activating AKT/mTOR mediated autophagy, which provides new ideas for the prevention and treatment of canine influenza.
Collapse
Affiliation(s)
- Haobo Qu
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xin Yuan
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Kehe Huang
- College of Veterinary Medicine, Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Dandan Liu
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
2
|
Shen R, Wang J, Zhao Y, Dang Z, Zhang K, Li M, Yang Q, Gao LN. Polysaccharides from Scrophularia ningpoensis Hemsl. improve reserpine-induced depression-like behavior by inhibiting HTR2A/HTR2C mediated AKT/GSK3β/β-catenin/CBP/BDNF signalling. Int J Biol Macromol 2025; 301:140445. [PMID: 39884598 DOI: 10.1016/j.ijbiomac.2025.140445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Scrophularia ningpoensis Hemsl. is a traditional Chinese medicine used to regulate blood sugar levels, immunity, etc. We previously isolated polysaccharides from S. ningpoensis Hemsl. (SNPS) and innovatively observed that SNPS exhibit antidepressant properties; however, the underlying mechanism is still unclear. Here, we employed network pharmacology to predict the potential targets and antidepressant mechanism of SNPS. Accordingly, we detected the effects of SNPS on monoamine neurotransmitter synthesis, metabolism, receptor expression and signal transduction in reserpine (RES)-treated mice using ELISA, HPLC-electrochemistry, metabonomics, Golgi-Cox staining and Western blotting. Finally, the mechanism of SNPS on key targets (HTR2A and HTR2C) was verified in vivo and in vitro. Results showed that SNPS ameliorated depression by restoring monoamine neurotransmitter homeostasis and hippocampal neurogenesis. SNPS reversed the depletion of 5-HT, NE and DA by activating the tryptophan (Trp)/5-HT and tyrosine (Tyr)/DA/NE metabolic pathways. SNPS decreased HTR2A and HTR2C contents, leading to the phosphorylation of AKT and GSK3β, followed by increases in β-catenin, CBP and BDNF levels. Mechanistically, SNPS reduced the levels of HTR2A and HTR2C proteins by inhibiting their mRNA transcription, rather than inducing protein degradation. In conclusion, by inhibiting the transcription of HTR2A and HTR2C, SNPS activated the AKT/GSK3β/β-catenin/CBP/BDNF pathway, thereby exerting dose-dependent antidepressant effects.
Collapse
Affiliation(s)
- Ruhui Shen
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, PR China; College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China; Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai 20080, PR China
| | - Jian'an Wang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, PR China
| | - Yijin Zhao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, PR China
| | - Zhaojin Dang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, PR China
| | - Ke Zhang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, PR China
| | - Ming Li
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, PR China
| | - Qian Yang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, PR China
| | - Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, PR China; College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, PR China; Jining Key Laboratory of Depression Prevention and Treatment, Jining Medical University, Jining, Shandong 272067, PR China.
| |
Collapse
|
3
|
Amin N, Hussein AB, Ye Q, Chen S, Wu F, Yuan X, Abbasi IN, Sundus J, Hu Z, Fang M. Combination of rTMS and oxytocin agonist attenuate depression-like behavior after postpartum depression in mice. Brain Res 2025; 1851:149459. [PMID: 39832612 DOI: 10.1016/j.brainres.2025.149459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) categorizes postpartum depression (PPD) as a subtype of Major Depressive Disorder (MDD) with peripartum onset, generally arising within the initial trimester following delivery. This acute psychiatric condition is characterized by feelings of worthlessness, insomnia, extreme anxiety, or maternal neglect. Intranasal oxytocin (OT) and transcranial magnetic stimulation (TMS) have the potential to address impaired social cognition; nonetheless, their neuronal underpinnings, along with their safety and efficacy, are little comprehended. This study examines the effects of rTMS stimulation with an oxytocin agonist or antagonist in a PPD model. We employed the maternal separation with early weaning (MSEW) strategy for 21 days to attain our objective. Oxytocin acetate (agonist) and atosiban (antagonist) were administered by injection twice daily for three consecutive days following the model according to the established protocol. A single session of rTMS involved the application of high-frequency stimulation (20 Hz) one hour following the final injection. Behavioral testing and brain collection were conducted 12 h post-rTMS. The results indicated that treatment with OT followed by rTMS stimulation decreased neuronal cell death and microglial activation, meanwhile enhancing synaptic plasticity through the upregulation of PSD95, Synapsin I, and Synaptophysin. Simultaneously, both OT therapy and repetitive transcranial magnetic stimulation demonstrated a significant capacity to alter autophagy activity and astrocyte function. Nonetheless, OTA therapy followed by rTMS did not exhibit the same pattern of outcomes. Our findings indicate that the combination of rTMS stimulation and an oxytocin agonist in a PPD model may mitigate depression-like behavior.
Collapse
Affiliation(s)
- Nashwa Amin
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China; Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Department of Zoology, Faculty of Science, Aswan University, 81528 Aswan, Egypt
| | - Azhar B Hussein
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Qing Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shijia Chen
- Department of Neurology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| | - Fei Wu
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Xia Yuan
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Irum Naz Abbasi
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Javaria Sundus
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China
| | - Marong Fang
- Department of Orthopaedics of Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China.
| |
Collapse
|
4
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2025; 46:525-538. [PMID: 39448859 PMCID: PMC11845611 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
5
|
Zheng S, Yang L, Dai Q, Li X, Masuoka T, Lv J. Role of sirtuin 1 in depression‑induced coronary heart disease: Molecular pathways and therapeutic potential (Review). Biomed Rep 2025; 22:46. [PMID: 39882335 PMCID: PMC11775641 DOI: 10.3892/br.2025.1924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Depression and coronary heart disease (CHD) are two interconnected diseases that profoundly impact global health. Depression is both a complex psychiatric disorder and an established risk factor for CHD. Sirtuin 1 (SIRT1) is an enzyme that requires the cofactor nicotinamide adenine dinucleotide (NAD+) to perform its deacetylation function, and its involvement is crucial in reducing cardiovascular risks that are associated with depression. SIRT1 exerts its cardioprotective effects via modulating oxidative stress, inflammation and metabolic processes, all of which are central to the pathogenesis of CHD in individuals with depression. Through influencing these pathways, SIRT1 helps to reduce endothelial dysfunction, prevent the formation of atherosclerotic plaques and stabilize existing plaques, thereby decreasing the overall risk of CHD. The present review underscores the important role of SIRT1 in serving as a therapeutic intervention molecule for tackling cardiovascular complications stemming from depression. Furthermore, it highlights the need for further studies to clarify how SIRT1 influences both depression and CHD at the molecular level. The ultimate goal of this research will be to translate these findings into practical clinical intervention strategies.
Collapse
Affiliation(s)
- Shijie Zheng
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Linlin Yang
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Qiuting Dai
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Xiangyan Li
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Jianfeng Lv
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| |
Collapse
|
6
|
Lin H, Xu Y, Xiong H, Wang L, Shi Y, Wang D, Wang Z, Ren J, Wang S. Mechanism of action of Panax ginseng alcohol extract based on orexin-mediated autophagy in the treatment of sleep and cognition in aged sleep-deprived rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118907. [PMID: 39389397 DOI: 10.1016/j.jep.2024.118907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (P. ginseng) C. A. Meyer. has been used extensively globally as a medicine. It has a therapeutic effect on sleep and is an attractive alternative for patients with insomnia. The United States Patent of Invention has approved the use of P. ginseng alcohol extract (GAE) in nutraceuticals or food to improve sleep. It has shown promise as an effective therapeutic agent for improving sleep and cognition. However, its mechanism of action is not yet fully understood. AIM OF THE STUDY To investigate the therapeutic benefits of GAE on sleep and cognition and its underlying mechanism in aged sleep-deprived rats, with a focus on orexin-mediated autophagy function. MATERIALS AND METHODS We conducted in vivo tests in an aged sleep-deprivation rat model produced using p-chlorophenylalanine (PCPA) coupled with modified multi-platform method to examine the therapeutic effects and mechanisms of GAE. A pentobarbital sodium-induced sleep test and water maze were used to assess sleep and cognitive performance, respectively. An enzyme-linked immunosorbent assay was used to determine orexin levels and aging and sleep markers in serum and hypothalamic tissues. Hematoxylin-eosin staining and Nissl staining were used to assess histopathological changes, and autophagy levels were assessed using transmission electron microscopy, immunofluorescence. Western blot and immunohistochemical staining were performed to detect the levels of orexin, orexin-receptor proteins, and autophagy-associated proteins to study the effects of GAE on hippocampal neurons, and the underlying mechanisms. RESULTS In aged sleep-deprived rats, GAE treatment prolonged sleep duration, improved cognitive function, prevented hippocampal neuronal damage, increased the number of Nissl bodies, improved aging and sleep markers, and enhanced the LC3A/B expression in autophagosomes and neurons. The amount of orexin in serum and hypothalamic tissue and OX1R, OX2R, and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) proteins also reduced, which resulted in the inhibition of the PI3K/Akt/mTOR pathway and activation of the autophagy process. CONCLUSIONS GAE may reduce hypothalamic orexin secretion and interact with orexin receptors to inhibit the PI3K/Akt/mTOR signalling network and activate autophagy. This may be a potential mechanism of action of GAE in regulating sleep-related cognitive function.
Collapse
Affiliation(s)
- Haining Lin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunlong Xu
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Huazhong Xiong
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lichao Wang
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yuqing Shi
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongyi Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zixu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jixiang Ren
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Siming Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
7
|
Wang D, Fukuda T, Wu T, Xu X, Isaji T, Gu J. Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: Implicating core fucosylation has an antidepressant potential. J Biol Chem 2025; 301:108230. [PMID: 39864626 PMCID: PMC11879694 DOI: 10.1016/j.jbc.2025.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8-/-) and heterozygous KO (Fut8+/-) mice contrasted to the wild-type (Fut8+/+) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation. Numerous studies indicate that neuroinflammation plays a vital role in the development of depression. Here, we investigated whether core fucosylation regulates depression induced by chronic unpredictable stress (CUS), a well-established model for depression. Our results showed that Fut8+/- mice exhibited depressive-like behaviors and increased neuroinflammation earlier than Fut8+/+ mice. Administration of L-fucose significantly reduced CUS-induced depressive-like behaviors and pro-inflammatory cytokine levels in Fut8+/- mice. The L-fucose treatment produced antidepressant effects by attenuating the complex formation between gp130 and the interleukin-6 (IL-6) receptor and the JAK2/STAT3 signaling pathway. Notably, L-fucose treatment increased dendritic spine density and postsynaptic density protein 95 (PSD-95) expression, which were suppressed in CUS-induced depression. Furthermore, the effects of L-fucose on the CUS-induced depression were also observed in Fut8+/+ mice. Our results clearly demonstrate that L-fucose ameliorates neuroinflammation and synaptic defects in CUS-induced depression, implicating that core fucosylation has significant anti-neuroinflammatory activity and an antidepressant potential.
Collapse
Affiliation(s)
- Dan Wang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
8
|
Xu C, Liao M, Zhang S, Chen Y, Shulai X, Wang G, Aa J. The Comorbidity of Depression and Diabetes Is Involved in the Decidual Protein Induced by Progesterone 1 (Depp1) Dysfunction in the Medial Prefrontal Cortex. Metabolites 2025; 15:34. [PMID: 39852377 PMCID: PMC11767987 DOI: 10.3390/metabo15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/07/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND There is a high rate of depressive symptoms such as irritability, anhedonia, fatigue, and hypersomnia in patients with type 2 diabetes mellitus (T2DM). However, the causes and underlying mechanisms of the comorbidity of depression and diabetes remain unknown. METHODS For the first time, we identified Decidual protein induced by progesterone 1 (Depp1), also known as DEPP autophagy regulator 1, as a hub gene in both depression and T2DM models. Depp1 levels were increased in the mPFC but not in other brain regions, such as the hippocampus or nucleus accumbens, according to Western blot and PCR assays. RESULTS Glucose dysregulation and synaptic loss occur in both depression and T2DM. The typical hyperglycemia in T2DM was observed in two models of depression, namely, chronic social defeat stress (CSDS) and chronic restraint stress (CRS). Hyperglycemia, which occurred in T2DM, was observed, and metabolomics data clearly showed the perturbation of glucose levels and glucose metabolism in the medial prefrontal cortex (mPFC). Decreased protein levels of BDNF and PSD95 suggested significant synaptic loss in depressed and diabetic mice. CONCLUSION These findings suggest that the comorbidity of depression and diabetes is involved in the dysfunction of Depp1 in the mPFC.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Chen Z, Duan S, Li J, Su J, Lei H. T-2 toxin triggers depression-like behaviors via upregulation of dopamine transporter in nucleus accumbens of male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117392. [PMID: 39616663 DOI: 10.1016/j.ecoenv.2024.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/26/2025]
Abstract
The T-2 toxin is a frequent contaminant in the global environment and agricultural production. Existing evidence suggests that the ingested T-2 toxin can enter the brain and exhibit neurotoxicity. However, it is still unknown whether T-2 toxin causes the depression-like behaviors. In this study, the mice were orally administrated with 1.5 mg/kg T-2 toxin daily for 14 d, and the depression-like behaviors were assessed by the tail suspension test (TST) and sucrose preference test (SPT). Here, the results showed that T-2 toxin exposure induced depression-like behaviors, manifested as behavioral despair and anhedonia, without anxiety-like behaviors. In addition, the reduced dopamine (DA) level and elevated dopamine transporter (DAT) level were found in reward center nucleus accumbens (NAc) receiving DAergic projection from ventral tegmental area (VTA) in brain after T-2 toxin administration, while there was no significant alteration in DA synthesis-related tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) in VTA and DA storage-related vesicle monoamine transporter 2 (VMAT2) in NAc. The local administration of DAT inhibitor AHN 1-055 hydrochloride into NAc alleviated T-2 toxin caused the depression-like behaviors. Importantly, the chemogenetic activation of the VTADA-NAc circuit increased the DA content in NAc and reversed the T-2 toxin-produced behavioral despair and anhedonia. Thus, our study for the first time illustrates DA dysregulation by upregulated DAT in NAc mediates T-2 toxin-triggered depression-like symptoms in mice. Meanwhile, this study establishes a novel causal relation between the neurotoxicant T-2 toxin exposure and the etiology of depression-like behaviors, and provides reference for the prevention and treatment for mycotoxin-induced depression-like symptoms.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Shaoyi Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jialu Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jianming Su
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Hongyu Lei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China.
| |
Collapse
|
10
|
Liu X, Liu H, Wu X, Zhao Z, Wang S, Wang H, Qin X. Xiaoyaosan against depression through suppressing LPS mediated TLR4/NLRP3 signaling pathway in "microbiota-gut-brain" axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118683. [PMID: 39121928 DOI: 10.1016/j.jep.2024.118683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression impairs not only central nervous system, but also peripheral systems of the host. Gut microbiota have been proved to be involved in the pathogenesis of depression. Xiaoyaosan (XYS) has a history of over a thousand years in China for treating depression, dramatically alleviating anxiety, cognitive disorders, and especially gastrointestinal dysfunctions. Yet, it still just scratches the surface of the anti-depression mechanisms of XYS. AIM OF THE STUDY This study aims to elucidate the mechanism of actions of XYS from the perspective of "microbiota-gut-brain" axis. MATERIALS AND METHODS We firstly evaluated the effects of XYS on the macroscopic behaviors of depressed rats that induced by chronic unpredictable mild stress (CUMS). Secondly, the effects of XYS on intestinal homeostasis of depressed rats were revealed by using dysbacteriosis model. Subsequently, the underlying mechanisms were demonstrated by 16S rRNA gene sequencing technology and molecular biology methods. Finally, correlation analysis and visualization of the anti-depression effects of XYS were performed from the "microbiota - gut - brain" perspective. RESULTS Our data indicated that XYS ameliorated the depression-like symptoms of CUMS rats, partly depending on the presence of gut microbiota. Furthermore, we illustrated that XYS reversed CUMS-induced gut dysbiosis of depressed rats in terms of decreasing the Bacteroidetes/Firmicutes ratio and the abundances of Bacteroides, and Corynebacterium, while increasing the abundances of Lactobacillus and Adlercreutzia. The significant enrichment of Bacteroides and the level of lipopolysaccharides (LPS) suggested that depression damaged the immune responses and gut barrier. Mechanistically, XYS significantly down-regulated the expression levels of factors that involved in TLR4/NLRP3 signaling pathway in the colon and brain tissues of depressed rats. In addition, XYS significantly increased the levels of claudin 1 and ZO-1, showing that XYS positively maintained the integrity of gut and blood-brain barriers (BBB). CONCLUSION Our study offers insights into the anti-depression effects of XYS through a lens of "microbiota-TLR4/NLRP3 signaling pathway-barriers", providing a foundation for enhancing clinical efficiency and enriching drug selection, and contributing to our understanding of the mechanisms of traditional Chinese medicines (TCMs) in treating depression.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China.
| | - Huimin Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Xiaoling Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Senyan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Huimin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, 030006, Shanxi, China
| |
Collapse
|
11
|
Zhang MJ, Yang L, Li ZY, Zhou LY, Wang YJ, Wang HS, Cui XJ, Yao M. NLRP1 inflammasome in neurodegenerative disorders: From pathology to therapies. Cytokine Growth Factor Rev 2024; 80:138-155. [PMID: 39443194 DOI: 10.1016/j.cytogfr.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Neuroinflammation is a critical component in neurodegenerative disorders. The inflammasome, facilitates the cleavage of caspase-1, leading to the maturation and subsequent secretion of inflammatory factors interleukin (IL)-1β and IL-18. Consequently, pyroptosis mediated by gasdermin D, exacerbates neuroinflammation. Among the inflammasomes, NLRP1/3 are predominant in the central nervous system (CNS), Although NLRP1 was the earliest discovered inflammasome, the specific involvement of NLRP1 in neurodegenerative diseases remains to be fully elucidated. Recently, the discovery of an endogenous inhibitor of NLRP1, dipeptidyl peptidase 9, suggests the feasibility of producing of small-molecule drugs targeting NLRP1. This review describes the latest findings on the role of the NLRP1 inflammasome in the pathology of neurodegenerative disorders, including Alzheimer's disease, and summarises the regulatory mechanisms of NLRP1 inflammasome activation in the CNS. Furthermore, we highlight the recent progress in developing small-molecule and biological inhibitors that modulate the NLRP1 infammasome for the treatment of neurodegenerative disorders, some of which are advancing to preclinical testing. SIGNIFICANCE STATEMENT: The objective of this review is to synthesise the research on the structure, activation, and regulatory mechanisms of the NLRP1 inflammasome, along with its potential impact on both acute and chronic neurodegenerative conditions. The discovery of endogenous inhibitors, such as dipeptidyl peptidase 9 and thioredoxin, and their interaction with NLRP1 suggest the possibility of developing NLRP1-targeted small-molecule drugs for the treatment of neurodegenerative disorders. This review also discusses the use of both direct and indirect NLRP1 inhibitors as prospective therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Long Yang
- Rehabilitation Medicine Department, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu 210029, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hong-Shen Wang
- Orthopedics Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
12
|
Jiang H, Zhang J, Liu T, Chen X, Yang G, Li H. The characterization of BCL-xL displays a non-apoptotic role in suppression of NLRP1 inflammasome assembly in common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2024; 155:110001. [PMID: 39489455 DOI: 10.1016/j.fsi.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The NLRP1 inflammasome is a crucial muti-protein complex in the host anti-pathogen immune response. The previous studies have revealed that the anti-apoptotic protein BCL-xL played a non-apoptotic role by impeding the activation of NLRP1 inflammasome in mammals. However, the potential role of BCL-xL in regulating the inflammasome in fish remains unclear. In the present study, the BCL-xL (CcBCL-xL) was cloned from the head kidney of common carp (Cyprinus carpio L.), and its regulatory effect on the NLRP1 inflammasome was explored. It was found that CcBCL-xL predominantly localized in the brain, spleen and head kidney of common carp, and upon stimulation with Aeromonas hydrophila (A. hydrophila), Edwardsiella tarda (E. tarda), or spring viremia of carp virus (SVCV), the expression of CcBCL-xL significantly increased in multiple immune organs. The interaction between CcBCL-xL and CcNLRP1 was confirmed by co-immunoprecipitation and immunofluorescence. Meanwhile, we also found that CcBCL-xL significantly inhibited the assembly of the CcNLRP1 inflammasome, through ASC oligomerization, ASC specks formation and cytotoxicity experiments. Furthermore, our results revealed that CcBCL-xL interacted with the NACHT, LRR, FIIND, and CARD domains of CcNLRP1. Taken together, the results provide a theoretical foundation for further exploring the regulatory mechanism of NLRP1, and for the prevention and treatment of infectious diseases in fish.
Collapse
Affiliation(s)
- Hong Jiang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Jiahui Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Tingting Liu
- Shandong Industrial Technician College, No.6789 West Ring Road, Weifang, 261000, China
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
13
|
Tastan B, Heneka MT. The impact of neuroinflammation on neuronal integrity. Immunol Rev 2024; 327:8-32. [PMID: 39470038 DOI: 10.1111/imr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
Collapse
Affiliation(s)
- Bora Tastan
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| |
Collapse
|
14
|
Zhang J, Xin H, Wang W, Li Y, Wu R, Wei L, Su S, Wang X, Wang X, Wang X, Li L, Hu R. Investigating the modulatory effects of lactoferrin on depressed rats through 16S rDNA gene sequencing and LC-MS metabolomics analysis. Sci Rep 2024; 14:22111. [PMID: 39333605 PMCID: PMC11437287 DOI: 10.1038/s41598-024-72793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Lactoferrin is a natural multifunctional glycoprotein with potential antidepressant-like effects. However, the mechanism of its antidepressant effect has not been explored from the perspective of gut flora metabolism. Therefore, we employed both 16S rDNA gene sequencing and LC-MS metabolomics analysis to investigate the regulatory effects and mechanisms of lactoferrin in a rat model of depression. After one week of acclimatization, twenty-four 7-week-old male Sprague-Dawley rats were randomly and equally assigned into three groups: the control group, the model group, and the lactoferrin intervention group. The control group rats were housed under standard conditions, while the rats in the model and lactoferrin intervention groups were individually housed and exposed to chronic unpredictable mild stress for 44 days simultaneously. The lactoferrin intervention group was provided with water containing 2% lactoferrin (2 g/100 ml). Behavioural tests were conducted at week 7. Upon completion of the behavioral tests, the rats were anesthetized with isoflurane, humanely euthanized using a rat guillotine, and tissue samples were collected for further experiments. The results indicated that lactoferrin intervention led to an increase in sucrose solution consumption, horizontal movement distance, number of cross platforms, and residence time in the target quadrant. Additionally, it resulted in an increase in jejunal tight junction protein ZO-1 expression and a suppression of serum expression of inflammatory factors, Lipopolysaccharide and Diamine oxidase. In summary, lactoferrin can regulate the metabolic disorder of intestinal flora, reduce intestinal permeability, and further regulate the metabolic balance of hippocampal tissues through the microbiota-gut-brain axis. This process ultimately alleviates the depression-like behavior in rats.
Collapse
Affiliation(s)
- Jing Zhang
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Hongmei Xin
- College of Humanities Education , Inner Mongolia Medical University, Hohhot, 010110, China
| | - Wuji Wang
- Wuhan Pulmonary Hospital/Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China
| | - Yanyi Li
- School of Nursing,Inner Mongolia Medical University, Hohhot, 010110, China
| | - Riga Wu
- Mongolian Medicine College , Inner Mongolia Medical University, Hohhot, 010110, China
| | - Lisi Wei
- Mongolian Medicine College , Inner Mongolia Medical University, Hohhot, 010110, China
| | - Si Su
- Mongolian Medicine College , Inner Mongolia Medical University, Hohhot, 010110, China
| | - Xiaohong Wang
- Laboratory Animal Center, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Xiujuan Wang
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Xiaojuan Wang
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Li Li
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010110, China.
| | - Rilebagen Hu
- Mongolian Medicine College , Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
15
|
de Miranda AS, de Brito Toscano EC, O'Connor JC, Teixeira AL. Targeting inflammasome complexes as a novel therapeutic strategy for mood disorders. Expert Opin Ther Targets 2024; 28:401-418. [PMID: 38871633 DOI: 10.1080/14728222.2024.2366872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Inflammasome complexes, especially NLRP3, have gained great attention as a potential therapeutic target in mood disorders. NLRP3 triggers a caspase 1-dependent release of the inflammatory cytokines IL-1β and IL-18, and seems to interact with purinergic and kynurenine pathways, all of which are implicated in mood disorders development and progression. AREAS COVERED Emerging evidence supports NLRP3 inflammasome as a promising pharmacological target for mood disorders. We discussed the available evidence from animal models and human studies and provided a reflection on drawbacks and perspectives for this novel target. EXPERT OPINION Several studies have supported the involvement of NLRP3 inflammasome in MDD. However, most of the evidence comes from animal models. The role of NLRP3 inflammasome in BD as well as its anti-manic properties is not very clear and requires further exploration. There is evidence of anti-manic effects of P2×R7 antagonists associated with reduction in the brain levels of IL-1β and TNF-α in a murine model of mania. The involvement of other NLRP3 inflammasome expressing cells besides microglia, like astrocytes, and of other inflammasome complexes in mood disorders also deserves further investigation. Preclinical and clinical characterization of NLRP3 and other inflammasomes in mood disorders is needed before considering translational approaches, including clinical trials.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eliana Cristina de Brito Toscano
- Laboratory of Research in Pathology, Department of Pathology, Federal University of Juiz de Fora (UFJF) Medical School, Juiz de Fora, Brazil
| | - Jason C O'Connor
- Department of Pharmacology, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy VA Hospital, South Texas Veterans Care System, San Antonio, TX, USA
| | - Antonio Lucio Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
16
|
Gan H, Ma Q, Hao W, Yang N, Chen ZS, Deng L, Chen J. Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res 2024; 202:107112. [PMID: 38403256 DOI: 10.1016/j.phrs.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.
Collapse
Affiliation(s)
- Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Nating Yang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|