1
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Kutzler MA, Cusimano G, Joyner D, Konopka E, Muir R, Barnette P, Guderian M, Del Moral-Sánchez I, Derking R, Bijl T, Snitselaar J, Rotsides P, Woloszczuk K, Bell M, Canziani G, Chaiken I, Hessell A, Bartsch Y, Sanders R, Haddad E. The molecular immune modulator adenosine deaminase-1 enhances HIV specific humoral and cellular responses to a native-like HIV envelope trimer DNA vaccine. RESEARCH SQUARE 2024:rs.3.rs-4139764. [PMID: 38746176 PMCID: PMC11092827 DOI: 10.21203/rs.3.rs-4139764/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
There is currently no prophylactic vaccine available for human immunodeficiency virus (HIV). Research efforts have resulted in improved immunogens that mimic the native envelope (Env) glycoprotein structure. Recently, a novel triple tandem trimer (TTT) platform has been used to generate a plasmid encoding Env immunogen (pBG505-TTT) that expresses only as trimers, making it more suitable for nucleic acid vaccines. We have previously demonstrated that adenosine deaminase-1 (ADA-1) is critical to the T follicular helper (TFH) function and improves vaccine immune responses in vivo. In this study, we demonstrate that co-delivery of plasmid-encoded adenosine deaminase 1 (pADA) with pBG505-TTT enhances the magnitude, durability, isotype switching and functionality of HIV-specific antibodies in a dose-sparing manner. Co-delivery of the molecular immune modulator ADA-1 also enhances HIV-specific T cell polyfunctionality, activation, and degranulation as well as memory B cell responses. These data demonstrate that pADA enhances HIV-specific cellular and humoral immunity, making ADA-1 a promising immune modulator for HIV-targeting vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tom Bijl
- Amsterdam University Medical Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
VanderVeen LA, Selzer L, Moldt B, Parvangada A, Li J, Ananworanich J, Crowell TA, Eron JJ, Daar ES, Haubrich R, Geleziunas R, Cyktor J, Mellors JW, Callebaut C. HIV-1 envelope diversity and sensitivity to broadly neutralizing antibodies across stages of acute HIV-1 infection. AIDS 2024; 38:607-610. [PMID: 38416554 PMCID: PMC10906214 DOI: 10.1097/qad.0000000000003792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 02/29/2024]
Abstract
We studied the relationship between viral diversity and susceptibility to broadly neutralizing antibodies (bNAbs) in longitudinal plasma and peripheral blood mononuclear cells from 89 people with HIV who initiated antiretroviral therapy (ART) during acute and early HIV-1 infection (AEHI). HIV-1 diversity and predicted bNAb susceptibility were comparable across AEHI. Diversity evolution was not observed during ART, suggesting (pro)viruses at initiation or during treatment may identify individuals with susceptible virus for bNAb interventional trials.
Collapse
Affiliation(s)
| | | | - Brian Moldt
- Gilead Sciences, Inc., Foster City, CA, USA
- GSK Vaccines, Rixensart, Belgium (Current)
| | | | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA, USA
| | - Jintanat Ananworanich
- Amsterdam University Medical Centers, and Department of Global Health, Amsterdam Institute for Global Health & Development, Amsterdam, Netherlands
| | - Trevor A. Crowell
- U.S. Military HIV Research Program at Walter Reed Army Institute of Research, Silver Spring, and The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | | | - Eric S. Daar
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA
| | | | | | | | | | | |
Collapse
|
4
|
Zhang Z, Zhang X, Liu L, Chen H. Production of Secreted Antibody in Baculovirus Expression Vector System. Methods Mol Biol 2024; 2829:175-183. [PMID: 38951333 DOI: 10.1007/978-1-0716-3961-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Monoclonal antibodies have widespread applications in disease treatment and antigen detection. They are traditionally produced using mammalian cell expression system, which is not able to satisfy the increasing demand of these proteins at large scale. Baculovirus expression vector system (BEVS) is an attractive alternative platform for the production of biologically active monoclonal antibodies. In this chapter, we demonstrate the production of an HIV-1 broadly neutralizing antibody b12 in BEVS. The processes including transfer vector construction, recombinant baculovirus generation, and antibody production and detection are described.
Collapse
Affiliation(s)
- Zhihui Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lulu Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Tuyishime M, Spreng RL, Hueber B, Nohara J, Goodman D, Chan C, Barfield R, Beck WE, Jha S, Asdell S, Wiehe K, He MM, Easterhoff D, Conley HE, Hoxie T, Gurley T, Jones C, Adhikary ND, Villinger F, Thomas R, Denny TN, Moody MA, Tomaras GD, Pollara J, Reeves RK, Ferrari G. Multivariate analysis of FcR-mediated NK cell functions identifies unique clustering among humans and rhesus macaques. Front Immunol 2023; 14:1260377. [PMID: 38124734 PMCID: PMC10732150 DOI: 10.3389/fimmu.2023.1260377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University, Durham, NC, United States
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - Brady Hueber
- Center for Human Systems Immunology, Durham, NC, United States
| | - Junsuke Nohara
- Department of Surgery, Duke University, Durham, NC, United States
| | - Derrick Goodman
- Department of Surgery, Duke University, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - Cliburn Chan
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Richard Barfield
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Whitney E. Beck
- Department of Surgery, Duke University, Durham, NC, United States
| | - Shalini Jha
- Department of Surgery, Duke University, Durham, NC, United States
| | - Stephanie Asdell
- Department of Surgery, Duke University, Durham, NC, United States
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Max M. He
- Duke Human Vaccine Institute, Durham, NC, United States
| | | | | | - Taylor Hoxie
- Duke Human Vaccine Institute, Durham, NC, United States
| | | | | | - Nihar Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Michael Anthony Moody
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Pediatrics, Duke University, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| | - R. Keith Reeves
- Department of Surgery, Duke University, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Durham, NC, United States
- Center for Human Systems Immunology, Durham, NC, United States
| |
Collapse
|
6
|
Azulay A, Cohen-Lavi L, Friedman LM, McGargill MA, Hertz T. Mapping antibody footprints using binding profiles. CELL REPORTS METHODS 2023; 3:100566. [PMID: 37671022 PMCID: PMC10475849 DOI: 10.1016/j.crmeth.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
The increasing use of monoclonal antibodies (mAbs) in biology and medicine necessitates efficient methods for characterizing their binding epitopes. Here, we developed a high-throughput antibody footprinting method based on binding profiles. We used an antigen microarray to profile 23 human anti-influenza hemagglutinin (HA) mAbs using HA proteins of 43 human influenza strains isolated between 1918 and 2018. We showed that the mAb's binding profile can be used to characterize its influenza subtype specificity, binding region, and binding site. We present mAb-Patch-an epitope prediction method that is based on a mAb's binding profile and the 3D structure of its antigen. mAb-Patch was evaluated using four mAbs with known solved mAb-HA structures. mAb-Patch identifies over 67% of the true epitope when considering only 50-60 positions along the antigen. Our work provides proof of concept for utilizing antibody binding profiles to screen large panels of mAbs and to down-select antibodies for further functional studies.
Collapse
Affiliation(s)
- Asaf Azulay
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Liel Cohen-Lavi
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lilach M. Friedman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tomer Hertz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology in the Negev, Beer-Sheva, Israel
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
7
|
Haycroft ER, Davis SK, Ramanathan P, Lopez E, Purcell RA, Tan LL, Pymm P, Wines BD, Hogarth PM, Wheatley AK, Juno JA, Redmond SJ, Gherardin NA, Godfrey DI, Tham WH, Selva KJ, Kent SJ, Chung AW. Antibody Fc-binding profiles and ACE2 affinity to SARS-CoV-2 RBD variants. Med Microbiol Immunol 2023:10.1007/s00430-023-00773-w. [PMID: 37477828 PMCID: PMC10372118 DOI: 10.1007/s00430-023-00773-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.
Collapse
Affiliation(s)
- Ebene R Haycroft
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Samantha K Davis
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Ruth A Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Li Lynn Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Phillip Pymm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Samuel J Redmond
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin John Selva
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
- Melbourne Sexual Health Centre, Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
8
|
Pihlstrom N, Bournazos S. Engineering strategies of Anti-HIV antibody therapeutics in clinical development. Curr Opin HIV AIDS 2023; 18:184-190. [PMID: 37144557 PMCID: PMC10247531 DOI: 10.1097/coh.0000000000000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW Anti-human immunodeficiency virus (HIV) antibody-based therapeutics offer an alternative treatment option to current antiretroviral drugs. This review aims to provide an overview of the Fc- and Fab-engineering strategies that have been developed to optimize broadly neutralizing antibodies and discuss recent findings from preclinical and clinical studies. RECENT FINDINGS Multispecific antibodies, including bispecific and trispecific antibodies, DART molecules, and BiTEs, as well as Fc-optimized antibodies, have emerged as promising therapeutic candidates for the treatment of HIV. These engineered antibodies engage multiple epitopes on the HIV envelope protein and human receptors, resulting in increased potency and breadth of activity. Additionally, Fc-enhanced antibodies have demonstrated extended half-life and improved effector function. SUMMARY The development of Fc and Fab-engineered antibodies for the treatment of HIV continues to show promising progress. These novel therapies have the potential to overcome the limitations of current antiretroviral pharmacologic agents by more effectively suppressing viral load and targeting latent reservoirs in individuals living with HIV. Further studies are needed to fully understand the safety and efficacy of these therapies, but the growing body of evidence supports their potential as a new class of therapeutics for the treatment of HIV.
Collapse
Affiliation(s)
- Nicole Pihlstrom
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Yaffe ZA, Ding S, Sung K, Chohan V, Marchitto L, Doepker L, Ralph D, Nduati R, Matsen FA, Finzi A, Overbaugh J. Reconstruction of a polyclonal ADCC antibody repertoire from an HIV-1 non-transmitting mother. iScience 2023; 26:106762. [PMID: 37216090 PMCID: PMC10196594 DOI: 10.1016/j.isci.2023.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Human natural history and vaccine studies support a protective role of antibody dependent cellular cytotoxicity (ADCC) activity against many infectious diseases. One setting where this has consistently been observed is in HIV-1 vertical transmission, where passively acquired ADCC activity in HIV-exposed infants has correlated with reduced acquisition risk and reduced pathogenesis in HIV+ infants. However, the characteristics of HIV-specific antibodies comprising a maternal plasma ADCC response are not well understood. Here, we reconstructed monoclonal antibodies (mAbs) from memory B cells from late pregnancy in mother MG540, who did not transmit HIV to her infant despite several high-risk factors. Twenty mAbs representing 14 clonal families were reconstructed, which mediated ADCC and recognized multiple HIV Envelope epitopes. In experiments using Fc-defective variants, only combinations of several mAbs accounted for the majority of plasma ADCC of MG540 and her infant. We present these mAbs as evidence of a polyclonal repertoire with potent HIV-directed ADCC activity.
Collapse
Affiliation(s)
- Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lorie Marchitto
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Laura Doepker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Goldberg BS, Spencer DA, Pandey S, Ordonez T, Barnette P, Yu Y, Gao L, Dufloo J, Bruel T, Schwartz O, Ackerman ME, Hessell AJ. Complement contributes to antibody-mediated protection against repeated SHIV challenge. Proc Natl Acad Sci U S A 2023; 120:e2221247120. [PMID: 37155897 PMCID: PMC10193994 DOI: 10.1073/pnas.2221247120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The first clinical efficacy trials of a broadly neutralizing antibody (bNAb) resulted in less benefit than expected and suggested that improvements are needed to prevent HIV infection. While considerable effort has focused on optimizing neutralization breadth and potency, it remains unclear whether augmenting the effector functions elicited by broadly neutralizing antibodies (bNAbs) may also improve their clinical potential. Among these effector functions, complement-mediated activities, which can culminate in the lysis of virions or infected cells, have been the least well studied. Here, functionally modified variants of the second-generation bNAb 10-1074 with ablated and enhanced complement activation profiles were used to examine the role of complement-associated effector functions. When administered prophylactically against simian-HIV challenge in rhesus macaques, more bNAb was required to prevent plasma viremia when complement activity was eliminated. Conversely, less bNAb was required to protect animals from plasma viremia when complement activity was enhanced. These results suggest that complement-mediated effector functions contribute to in vivo antiviral activity, and that their engineering may contribute to the further improvements in the efficacy of antibody-mediated prevention strategies.
Collapse
Affiliation(s)
| | - David A. Spencer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Tracy Ordonez
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Philip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| | - Yun Yu
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health and Science University, Portland, OR97239
- Biostatistics & Bioinformatics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR97006
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health and Science University, Portland, OR97239
- Biostatistics & Bioinformatics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR97006
| | - Jérémy Dufloo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Université de Paris, École doctorale BioSPC 562, 75013Paris, France
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Vaccine Research Institute, 94000Créteil, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015Paris, France
- Vaccine Research Institute, 94000Créteil, France
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH03755
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR97006
| |
Collapse
|
11
|
Tipoe T, Fidler S, Frater J. An exploration of how broadly neutralizing antibodies might induce HIV remission: the 'vaccinal' effect. Curr Opin HIV AIDS 2022; 17:162-170. [PMID: 35439790 DOI: 10.1097/coh.0000000000000731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bNAbs) are a potential new therapeutic strategy to treat HIV infection. This review explores possible mechanisms of action of bNAbs and summarizes the current evidence supporting their immunomodulatory properties, which might lead to sustained virological remission - the 'vaccinal effect'. RECENT FINDINGS Antiretroviral therapy (ART) is required to confer lasting HIV suppression; stopping ART almost invariably leads to HIV recrudescence from a persistent pool of virally infected cells - the HIV reservoir. HIV-specific broadly neutralizing antibodies (bNAbs) may confer viral control after ART cessation predominantly through blockade of viral entry into uninfected target cells. In some human and animal studies, HIV bNAbs also conferred lasting viral suppression after therapeutic bNAb plasma levels had declined. Immune-modulatory mechanisms have been postulated to underlie this observation - the 'vaccinal effect'. Hypothesized mechanisms include the formation of immune complexes between bNAbs and HIV envelope protein, thereby enhancing antigen presentation and uptake by immune cells, with boosted adaptive immune responses subsequently controlling the HIV reservoir. SUMMARY There is emerging evidence for potent antiviral efficacy of bNAb therapy. Whether bNAbs can induce sustained viral suppression after dropping below therapeutic levels remains controversial. Mechanistic data from on-going and future clinical trials will help answer these questions.
Collapse
Affiliation(s)
- Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London
- Department of GU and HIV Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London
- NIHR Imperial College Biomedical Research, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford
- NIHR Oxford Biomedical Research Centre, Oxford
| |
Collapse
|
12
|
Lee MJ, Collins S, Babalis D, Johnson N, Falaschetti E, Prevost AT, Ashraf A, Jacob M, Cole T, Hurley L, Pace M, Ogbe A, Khan M, Zacharopoulou P, Brown H, Sutherland E, Box H, Fox J, Deeks S, Horowitz J, Nussenzweig MC, Caskey M, Frater J, Fidler S. The RIO trial: rationale, design, and the role of community involvement in a randomised placebo-controlled trial of antiretroviral therapy plus dual long-acting HIV-specific broadly neutralising antibodies (bNAbs) in participants diagnosed with recent HIV infection-study protocol for a two-stage randomised phase II trial. Trials 2022; 23:263. [PMID: 35382844 PMCID: PMC8981886 DOI: 10.1186/s13063-022-06151-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Antiretroviral therapy (ART) has led to dramatic improvements in survival for people living with HIV, but is unable to cure infection, or induce viral control off therapy. Designing intervention trials with novel agents with the potential to confer a period of HIV remission without ART remains a key scientific and community goal. We detail the rationale, design, and outcomes of a randomised, placebo-controlled trial of two HIV-specific long-acting broadly neutralising antibodies (bNAbs): 3BNC117-LS and 10-1074-LS, which target CD4 binding site and V3 loop respectively, on post-treatment viral control. METHODS RIO is a randomised, placebo-controlled, double-blinded prospective phase II study. Eligible individuals will have started ART within 3 months of primary HIV infection and have viral sequences that appear to be sensitive to both bNAbs. It will randomise 72 eligible participants 1:1 to the following arms via a two-stage design. In Stage 1, arm A participants are given dual long-acting (LS-variants) bNAbs infusions, followed by intensively monitored Analytical Treatment Interruption (ATI) (n = 36); in arm B, participants receive placebo infusions followed by ATI. The primary endpoint will be time to viral rebound within 36 weeks after ATI. Upon viral rebound, the participant and researcher are unblinded. Participants in arm A recommence ART and complete the study. Participants in arm B are invited to restart ART and enroll into Stage 2 where they will receive open-label LS bNAbs, followed by a second ATI 24 weeks after. Secondary and exploratory endpoints include adverse events, time to undetectable viraemia after restarting ART, immunological markers, HIV proviral DNA, serum bNAb concentrations in blood, bNAb resistance at viral rebound, and quality of life measures. DISCUSSION The two-stage design was determined in collaboration with community involvement. This design allows all participants the option to receive bNAbs. It also tests the hypothesis that bNAbs may drive sustained HIV control beyond the duration of detectable bNAb concentrations. Community representatives were involved at all stages. This included the two-stage design, discussion on the criteria to restart ART, frequency of monitoring visits off ART, and reducing the risk of onward transmission to HIV-negative partners. It also included responding to the challenges of COVID-19. TRIAL REGISTRATION The protocol is registered on Clinical. TRIALS gov and EudraCT and has approval from UK Ethics and MHRA.
Collapse
Affiliation(s)
- Ming Jie Lee
- Department of Infectious Disease, Imperial College London, London, UK.
| | | | - Daphne Babalis
- Imperial Clinical Trials Unit, School of Public health, Imperial College London, London, UK
| | - Nicholas Johnson
- Imperial Clinical Trials Unit, School of Public health, Imperial College London, London, UK
| | - Emanuela Falaschetti
- Imperial Clinical Trials Unit, School of Public health, Imperial College London, London, UK
| | - A Toby Prevost
- King's Clinical Trials Unit, King's College London, London, UK
| | - Ambreen Ashraf
- Imperial Clinical Trials Unit, School of Public health, Imperial College London, London, UK
| | - Milaana Jacob
- Imperial Clinical Trials Unit, School of Public health, Imperial College London, London, UK
| | - Tom Cole
- Imperial Clinical Trials Unit, School of Public health, Imperial College London, London, UK
| | - Lisa Hurley
- NIHR Imperial Clinical Research Facility, Imperial College London, London, UK
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Maryam Khan
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Helen Brown
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Euan Sutherland
- Imperial College Clinical Trials Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Hanna Box
- Department of Infectious Disease, Imperial College London, London, UK
| | - Julie Fox
- Harrison Wing, Guy's and St Thomas Hospital NHS Foundation Trust, London, UK
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, CA, 94110, USA
| | - Jill Horowitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, USA
| | | | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, USA
| | - John Frater
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
13
|
Pegu A, Xu L, DeMouth ME, Fabozzi G, March K, Almasri CG, Cully MD, Wang K, Yang ES, Dias J, Fennessey CM, Hataye J, Wei RR, Rao E, Casazza JP, Promsote W, Asokan M, McKee K, Schmidt SD, Chen X, Liu C, Shi W, Geng H, Foulds KE, Kao SF, Noe A, Li H, Shaw GM, Zhou T, Petrovas C, Todd JP, Keele BF, Lifson JD, Doria-Rose N, Koup RA, Yang ZY, Nabel GJ, Mascola JR. Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Rep 2022; 38:110199. [PMID: 34986348 PMCID: PMC8767641 DOI: 10.1016/j.celrep.2021.110199] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques. After treatment discontinuation, viremia rebounds transiently and returns to low levels, through CD8-mediated immune control. These viruses remain sensitive to the trispecific antibody, despite loss of sensitivity to one of the parental bNAbs. Similarly, the trispecific bNAb suppresses the emergence of resistance in viruses derived from HIV-1-infected subjects, in contrast to parental bNAbs. Trispecific HIV-1 neutralizing antibodies, therefore, mediate potent antiviral activity in vivo and may minimize the potential for immune escape.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ling Xu
- Sanofi, 640 Memorial Dr., Cambridge MA, USA
| | - Megan E. DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Giulia Fabozzi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kylie March
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cassandra G. Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michelle D. Cully
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joana Dias
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason Hataye
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Ercole Rao
- Sanofi, 640 Memorial Dr., Cambridge MA, USA
| | - Joseph P. Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wanwisa Promsote
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Shing-Fen Kao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Amy Noe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Gary J. Nabel
- Sanofi, 640 Memorial Dr., Cambridge MA, USA,To whom correspondence should be addressed: G.J.N: , phone: 857-233-9936; J.R.M. ; 301-496-1852
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA,Lead contact,To whom correspondence should be addressed: G.J.N: , phone: 857-233-9936; J.R.M. ; 301-496-1852
| |
Collapse
|
14
|
Perera Molligoda Arachchige AS. NK cell-based therapies for HIV infection: Investigating current advances and future possibilities. J Leukoc Biol 2021; 111:921-931. [PMID: 34668588 DOI: 10.1002/jlb.5ru0821-412rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NK cells are well-known for their antiviral functions. Also, their role in HIV has been well established, with rapid responses elicited during early HIV infection. Most immune cells including CD4+ T cells, monocytes, Mϕs, and dendritic cells are readily infected by HIV. Recent evidence from multiple studies has suggested that similar to these cells, in chronic conditions like HIV, NK cells also undergo functional exhaustion with impaired cytotoxicity, altered cytokine production, and impaired ADCC. NK-based immunotherapy aims to successfully restore, boost, and modify their activity as has been already demonstrated in the field of cancer immunotherapy. The utilization of NK cell-based strategies for the eradication of HIV from the body provides many advantages over classical ART. The literature search consisted of manually selecting the most relevant studies from databases including PubMed, Embase, Google Scholar, and ClinicalTrial.gov. Some of the treatments currently under consideration are CAR-NK cell therapy, facilitating ADCC, TLR agonists, bNAbs, and BiKEs/TriKEs, blocking inhibitory NK receptors during infection, IL-15 and IL-15 superagonists (eg: ALT-803), and so on. This review aims to discuss the NK cell-based therapies currently under experimentation against HIV infection and finally highlight the challenges associated with NK cell-based immunotherapies.
Collapse
|
15
|
Richardson SI, Ayres F, Manamela NP, Oosthuysen B, Makhado Z, Lambson BE, Morris L, Moore PL. HIV Broadly Neutralizing Antibodies Expressed as IgG3 Preserve Neutralization Potency and Show Improved Fc Effector Function. Front Immunol 2021; 12:733958. [PMID: 34566999 PMCID: PMC8462932 DOI: 10.3389/fimmu.2021.733958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of several broadly neutralizing antibodies (bNAbs) to protect against HIV infection is enhanced through Fc receptor binding. Antibody isotype modulates this effect, with IgG3 associated with improved HIV control and vaccine efficacy. We recently showed that an IgG3 variant of bNAb CAP256-VRC26.25 exhibited more potent neutralization and phagocytosis than its IgG1 counterpart. Here, we expanded this analysis to include additional bNAbs targeting all major epitopes. A total of 15 bNAbs were expressed as IgG1 or IgG3, and pairs were assessed for neutralization potency against the multi-subtype global panel of 11 HIV strains. Binding to the neonatal Fc receptor (FcRn) and Fcγ receptors were measured using ELISA and antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis were measured using infectious viruses and global panel Env SOSIP trimers, respectively. IgG3 bNAbs generally showed similar or increased (up to 60 fold) neutralization potency than IgG1 versions, though the effect was virus-specific. This improvement was statistically significant for CAP256-VRC26.25, 35022, PGT135 and CAP255.G3. IgG3 bNAbs also showed significantly improved binding to FcγRIIa which correlated with enhanced phagocytosis of all trimeric Env antigens. Differences in ADCC were epitope-specific, with IgG3 bNAbs to the MPER, CD4 binding site and gp120-gp41 interface showing increased ADCC. We also explored the pH dependence of IgG1 and IgG3 variants for FcRn binding, as this determines the half-life of antibodies. We observed reduced pH dependence, associated with shorter half-lives for IgG3 bNAbs, with κ-light chains. However, IgG3 bNAbs that use λ-light chains showed similar pH dependence to their IgG1 counterparts. This study supports the manipulation of the constant region to improve both the neutralizing and Fc effector activity of bNAbs, and suggests that IgG3 versions of bNAbs may be preferable for passive immunity given their polyfunctionality.
Collapse
Affiliation(s)
- Simone I Richardson
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelia P Manamela
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Brent Oosthuysen
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zanele Makhado
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Bronwen E Lambson
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Penny L Moore
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Lemke MM, McLean MR, Lee CY, Lopez E, Bozich ER, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kratochvil S, Wines BD, Hogarth PM, Kent SJ, Chung AW, Arnold KB. A systems approach to elucidate personalized mechanistic complexities of antibody-Fc receptor activation post-vaccination. CELL REPORTS MEDICINE 2021; 2:100386. [PMID: 34622227 PMCID: PMC8484512 DOI: 10.1016/j.xcrm.2021.100386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/16/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
Immunoglobulin G (IgG) antibodies that activate Fc-mediated immune functions have been correlated with vaccine efficacy, but it is difficult to unravel the relative roles of multiple IgG and Fc receptor (FcR) features that have the capacity to influence IgG-FcR complex formation but vary on a personalized basis. Here, we develop an ordinary differential-equation model to determine how personalized variability in IgG subclass concentrations and binding affinities influence IgG-FcγRIIIa complex formation and validate it with samples from the HIV RV144 vaccine trial. The model identifies individuals who are sensitive, insensitive, or negatively affected by increases in HIV-specific IgG1, which is validated with the addition of HIV-specific IgG1 monoclonal antibodies to vaccine samples. IgG1 affinity to FcγRIIIa is also prioritized as the most influential parameter for dictating activation broadly across a population. Overall, this work presents a quantitative tool for evaluating personalized differences underlying FcR activation, which is relevant to ongoing efforts to improve vaccine efficacy. Fc-mediated immune functions have been correlated with protection in HIV vaccine trials A model reveals personalized mechanisms that drive variation in FcγR activation The model predicts individuals who are sensitive to changes in IgG1 concentration IgG1 affinity to FcγR best dictates activation across a heterogeneous population
Collapse
Affiliation(s)
- Melissa M Lemke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Milla R McLean
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ester Lopez
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Emily R Bozich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Sven Kratochvil
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Alfred Hospital, Monash University Central Clinical School, Carlton, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Rossignol E, Alter G, Julg B. Antibodies for Human Immunodeficiency Virus-1 Cure Strategies. J Infect Dis 2021; 223:22-31. [PMID: 33586772 DOI: 10.1093/infdis/jiaa165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection leads to the establishment of a long-lived latent cellular reservoir. One strategy to eliminate quiescent reservoir cells is to reactivate virus replication to induce HIV envelope glycoprotein (Env) expression on the cell surface exposing them to subsequent antibody targeting. Via the interactions between the antibody Fc domain and Fc-γ receptors (FcγRs) that are expressed on innate effector cells, such as natural killer cells, monocytes, and neutrophils, antibodies can mediate the elimination of infected cells. Over the last decade, a multitude of human monoclonal antibodies that are broadly neutralizing across many HIV-1 subtypes have been identified and are currently being explored for HIV eradication strategies. Antibody development also includes novel Fc engineering approaches to increase engagement of effector cells and optimize antireservoir efficacy. In this review, we discuss the usefulness of antibodies for HIV eradication approaches specifically focusing on antibody-mediated strategies to target latently infected cells and options to increase antibody efficacy.
Collapse
Affiliation(s)
- Evan Rossignol
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA.,Massachusetts General Hospital, Infectious Disease Unit, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Recent work defining Fc-mediated effector functions for both viral control and protection against infection is summarized and considered along with new strategies to drive robust Fc-mediated responses. RECENT FINDINGS In new human and nonhuman primate (NHP) vaccine trials as well as studies of natural infection, Fc-mediated effector responses have sometimes been observed to correlate with decreased risk of infection or with better clinical outcomes, suggesting a potential role for these responses in HIV-1 prevention and therapy. Recent highlights include use of antibody-dependent cellular cytotoxicity-sensitizing CD4-induced mimetic compounds, novel V1V2 immunogens, passive transfer studies, and vaccine regimens that successfully elicited Fc-mediated responses and were reported to decrease risk of infection in challenge studies in NHPs. Lastly, detailed studies of IgG3 forms of HIV-specific antibodies have reported that both neutralizing and Fc-mediated responses can be increased relative to the more prevalent IgG1 subclass. SUMMARY Successful harmonization of neutralizing and Fc-mediated responses may make key contributions to the goal of reducing HIV-1 infection via active and passive vaccination. New studies continue to highlight the importance of Fc-mediated antibody responses as correlates of decreased risk of infection and suggest enhanced phagocytosis is a potential mechanism of reduced risk of infection associated with human IgG3 responses. Results from recent studies may help guide the rational design of therapies and vaccines that aim to specifically leverage antibody effector function.
Collapse
|
19
|
Parsons MS, Kristensen AB, Selva KJ, Lee WS, Amarasena T, Esterbauer R, Wheatley AK, Bavinton BR, Kelleher AD, Grulich AE, Khoury G, Juno JA, Kent SJ. Protective efficacy of the anti-HIV broadly neutralizing antibody PGT121 in the context of semen exposure. EBioMedicine 2021; 70:103518. [PMID: 34385004 PMCID: PMC8361295 DOI: 10.1016/j.ebiom.2021.103518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND HIV-1 infections occur following viral exposure at anogenital mucosal surfaces in the presence of semen. Semen contains immunosuppressive and pro-inflammatory factors. Semen from HIV-1-infected donors contains anti-HIV-1 antibodies. We assessed if passively infused anti-HIV-1 neutralizing antibody conferred protection from rectal SHIVSF162P3 challenge at semen exposed mucosae. METHODS We pooled seminal plasma from HIV-1-infected donors. The pool was screened by ELISA for antibodies against HIV-1SF162 gp140. The ability of seminal plasma to inhibit macaque NK cells from responding to direct and antibody-dependent stimulation was assessed. The ability of seminal plasma to inhibit macaque granulocytes from mediating oxidative burst was also assessed. To demonstrate viral infectivity in the presence of seminal plasma, macaques (n = 4) were rectally challenged with SHIVSF162P3 following exposure to 2.5 mL of seminal plasma. To evaluate if anti-HIV-1 neutralizing antibody confers protection against rectal SHIV challenge at semen exposed mucosae, eight macaques were intravenously infused with PGT121, either wild type (n = 4) or the Fc receptor binding deficient LALA variant (n = 4), and rectally challenged with SHIVSF162P3 following exposure to 2.5 mL of seminal plasma. FINDINGS Anti-HIV-1SF162 gp140 antibodies were detected in seminal plasma. Seminal plasma inhibited direct and antibody-dependent NK cell activation and granulocyte oxidative burst in vitro. Rectal SHIVSF162P3 challenge of control macaques following seminal plasma exposure resulted in infection of all animals. All macaques infused with wild type or LALA PGT121 and challenged with SHIVSF162P3 following seminal plasma exposure were protected. INTERPRETATION PGT121 conferred protection against rectal SHIVSF162P3 challenge at semen exposed mucosae. Future research should investigate if semen alters protection conferred by antibodies more dependent on non-neutralizing functions. FUNDING This work was supported by a grant from the Australian National Health and Medical Research Council (APP1124680).
Collapse
Affiliation(s)
- Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin J Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin R Bavinton
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Anthony D Kelleher
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew E Grulich
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Potential Utility of Natural Killer Cells for Eliminating Cells Harboring Reactivated Latent HIV-1 Following the Removal of CD8 + T Cell-Mediated Pro-Latency Effect(s). Viruses 2021; 13:v13081451. [PMID: 34452317 PMCID: PMC8402732 DOI: 10.3390/v13081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
An impediment to curing HIV-1 infection is the persistence of latently infected cells in ART-treated people living with HIV (PLWH). A key strategy for curing HIV-1 infection is to activate transcription and translation of latent virus using latency reversing agents (LRAs) and eliminate cells harboring reactivated virus via viral cytopathic effect or immune clearance. In this review, we provide an overview of available LRAs and their use in clinical trials. Furthermore, we describe recent data suggesting that CD8+ T cells promote HIV-1 latency in the context of ART, even in the presence of LRAs, which might at least partially explain the clinical inefficiency of previous “shock and kill” trials. Here, we propose a novel cure strategy called “unlock, shock, disarm, and kill”. The general premise of this strategy is to shut down the pro-latency function(s) of CD8+ T cells, use LRAs to reverse HIV-1 latency, counteract anti-apoptotic molecules, and engage natural killer (NK) cells to mediate the killing of cells harboring reactivated latent HIV-1.
Collapse
|
21
|
Abstract
Even after more than 30 years since its discovery, there is no cure for HIV-1 infection. Combination antiretroviral therapy (cART) is currently the only HIV-1 infection management option in clinics. Despite its success in suppressing viral replication and converting HIV-1 from a lethal infection to a chronic and manageable disease, cART treatment is life long and long-term use can result in major drawbacks such as high cost, multiple side effects, and an increase in the development of multidrug-resistant escape mutants. Recently, antibody-based anti-HIV-1 treatment has emerged as a potential alternative therapeutic modality for HIV-1 treatment and cure strategies. These antibody-based anti-HIV-1 treatments comprising either receptor-targeting antibodies or broad neutralizing antibodies (bNAbs) are currently being developed and evaluated in clinical trials. These antibodies have demonstrated potent antiviral effects against multiple strains of HIV-1, and shown promise for prevention, maintenance, and prolonged remission of HIV-1 infection. This review gives an update on the current status of these antibody-based treatments for HIV-1, discusses their mechanism of action and the challenges in developing them, providing insight for their development as novel clinical therapies against HIV-1 infection.
Collapse
Affiliation(s)
- Wanwisa Promsote
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan E DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cassandra G Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Bruxelle JF, Trattnig N, Mureithi MW, Landais E, Pantophlet R. HIV-1 Entry and Prospects for Protecting against Infection. Microorganisms 2021; 9:microorganisms9020228. [PMID: 33499233 PMCID: PMC7911371 DOI: 10.3390/microorganisms9020228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) establishes a latent viral reservoir soon after infection, which poses a major challenge for drug treatment and curative strategies. Many efforts are therefore focused on blocking infection. To this end, both viral and host factors relevant to the onset of infection need to be considered. Given that HIV-1 is most often transmitted mucosally, strategies designed to protect against infection need to be effective at mucosal portals of entry. These strategies need to contend also with cell-free and cell-associated transmitted/founder (T/F) virus forms; both can initiate and establish infection. This review will discuss how insight from the current model of HIV-1 mucosal transmission and cell entry has highlighted challenges in developing effective strategies to prevent infection. First, we examine key viral and host factors that play a role in transmission and infection. We then discuss preventive strategies based on antibody-mediated protection, with emphasis on targeting T/F viruses and mucosal immunity. Lastly, we review treatment strategies targeting viral entry, with focus on the most clinically advanced entry inhibitors.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence: (J.-F.B.); (R.P.)
| | - Nino Trattnig
- Chemical Biology and Drug Discovery, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Marianne W. Mureithi
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
| | - Elise Landais
- IAVI Neutralizing Antibody Center, La Jolla, CA 92037, USA;
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence: (J.-F.B.); (R.P.)
| |
Collapse
|
23
|
Systematic Assessment of Antiviral Potency, Breadth, and Synergy of Triple Broadly Neutralizing Antibody Combinations against Simian-Human Immunodeficiency Viruses. J Virol 2021; 95:JVI.01667-20. [PMID: 33177194 DOI: 10.1128/jvi.01667-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 01/29/2023] Open
Abstract
Daily burden and clinical toxicities associated with antiretroviral therapy (ART) emphasize the need for alternative strategies to induce long-term human immunodeficiency virus (HIV) remission upon ART cessation. Broadly neutralizing antibodies (bNAbs) can both neutralize free virions and mediate effector functions against infected cells and therefore represent a leading immunotherapeutic approach. To increase potency and breadth, as well as to limit the development of resistant virus strains, it is likely that bNAbs will need to be administered in combination. It is therefore critical to identify bNAb combinations that can achieve robust polyfunctional antiviral activity against a high number of HIV strains. In this study, we systematically assessed the abilities of single bNAbs and triple bNAb combinations to mediate robust polyfunctional antiviral activity against a large panel of cross-clade simian-human immunodeficiency viruses (SHIVs), which are commonly used as tools for validation of therapeutic strategies targeting the HIV envelope in nonhuman primate models. We demonstrate that most bNAbs are capable of mediating both neutralizing and nonneutralizing effector functions against cross-clade SHIVs, although the susceptibility to V3 glycan-specific bNAbs is highly strain dependent. Moreover, we observe a strong correlation between the neutralization potencies and nonneutralizing effector functions of bNAbs against the transmitted/founder SHIV CH505. Finally, we identify several triple bNAb combinations comprising of CD4 binding site-, V2-glycan-, and gp120-gp41 interface-targeting bNAbs that are capable of mediating synergistic polyfunctional antiviral activities against multiple clade A, B, C, and D SHIVs.IMPORTANCE Optimal bNAb immunotherapeutics will need to mediate multiple antiviral functions against a broad range of HIV strains. Our systematic assessment of triple bNAb combinations against SHIVs will identify bNAbs with synergistic, polyfunctional antiviral activity that will inform the selection of candidate bNAbs for optimal combination designs. The identified combinations can be validated in vivo in future passive immunization studies using the SHIV challenge model.
Collapse
|
24
|
Pediatric HIV: the Potential of Immune Therapeutics to Achieve Viral Remission and Functional Cure. Curr HIV/AIDS Rep 2020; 17:237-248. [PMID: 32356090 DOI: 10.1007/s11904-020-00495-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW In the absence of antiretroviral therapy (ART), more than 50% of perinatally HIV-infected children die by 2 years of age. Early ART from infancy is therefore a global recommendation and significantly improves immune health, child survival, and disease outcome. However, even early treatment does not prevent or eradicate the latent reservoir necessitating life-long ART. Adherence to life-long ART is challenging for children and longstanding ART during chronic HIV infection led to higher risks of non-AIDS co-morbidities and virologic failure in infected children. Thus, HIV-infected children are an important population for consideration for immune-based interventions to achieve ART-free remission and functional cure. This review summarizes how the uniqueness of the early life immune system can be harnessed for the development of ART-free remission and functional cure, which means complete virus control in absence of ART. In addition, recent advances in therapeutics in the HIV cure field and their potential for the treatment of pediatric HIV infections are discussed. RECENT FINDINGS Preclinical studies and clinical trials demonstrated that immune-based interventions target HIV replication, limit size of virus reservoir, maintain virus suppression, and delay time to virus rebound. However, these studies have been performed so far only in carefully selected HIV-infected adults, highlighting the need to evaluate the efficacy of immune-based therapeutics in HIV-infected children and to design interventions tailored to the early life maturing immune system. Immune-based therapeutics alone or in combination with ART should be actively explored as potential strategies to achieve viral remission and functional cure in HIV-infected pediatric populations.
Collapse
|
25
|
Tuyishime M, Garrido C, Jha S, Moeser M, Mielke D, LaBranche C, Montefiori D, Haynes BF, Joseph S, Margolis DM, Ferrari G. Improved killing of HIV-infected cells using three neutralizing and non-neutralizing antibodies. J Clin Invest 2020; 130:5157-5170. [PMID: 32584790 PMCID: PMC7524508 DOI: 10.1172/jci135557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The correlation of HIV-specific antibody-dependent cellular cytotoxicity (ADCC) responses with protection from and delayed progression of HIV-1 infection provides a rationale to leverage ADCC-mediating antibodies for treatment purposes. We evaluated ADCC mediated by different combinations of 2 to 6 neutralizing and non-neutralizing anti-HIV-1 Envelope (Env) mAbs, using concentrations ≤ 1 μg/mL, to identify combinations effective at targeting latent reservoir HIV-1 viruses from 10 individuals. We found that within 2 hours, combinations of 3 mAbs mediated more than 30% killing of HIV-infected primary CD4+ T cells in the presence of autologous NK cells, with the combination of A32 (C1C2), DH511.2K3 (MPER), and PGT121 (V3) mAbs being the most effective. Increasing the incubation of target and effector cells in the presence of mAb combinations from 2 to 24 hours resulted in increased specific killing of infected cells, even with neutralization-resistant viruses. The same combination eliminated reactivated latently HIV-1-infected cells in an ex vivo quantitative viral outgrowth assay. Therefore, administration of a combination of 3 mAbs should be considered in planning in vivo studies seeking to eliminate persistently HIV-1-infected cells.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Shalini Jha
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Matt Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dieter Mielke
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine and
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah Joseph
- UNC HIV Cure Center and
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology and
| | - David M. Margolis
- UNC HIV Cure Center and
- Department of Microbiology and Immunology and
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Immunotherapy strategies alternative to current antiretroviral therapies will need to address viral diversity while increasing the immune system's ability to efficiently target the latent virus reservoir. Antibody-based molecules can be designed based on broadly neutralizing and non-neutralizing antibodies that target free virions and infected cells. These multispecific molecules, either by IgG-like or non-IgG-like in structure, aim to target several independent HIV-1 epitopes and/or engage effector cells to eliminate the replicating virus and infected cells. This detailed review is intended to stimulate discussion on future requirements for novel immunotherapeutic molecules. RECENT FINDINGS Bispecific and trispecific antibodies are engineered as a single molecules to target two or more independent epitopes on the HIV-1 envelope (Env). These antibody-based molecules have increased avidity for Env, leading to improved neutralization potency and breadth compared with single parental antibodies. Furthermore, bispecific and trispecific antibodies that engage cellular receptors with one arm of the molecule help concentrate inhibitory molecules to the sites of potential infection and facilitate engagement of immune effector cells and Env-expressing target cells for their elimination. SUMMARY Recently engineered antibody-based molecules of different sizes and structures show promise in vitro or in vivo and are encouraging candidates for HIV treatment.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
27
|
Brief Report: Decreased JC Virus-Specific Antibody-Dependent Cellular Cytotoxicity in HIV-Seropositive PML Survivors. J Acquir Immune Defic Syndr 2020; 82:220-224. [PMID: 31513076 DOI: 10.1097/qai.0000000000002105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML) is an often fatal disease caused by JC virus (JCV) in severely immunocompromised patients, including HIV patients. Development of therapeutics to prevent or treat PML is an urgent medical need. While JCV-specific T cells are crucial to control JCV and recover from PML, the role played by antibodies remains unclear. Anti-JCV antibodies, including potent neutralizing antibodies, can be detected in most infected adults, yet in PML patients, JCV seems to escape from neutralization. Whether antibodies can contribute to JCV control by eliciting Fc-mediated effector functions activity has not been evaluated. METHODS We measured the capacity of plasma anti-JCV VP1 antibodies to recruit Fc receptor (FcR)-bearing effector cell functions in 28 HIV patients, comparing subjects without PML with PML survivors (PML S) who were alive 1 year after disease onset or PML progressors (PML P) who succumbed within the first year. Antibody titers against JCV VP1 and HIV gp140 trimer were determined by end-point titer dilution ELISA. FcR-mediated natural killer cell degranulation and IFN-γ production were measured as surrogate for in vitro antibody-dependent cellular cytotoxicity (ADCC). RESULTS PML S had higher JCV antibody titers than PML P and patients without PML. However, anti-JCV antibodies had a higher ability to functionally engage FcR in PML P than PML S. Antibody titers and ADCC activity did not vary over time in PML S. Anti-HIV antibody titers and ADCC activity were similar among groups. CONCLUSIONS The ability of anti-JCV antibodies to stimulate FcR-bearing effector cell activity might contribute to the outcome of PML. Further studies are warranted to define Fc-mediated functions of anti-JCV antibodies and evaluate whether ADCC can contain JCV replication.
Collapse
|
28
|
Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 2019; 10:2968. [PMID: 31921207 PMCID: PMC6930241 DOI: 10.3389/fimmu.2019.02968] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies (Abs) are the major component of the humoral immune response and a key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to in vivo protection against HIV have not been elucidated. In addition to the desired viral capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve engaging immune effector cells to clear infected host cells, immune complexes, and opsonized virus have been proposed as being relevant. These inhibitory mechanisms involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity, phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition. Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial was correlated with the production of non-neutralizing inhibitory Abs, highlighting the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor polymorphisms have been associated with disease progression. These findings further support the need to define which Fc-mediated Ab inhibitory functions leading to protection are critical for HIV vaccine design. Herein, based on our previous review Su & Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific Abs that may potentially contribute to HIV protection.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Iannone
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Raphael Carapito
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|
29
|
McLean MR, Lu LL, Kent SJ, Chung AW. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front Immunol 2019; 10:2846. [PMID: 31921122 PMCID: PMC6913197 DOI: 10.3389/fimmu.2019.02846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) resides in a quarter of the world's population and is the causative agent for tuberculosis (TB), the most common infectious reason of death in humans today. Although cellular immunity has been firmly established in the control of Mtb, there is growing evidence that antibodies may also modulate the infection. More specifically, certain antibody features are associated with inflammation and are divergent in different states of human infection and disease. Importantly, TB impacts not just the healthy but also those with chronic conditions. While HIV represents the quintessential comorbid condition for TB, recent epidemiological evidence shows that additional chronic conditions such as diabetes and kidney disease are rising. In fact, the prevalence of diabetes as a comorbid TB condition is now higher than that of HIV. These chronic diseases are themselves independently associated with pro-inflammatory immune states that encompass antibody profiles. This review discusses isotypes, subclasses, post-translational modifications and Fc-mediated functions of antibodies in TB infection and in the comorbid chronic conditions of HIV, diabetes, and kidney diseases. We propose that inflammatory antibody profiles, which are a marker of active TB, may be an important biomarker for detection of TB disease progression within comorbid individuals. We highlight the need for future studies to determine which inflammatory antibody profiles are the consequences of comorbidities and which may potentially contribute to TB reactivation.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lenette L Lu
- Division of Infectious Disease and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Brisbane, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Richardson SI, Lambson BE, Crowley AR, Bashirova A, Scheepers C, Garrett N, Abdool Karim S, Mkhize NN, Carrington M, Ackerman ME, Moore PL, Morris L. IgG3 enhances neutralization potency and Fc effector function of an HIV V2-specific broadly neutralizing antibody. PLoS Pathog 2019; 15:e1008064. [PMID: 31841557 PMCID: PMC6936867 DOI: 10.1371/journal.ppat.1008064] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/30/2019] [Accepted: 09/02/2019] [Indexed: 11/19/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) protect against HIV infection in non-human primates and their efficacy may be enhanced through interaction with Fc receptors on immune cells. Antibody isotype is a modulator of this binding with the IgG3 subclass mediating potent Fc effector function and is associated with HIV vaccine efficacy and HIV control. BNAb functions are typically assessed independently of the constant region with which they are naturally expressed. To examine the role of natural isotype in the context of a bNAb lineage we studied CAP256, an HIV-infected individual that mounted a potent V2-specific bNAb response. CAP256 expressed persistently high levels of plasma IgG3 which we found mediated both broad neutralizing activity and potent Fc function. Sequencing of germline DNA and the constant regions of V2-directed bNAbs from this donor revealed the expression of a novel IGHG3 allele as well as IGHG3*17, an allele that produces IgG3 antibodies with increased plasma half-life. Both allelic variants were used to generate CAP256-VRC26.25 and CAP256-VRC26.29 IgG3 bNAbs and these were compared to IgG1 versions. IgG3 variants were shown to have significantly higher phagocytosis and trogocytosis compared to IgG1 versions, which corresponded to increased affinity for FcγRIIa. Neutralization potency was also significantly higher for IgG3 bNAbs, particularly against viruses lacking the N160 glycan. By exchanging hinge regions between subclass variants, we showed that hinge length modulated both neutralization potency and Fc function. This study showed that co-operation between the variable and natural IgG3 constant regions enhanced the polyfunctionality of antibodies, indicating the value of leveraging genetic variation which could be exploited for passive immunity.
Collapse
Affiliation(s)
- Simone I. Richardson
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Bronwen E. Lambson
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Andrew R. Crowley
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Arman Bashirova
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard University, Boston, Massachusetts, United States of America
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Cathrine Scheepers
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States of America
| | - Nonhlanhla N. Mkhize
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard University, Boston, Massachusetts, United States of America
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Penny L. Moore
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
| | - Lynn Morris
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
| |
Collapse
|
31
|
Moshoette T, Ali SA, Papathanasopoulos MA, Killick MA. Engineering and characterising a novel, highly potent bispecific antibody iMab-CAP256 that targets HIV-1. Retrovirology 2019; 16:31. [PMID: 31703699 PMCID: PMC6842167 DOI: 10.1186/s12977-019-0493-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
The existing repertoire of HIV-1 patient derived broadly neutralising antibodies (bNAbs) that target the HIV-1 envelope glycoprotein (Env) present numerous and exciting opportunities for immune-based therapeutic and preventative strategies against HIV-1. Combination antibody therapy is required to ensure greater neutralization coverage and limit Env mediated escape mutations following treatment pressure. Engineered bispecific bNAbs (bibNAbs) assimilate the advantages of combination therapy into a single antibody molecule with several configurations reporting potency enhancement as a result of the increased avidity and simultaneous engagement of targeted epitopes. We report the engineering of a novel bibNAb (iMab-CAP256) comprising the highly potent, CAP256.VRC26.25 bNAb with anticipated extension in neutralization coverage through pairing with the host directed, anti-CD4 antibody, ibalizumab (iMab). Recombinant expression of parental monoclonal antibodies and the iMab-CAP256 bibNAb was performed in HEK293T (Human embryonic kidney 293 T antigen) cells, purified to homogeneity by Protein-A affinity chromatography followed by size exclusion chromatography. Antibody assembly and binding functionality of Fab moieties was confirmed by SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis) and ELISA, respectively. Breadth and potency were evaluated against a geographical diverse HIV-1 pseudovirus panel (n = 20). Overall, iMab-CAP256 demonstrated an expanded neutralizing coverage, neutralizing single, parental antibody resistant pseudovirus strains and an enhanced neutralization potency against all dual sensitive strains (average fold increase over the more potent parental antibody of 11.4 (range 2 to 31.8). Potency enhancement was not observed for the parental antibody combination treatment (iMab + CAP256) suggesting the presence of a synergistic relationship between the CAP256 and iMab paratope combination in this bibNAb configuration. In addition, iMab-CAP256 bibNAbs exhibited comparable efficacy to other bibNAbs PG9-iMab and 10E08-iMab previously reported in the literature. The enhanced neutralization coverage and potency of iMAb-CAP256 over the parental bNAbs should facilitate superior clinical performance as a therapeutic or preventative strategy against HIV-1.
Collapse
Affiliation(s)
- Tumelo Moshoette
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Stuart Alvaro Ali
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Maria Antonia Papathanasopoulos
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mark Andrew Killick
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
32
|
Billings H, Wines BD, Dyer WB, Center RJ, Trist HM, Kent SJ, Hogarth PM. Boosting of Markers of Fcγ Receptor Function in Anti-HIV Antibodies During Structured Treatment Interruption. AIDS Res Hum Retroviruses 2019; 35:842-852. [PMID: 31288562 PMCID: PMC6735329 DOI: 10.1089/aid.2019.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anti-HIV envelope (Env) antibodies elicit important Fc receptor functions, including FcγRIIIa-mediated natural killer cell killing of opsonized infected targets. How these antibodies evolve during HIV infection and treatment remains poorly understood. We describe changes in anti-HIV Env IgG using longitudinal samples from seroconverter subjects treated soon after infection and later during periods of structured treatment interruption (STI). Our well-validated dimeric rsFcγR binding assays combine effects of opsonizing antibody subclasses, epitopes, and geometries to provide a measure of FcγR (Fcγ receptor)-mediated functionality. IgG1 anti-Env titers diminished rapidly during antiretroviral therapy (ART; t1/2 3.0 ± 0.8 months), while the dimeric rsFcγRIIIa activity persisted longer (t1/2 33 ± 11 months), suggesting that there is maintenance of functional antibody specificities within the diminished pool of anti-HIV Env Abs. The initial antibody response to infection in two subjects was characterized by approximately fivefold higher FcγRIIIa compared with FcγRIIa binding activity. Uncoupling of FcγRIIa and FcγRIIIa activities may be a distinct feature of the early antibody response that preferentially engages FcγRIIIa-mediated effector functions. Two to three STI cycles, even with low viremia, were sufficient to boost dimeric FcγR activity in these seroconverter subjects. We hypothesize that increased humoral immunity induced by STI is a desirable functional outcome potentially achievable by therapeutic immunization during ART. We conclude that controlled viral antigen exposure under the protection of suppressive ART may be effective in eliciting FcγR-dependent function in support of viral reactivation and kill strategies.
Collapse
Affiliation(s)
- Hugh Billings
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University Central Clinical School, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Wayne B. Dyer
- Australian Red Cross Blood Service, Alexandria, Australia
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Robert J. Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Disease Elimination, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Halina M. Trist
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Stephen J. Kent
- Disease Elimination, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Life Sciences, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University Central Clinical School, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
33
|
Kent SJ, Davenport MP. Moving the HIV vaccine field forward: concepts of protective immunity. Lancet HIV 2019; 6:e406-e410. [PMID: 31080107 DOI: 10.1016/s2352-3018(19)30134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Abstract
Vaccine-induced prevention of HIV infection is widely viewed as requiring both humoral and cellular immunity. Although the evidence for such a multipronged approach is not strong, this strategy increases the possibility that at least one mechanism of immunity could work to diminish new infections. The concept of broad immunity to HIV is attractive to funding bodies that seek at least some success from expensive trials. However, trying simultaneously to achieve both robust cellular and humoral immunity against HIV might be difficult. Furthermore, a multipronged approach increases the difficulty of later dissecting the immune correlates of protection and thereby iteratively improving HIV vaccines. This Viewpoint briefly discusses different approaches to tackling the challenge of inducing protective immunity to HIV and speculates on how results will move the field forward. We posit that, given the uncertain nature of immunity to HIV at present, focusing on inducing, evaluating, and optimising discrete individual mechanisms of immunity to HIV could provide the most rapid pathway to an effective HIV vaccine.
Collapse
Affiliation(s)
- Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and Australian Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Calenda G, Frank I, Arrode-Brusés G, Pegu A, Wang K, Arthos J, Cicala C, Rogers KA, Shirreff L, Grasperge B, Blanchard JL, Maldonado S, Roberts K, Gettie A, Villinger F, Fauci AS, Mascola JR, Martinelli E. Delayed vaginal SHIV infection in VRC01 and anti-α4β7 treated rhesus macaques. PLoS Pathog 2019; 15:e1007776. [PMID: 31083697 PMCID: PMC6533011 DOI: 10.1371/journal.ppat.1007776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/23/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
VRC01 protects macaques from vaginal SHIV infection after a single high-dose challenge. Infusion of a simianized anti-α4β7 mAb (Rh-α4β7) just prior to, and during repeated vaginal exposures to SIVmac251 partially protected macaques from vaginal SIV infection and rescued CD4+ T cells. To investigate the impact of combining VRC01 and Rh-α4β7 on SHIV infection, 3 groups of macaques were treated with a suboptimal dosing of VRC01 alone or in combination with Rh-α4β7 or with control antibodies prior to the initiation of weekly vaginal exposures to a high dose (1000 TCID50) of SHIVAD8-EO. The combination Rh-α4β7-VRC01 significantly delayed SHIVAD8-EO vaginal infection. Following infection, VRC01-Rh-α4β7-treated macaques maintained higher CD4+ T cell counts and exhibited lower rectal SIV-DNA loads compared to controls. Interestingly, VRC01-Rh-α4β7-treated macaques had fewer IL-17-producing cells in the blood and the gut during the acute phase of infection. Moreover, higher T cell responses to the V2-loop of the SHIVAD8-EO envelope in the VRC01-Rh-α4β7 group inversely correlated with set point viremia. The combination of suboptimal amounts of VRC01 and Rh-α4β7 delayed infection, altered antiviral immune responses and minimized CD4+ T cell loss. Further exploration of the effect of combining bNAbs with Rh-α4β7 on SIV/HIV infection and antiviral immune responses is warranted and may lead to novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Calenda
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Géraldine Arrode-Brusés
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, United States of America
| | - Lisa Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, United States of America
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - James L. Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Stephanie Maldonado
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Kevin Roberts
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, United States of America
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|