1
|
Chaiyasing R, Jinagool P, Wipassa V, Kusolrat P, Aengwanich W. Impact of rising temperature on physiological and biochemical alterations that affect the viability of blood cells in American bullfrog crossbreeds. Heliyon 2024; 10:e32416. [PMID: 38933952 PMCID: PMC11200338 DOI: 10.1016/j.heliyon.2024.e32416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The study aimed to examine the impact of increasing environmental temperatures on physiological changes, oxidative stress, nitric oxide production, total antioxidant capacity, and blood cell viability in American bullfrog crossbreeds. Frogs and frog blood cells were exposed to temperature ranges of 25-33 °C and 25-37 °C, respectively. Physiological parameters (body temperature, pulse rate, ventilation rate, and oxygen saturation) and biochemical parameters (total antioxidant power, hydrogen peroxide, malondialdehyde, nitric oxide, and mitochondrial activity) were measured at every 2 °C increment. Results showed that body temperature rose with increased environmental temperature (P < 0.05). Pulse rates at 33 °C were higher than those at 25-31 °C (P < 0.05). Ventilation rates at 31 °C exceeded those at 25 °C and 27 °C (P < 0.05). Oxygen saturation levels remained stable at 25-33 °C (P > 0.05). Total antioxidant power at 25 °C was greater than at 27-37 °C (P < 0.05). Hydrogen peroxide levels at 27 °C were higher compared to 25 °C and 31-37 °C (P < 0.05). Malondialdehyde levels at 25-33 °C were higher than at 35 °C and 37 °C (P < 0.05). Nitric oxide levels at 37 °C were higher than at 25-33 °C (P < 0.05), and at 35 °C were higher than at 25-31 °C (P < 0.05). Blood cell viability at 25-31 °C was higher than at 37 °C (P < 0.05). These results suggest that at an environmental temperature of 33 °C, the frogs' body temperature approached 31 °C or higher, and were likely to be harmful to the frogs. Finally, the environmental temperature that caused frog blood cell death was 37 °C.
Collapse
Affiliation(s)
| | - Pailin Jinagool
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Vajara Wipassa
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Prayuth Kusolrat
- Faculty of Science and Technology, Nakhonratchasima Rajabhat University, Nakhonratchasima, 30000, Thailand
| | - Worapol Aengwanich
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| |
Collapse
|
2
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
3
|
Gal A, Fries R, Kadotani S, Ulanov AV, Li Z, Scott-Moncrieff JC, Burchell RK, Lopez-Villalobos N, Petreanu Y. Canine urinary lactate and cortisol metabolites in hypercortisolism, nonadrenal disease, congestive heart failure, and health. J Vet Diagn Invest 2022; 34:622-630. [PMID: 35658640 DOI: 10.1177/10406387221099916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spontaneous hypercortisolism (HC) is a common endocrine disease of senior dogs, often overlapping in selected clinical signs and hematologic and blood biochemical abnormalities with nonadrenal diseases (NADs). HC and NAD could differentially affect cortisol metabolism, which is a complex 10-enzymatic pathway process. HC might also affect blood and urine lactate levels through its effects on mitochondrial function. We aimed to differentiate between HC and NAD via a urinary cortisol metabolites and lactate panel. We prospectively recruited 7 healthy dogs and 18 dogs with HC, 15 with congestive heart failure (CHF), and 9 with NAD. We analyzed urine by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. We normalized urinary lactate and cortisol metabolites to urine creatinine concentration, and then compared groups using a linear-mixed model and principal component (PC) analysis. A machine-learning classification algorithm generated a decision tree (DT) model for predicting HC. The least-squares means of normalized urinary 6β-hydroxycortisol and PC1 of the HC and CHF groups were higher than those of the healthy and NAD groups (p = 0.05). Creatinine-normalized urinary 6β-hydroxycortisol had better sensitivity (Se, 0.78; 95% CI: 0.55-0.91), specificity (Sp, 0.89; 95% CI: 0.57-0.99), and a likelihood ratio (LR; 7), than the Se (0.72; 95% CI: 0.49-0.88), Sp (0.89; 95% CI: 0.57-0.99), and LR (6.5) of PC1 for distinguishing HC from NAD. Lactate and dihydrocortisone had the highest decreasing node-weighted impurity value and were considered the most important features in the DT model; dihydrocortisol had no role in determining whether a dog had HC.
Collapse
Affiliation(s)
- Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ryan Fries
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Saki Kadotani
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J Catharine Scott-Moncrieff
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA (Scott-Moncrieff)
| | - Richard K Burchell
- North Coast Veterinary Specialist and Referral Centre, Sunshine Coast, Queensland, Australia
| | | | | |
Collapse
|
4
|
Effect of Artificial Regime Shifts and Biotic Factors on the Intensity of Foraging of Planktivorous Fish. Animals (Basel) 2021; 12:ani12010017. [PMID: 35011122 PMCID: PMC8749725 DOI: 10.3390/ani12010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
It is still to be confirmed whether global warming with its predicted elevated water temperature will cause an increase in predation and alter phenological and physiological processes leading to changes in the size of aquatic organisms. In an experimental system of water column stratification simulating a natural combination of field conditions, we created artificial abiotic factors that mimicked the natural environment, i.e., light intensity, oxygen conditions, and thermal stratification. Subsequently, we added biotic factors such as algae, Daphnia, and planktivorous fish. We studied the intensity of foraging of planktivorous fish on individuals of Daphnia per min in different conditions of biotic and abiotic gradients. We demonstrated a possible scenario involving the risk of elimination of large prey within macrocladocera communities by predatory pressure as a result of climate change. A higher intensity of foraging of planktivorous fish caused or increased the occurrence of larger groups of planktonic animals with a smaller body size. The mechanisms of a future scenario were discovered at a higher trophic level in the aquatic environment.
Collapse
|
5
|
Hepatic Glucose Metabolism and Its Disorders in Fish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:207-236. [PMID: 34807444 DOI: 10.1007/978-3-030-85686-1_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbohydrate, which is the most abundant nutrient in plant-sourced feedstuffs, is an economically indispensable component in commercial compound feeds for fish. This nutrient can enhance the physical quality of diets and allow for pellet expansion during extrusion. There is compelling evidence that an excess dietary intake of starch causes hepatic disorders, thereby further reducing the overall food consumption and growth performance of fish species. Among the severe metabolic disturbances are glycogenic hepatopathy (hepatomegaly caused by the excessive accumulation of glycogen in hepatocytes) and hepatic steatosis (the accumulation of large vacuoles of triacylglycerols in hepatocytes). The development of those disorders is mainly due to the limited ability of fish to oxidize glucose and control blood glucose concentration. The prolonged elevations of blood glucose increase glucose intake by the liver, and excess glucose is stored either as glycogen through glycogenesis in hepatocytes or as triglycerides via lipogenesis in tissues, depending on the species. In some fish species (e.g., largemouth bass), the liver has a low ability to regulate glycolysis, gluconeogenesis, and glycogen breakdown in response to high starch intake. For most species of fish, the liver size increases with lipid or glycogen accumulation when they have a high starch intake. It is a challenge to develop the same set of diagnostic criteria for all fish species as their physiology or metabolic patterns differ. Although glycogenic hepatopathy appears to be a common disease in carnivorous fish, it has been under-recognized in many studies. As a result, understanding these diseases and their pathogeneses in different fish species is crucial for manufacturing cost-effective pellet diets to promote the health, growth, survival, and feed efficiency of fish in future.
Collapse
|
6
|
Convergent evolution of a genomic rearrangement may explain cancer resistance in hystrico- and sciuromorpha rodents. NPJ Aging Mech Dis 2021; 7:20. [PMID: 34471123 PMCID: PMC8410860 DOI: 10.1038/s41514-021-00072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
The rodents of hystricomorpha and sciuromorpha suborders exhibit remarkably lower incidence of cancer. The underlying genetic basis remains obscure. We report a convergent evolutionary split of human 3p21.31, a locus hosting a large number of tumour-suppressor genes (TSGs) and frequently deleted in several tumour types, in hystrico- and sciuromorphs. Analysis of 34 vertebrate genomes revealed that the synteny of 3p21.31 cluster is functionally and evolutionarily constrained in most placental mammals, but exhibit large genomic interruptions independently in hystricomorphs and sciuromorphs, owing to relaxation of underlying constraints. Hystrico- and sciuromorphs, therefore, escape from pro-tumorigenic co-deletion of several TSGs in cis. The split 3p21.31 sub-clusters gained proximity to proto-oncogene clusters from elsewhere, which might further nullify pro-tumorigenic impact of copy number variations due to co-deletion or co-amplification of genes with opposing effects. The split of 3p21.31 locus coincided with the accelerated rate of its gene expression and the body mass evolution of ancestral hystrico- and sciuromorphs. The genes near breakpoints were associated with the traits specific to hystrico- and sciuromorphs, implying adaptive significance. We conclude that the convergently evolved chromosomal interruptions of evolutionarily constrained 3p21.31 cluster might have impacted evolution of cancer resistance, body mass variation and ecological adaptations in hystrico- and sciuromorphs.
Collapse
|
7
|
Transcriptomic profiling of Gh/Igf system reveals a prompted tissue-specific differentiation and novel hypoxia responsive genes in gilthead sea bream. Sci Rep 2021; 11:16466. [PMID: 34385497 PMCID: PMC8360970 DOI: 10.1038/s41598-021-95408-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
A customized PCR-array was used for the simultaneous gene expression of the Gh/Igf system and related markers of muscle growth, and lipid and energy metabolism during early life stages of gilthead sea bream (60–127 days posthatching). Also, transcriptional reprogramming by mild hypoxia was assessed in fingerling fish with different history trajectories on O2 availability during the same time window. In normoxic fish, the expression of almost all the genes in the array varied over time with a prompted liver and muscle tissue-specific differentiation, which also revealed temporal changes in the relative expression of markers of the full gilthead sea bream repertoire of Gh receptors, Igfs and Igf-binding proteins. Results supported a different contribution through development of ghr and igf subtypes on the type of action of GH via systemic or direct effects at the local tissue level. This was extensive to Igfbp1/2/4 and Igfbp3/5/6 clades that clearly evolved through development as hepatic and muscle Igfbp subtypes, respectively. This trade-off is however very plastic to cope changes in the environment, and ghr1 and igfbp1/3/4/5 emerged as hypoxic imprinting genes during critical early developmental windows leading to recognize individuals with different history trajectories of oxygen availability and metabolic capabilities later in life.
Collapse
|
8
|
Perelló-Amorós M, García-Pérez I, Sánchez-Moya A, Innamorati A, Vélez EJ, Achaerandio I, Pujolà M, Calduch-Giner J, Pérez-Sánchez J, Fernández-Borràs J, Blasco J, Gutiérrez J. Diet and Exercise Modulate GH-IGFs Axis, Proteolytic Markers and Myogenic Regulatory Factors in Juveniles of Gilthead Sea Bream ( Sparus aurata). Animals (Basel) 2021; 11:ani11082182. [PMID: 34438639 PMCID: PMC8388392 DOI: 10.3390/ani11082182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The effects of exercise and diet on growth markers were analyzed in gilthead sea bream juveniles. Under voluntary swimming, fish fed with a high-lipid diet showed lower growth, growth hormone (GH) plasma levels, flesh texture, and higher expression of main muscle proteolytic markers than those fed with a high-protein diet. However, under sustained exercise, most of the differences disappeared and fish growth was similar regardless of the diet, suggesting that exercise improves nutrients use allowing a reduction of the dietary protein, which results in an enhanced aquaculture production. Abstract The physiological and endocrine benefits of sustained exercise in fish were largely demonstrated, and this work examines how the swimming activity can modify the effects of two diets (high-protein, HP: 54% proteins, 15% lipids; high-energy, HE: 50% proteins, 20% lipids) on different growth performance markers in gilthead sea bream juveniles. After 6 weeks of experimentation, fish under voluntary swimming and fed with HP showed significantly higher circulating growth hormone (GH) levels and plasma GH/insulin-like growth-1 (IGF-1) ratio than fish fed with HE, but under exercise, differences disappeared. The transcriptional profile of the GH-IGFs axis molecules and myogenic regulatory factors in liver and muscle was barely affected by diet and swimming conditions. Under voluntary swimming, fish fed with HE showed significantly increased mRNA levels of capn1, capn2, capn3, capns1a, n3, and ub, decreased gene and protein expression of Ctsl and Mafbx and lower muscle texture than fish fed with HP. When fish were exposed to sustained exercise, diet-induced differences in proteases’ expression and muscle texture almost disappeared. Overall, these results suggest that exercise might be a useful tool to minimize nutrient imbalances and that proteolytic genes could be good markers of the culture conditions and dietary treatments in fish.
Collapse
Affiliation(s)
- Miquel Perelló-Amorós
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Isabel García-Pérez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Albert Sánchez-Moya
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Arnau Innamorati
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Emilio J. Vélez
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France;
| | - Isabel Achaerandio
- Department d’Enginyeria Agroalimentària i Biotecnologia, Escola Superior d’Agricultura de Barcelona, Universitat Politècnica de Catalunya BarcelonaTech, 08860 Barcelona, Spain; (I.A.); (M.P.)
| | - Montserrat Pujolà
- Department d’Enginyeria Agroalimentària i Biotecnologia, Escola Superior d’Agricultura de Barcelona, Universitat Politècnica de Catalunya BarcelonaTech, 08860 Barcelona, Spain; (I.A.); (M.P.)
| | - Josep Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Ribera de Cabanes, 12595 Castellón, Spain; (J.C.-G.); (J.P.-S.)
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Ribera de Cabanes, 12595 Castellón, Spain; (J.C.-G.); (J.P.-S.)
| | - Jaume Fernández-Borràs
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Josefina Blasco
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
| | - Joaquim Gutiérrez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.P.-A.); (I.G.-P.); (A.S.-M.); (A.I.); (J.F.-B.); (J.B.)
- Correspondence: ; Tel.: +34-934-021-532
| |
Collapse
|
9
|
Jeffries KM, Teffer A, Michaleski S, Bernier NJ, Heath DD, Miller KM. The use of non-lethal sampling for transcriptomics to assess the physiological status of wild fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110629. [PMID: 34058376 DOI: 10.1016/j.cbpb.2021.110629] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Fishes respond to different abiotic and biotic stressors through changes in gene expression as a part of an integrated physiological response. Transcriptomics approaches have been used to quantify gene expression patterns as a reductionist approach to understand responses to environmental stressors in animal physiology and have become more commonly used to study wild fishes. We argue that non-lethal sampling for transcriptomics should become the norm for assessing the physiological status of wild fishes, especially when there are conservation implications. Processes at the level of the transcriptome provide a "snapshot" of the cellular conditions at a given time; however, by using a non-lethal sampling protocol, researchers can connect the transcriptome profile with fitness-relevant ecological endpoints such as reproduction, movement patterns and survival. Furthermore, telemetry is a widely used approach in fisheries to understand movement patterns in the wild, and when combined with transcriptional profiling, provides arguably the most powerful use of non-lethal sampling for transcriptomics in wild fishes. In this review, we discuss the different tissues that can be successfully incorporated into non-lethal sampling strategies, which is particularly useful in the context of the emerging field of conservation transcriptomics. We briefly describe different methods for transcriptional profiling in fishes from high-throughput qPCR to whole transcriptome approaches. Further, we discuss strategies and the limitations of using transcriptomics for non-lethally studying fishes. Lastly, as 'omics' technology continues to advance, transcriptomics paired with different omics approaches to study wild fishes will provide insight into the factors that regulate phenotypic variation and the physiological responses to changing environmental conditions in the future.
Collapse
Affiliation(s)
- Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada.
| | - Amy Teffer
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - Sonya Michaleski
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel D Heath
- Department of Integrative Biology, Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
10
|
Targeting the Mild-Hypoxia Driving Force for Metabolic and Muscle Transcriptional Reprogramming of Gilthead Sea Bream ( Sparus aurata) Juveniles. BIOLOGY 2021; 10:biology10050416. [PMID: 34066667 PMCID: PMC8151949 DOI: 10.3390/biology10050416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Reduced oxygen availability generates a number of adaptive features across all the animal kingdom, and the goal of this study was targeting the mild-hypoxia driving force for metabolic and muscle transcriptional reprogramming of gilthead sea bream juveniles. Attention was focused on blood metabolic and muscle transcriptomic landmarks before and after exhaustive exercise. Our results after mild-hypoxia conditioning highlighted an increased contribution of lipid metabolism to whole energy supply to preserve the aerobic energy production, a better swimming performance regardless of changes in feed intake, as well as reduced protein turnover and improved anaerobic fitness with the restoration of normoxia. Abstract On-growing juveniles of gilthead sea bream were acclimated for 45 days to mild-hypoxia (M-HYP, 40–60% O2 saturation), whereas normoxic fish (85–90% O2 saturation) constituted two different groups, depending on if they were fed to visual satiety (control fish) or pair-fed to M-HYP fish. Following the hypoxia conditioning period, all fish were maintained in normoxia and continued to be fed until visual satiation for 3 weeks. The time course of hypoxia-induced changes was assessed by changes in blood metabolic landmarks and muscle transcriptomics before and after exhaustive exercise in a swim tunnel respirometer. In M-HYP fish, our results highlighted a higher contribution of aerobic metabolism to whole energy supply, shifting towards a higher anaerobic fitness following normoxia restoration. Despite these changes in substrate preference, M-HYP fish shared a persistent improvement in swimming performance with a higher critical speed at exercise exhaustion. The machinery of muscle contraction and protein synthesis and breakdown was also largely altered by mild-hypoxia conditioning, contributing this metabolic re-adjustment to the positive regulation of locomotion and to the catch-up growth response during the normoxia recovery period. Altogether, these results reinforce the presence of large phenotypic plasticity in gilthead sea bream, and highlights mild-hypoxia as a promising prophylactic measure to prepare these fish for predictable stressful events.
Collapse
|
11
|
Friesen CR, Wilson M, Rollings N, Sudyka J, Giraudeau M, Whittington CM, Olsson M. Exercise training has morph-specific effects on telomere, body condition and growth dynamics in a color-polymorphic lizard. J Exp Biol 2021; 224:jeb.242164. [PMID: 33785504 DOI: 10.1242/jeb.242164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Alternative reproductive tactics (ARTs) are correlated suites of sexually selected traits that are likely to impose differential physiological costs on different individuals. While moderate activity might be beneficial, animals living in the wild often work at the margins of their resources and performance limits. Individuals using ARTs may have divergent capacities for activity. When pushed beyond their respective capacities, they may experience condition loss, oxidative stress, and molecular damage that must be repaired with limited resources. We used the Australian painted dragon lizard that exhibits color polymorphism as a model to experimentally test the effect of exercise on body condition, growth, reactive oxygen species (ROS) and telomere dynamics - a potential marker of stress and aging and a correlate of longevity. For most males, ROS levels tended to be lower with greater exercise; however, males with yellow throat patches - or bibs - had higher ROS levels than non-bibbed males. At the highest level of exercise, bibbed males exhibited telomere loss, while non-bibbed males gained telomere length; the opposite pattern was observed in the no-exercise controls. Growth was positively related to food intake but negatively correlated with telomere length at the end of the experiment. Body condition was not related to food intake but was positively correlated with increases in telomere length. These results, along with our previous work, suggest that aggressive - territory holding - bibbed males suffer physiological costs that may reduce longevity compared with non-bibbed males with superior postcopulatory traits.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Mark Wilson
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nicky Rollings
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Joanna Sudyka
- Institute of Environmental Sciences, Jagiellonian University, 30-060 Krakow, Poland
| | - Mathieu Giraudeau
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, F34394 Montpellier, France.,CREES Centre for Research on the Ecology and Evolution of Disease, 34394 Montpellier, France
| | - Camilla M Whittington
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.,Department of Biological & Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
12
|
Seibel H, Baßmann B, Rebl A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front Vet Sci 2021; 8:616955. [PMID: 33860003 PMCID: PMC8042153 DOI: 10.3389/fvets.2021.616955] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Blood analyses provide substantial information about the physiological aspects of animal welfare assessment, including the activation status of the neuroendocrine and immune system, acute and long-term impacts due to adverse husbandry conditions, potential diseases, and genetic predispositions. However, fish blood is still not routinely analyzed in research or aquaculture for the assessment of health and/or welfare. Over the years, the investigative techniques have evolved from antibody-based or PCR-based single-parameter analyses to now include transcriptomic, metabolomic, and proteomic approaches and from hematological observations to fluorescence-activated blood cell sorting in high-throughput modes. The range of testing techniques established for blood is now broader than for any other biogenic test material. Evaluation of the particular characteristics of fish blood, such as its cell composition, the nucleation of distinct blood cells, or the multiple isoforms of certain immune factors, requires adapted protocols and careful attention to the experimental designs and interpretation of the data. Analyses of fish blood can provide an integrated picture of the endocrine, immunological, reproductive, and genetic functions under defined environmental conditions and treatments. Therefore, the scarcity of high-throughput approaches using fish blood as a test material for fish physiology studies is surprising. This review summarizes the wide range of techniques that allow monitoring of informative fish blood parameters that are modulated by different stressors, conditions, and/or treatments. We provide a compact overview of several simple plasma tests and of multiparametric analyses of fish blood, and we discuss their potential use in the assessment of fish welfare and pathologies.
Collapse
Affiliation(s)
- Henrike Seibel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- Gesellschaft für Marine Aquakultur mbH (GMA), Büsum, Germany
| | - Björn Baßmann
- Department of Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
13
|
Perera E, Rosell-Moll E, Naya-Català F, Simó-Mirabet P, Calduch-Giner J, Pérez-Sánchez J. Effects of genetics and early-life mild hypoxia on size variation in farmed gilthead sea bream (Sparus aurata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:121-133. [PMID: 33188490 DOI: 10.1007/s10695-020-00899-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The present study evaluated, in an 18-month gilthead sea bream trial, the time course effects of genetics on individual size variation and growth compensation processes in families selected by heritable growth in the PROGENSA® breeding program. Families categorized as fast, intermediate, and slow growing had different growth trajectories with a more continuous growth in fast growth families. This feature was coincident with a reduced size variation at the beginning of the trial that clustered together the half-sib families sharing the same father. Regression analysis evidenced that the magnitude of compensatory growth was proportional to the initial size variation with no rescaling of families at this stage. By contrast, the finishing growth depensation process can mask, at least partially, the previous size convergence. This reflects the different contribution across the production cycle of genetics in growth. How early-life experiences affect growth compensation at juvenile stages was also evaluated in a separate cohort, and intriguingly, a first mild-hypoxia pulse at 60-81 days post-hatching (dph) increased survival rates by 10%, preventing growth impairment when fish were exposed to a second hypoxia episode (112-127 dph). The early hypoxia experience did not have a negative impact on growth compensatory processes at juvenile stages. By contrast, a diminished capacity for growth compensation was found with repeated or late hypoxia experiences. All this reinforces the use of size variation as a main criterion for improving intensive fish farming and selective breeding.
Collapse
Affiliation(s)
- Erick Perera
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Enrique Rosell-Moll
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Josep Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
14
|
Martos-Sitcha JA, Simó-Mirabet P, de Las Heras V, Calduch-Giner JÀ, Pérez-Sánchez J. Tissue-Specific Orchestration of Gilthead Sea Bream Resilience to Hypoxia and High Stocking Density. Front Physiol 2019; 10:840. [PMID: 31354511 PMCID: PMC6635561 DOI: 10.3389/fphys.2019.00840] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Two different O2 levels (normoxia: 75–85% O2 saturation; moderate hypoxia: 42–43% O2 saturation) and stocking densities (LD: 9.5, and HD: 19 kg/m3) were assessed on gilthead sea bream (Sparus aurata) in a 3-week feeding trial. Reduced O2 availability had a negative impact on feed intake and growth rates, which was exacerbated by HD despite of the improvement in feed efficiency. Blood physiological hallmarks disclosed the enhancement in O2-carrying capacity in fish maintained under moderate hypoxia. This feature was related to a hypo-metabolic state to cope with a chronic and widespread environmental O2 reduction, which was accompanied by a differential regulation of circulating cortisol and growth hormone levels. Customized PCR-arrays were used for the simultaneous gene expression profiling of 34–44 selected stress and metabolic markers in liver, white skeletal muscle, heart, and blood cells. The number of differentially expressed genes ranged between 22 and 19 in liver, heart, and white skeletal muscle to 5 in total blood cells. Partial Least-Squares Discriminant Analysis (PLS-DA) explained [R2Y(cum)] and predicted [Q2Y(cum)] up to 95 and 65% of total variance, respectively. The first component (R2Y = 0.2889) gathered fish on the basis of O2 availability, and liver and cardiac genes on the category of energy sensing and oxidative metabolism (cs, hif-1α, pgc1α, pgc1β, sirts 1-2-4-5-6-7), antioxidant defense and tissue repair (prdx5, sod2, mortalin, gpx4, gr, grp-170, and prdx3) and oxidative phosphorylation (nd2, nd5, and coxi) highly contributed to this separation. The second component (R2Y = 0.2927) differentiated normoxic fish at different stocking densities, and the white muscle clearly promoted this separation by a high over-representation of genes related to GH/IGF system (ghr-i, igfbp6b, igfbp5b, insr, igfbp3, and igf-i). The third component (R2Y = 0.2542) discriminated the effect of stocking density in fish exposed to moderate hypoxia by means of hepatic fatty acid desaturases (fads2, scd1a, and scd1b) and muscle markers of fatty acid oxidation (cpt1a). All these findings disclose the different contribution of analyzed tissues (liver ≥ heart > muscle > blood) and specific genes to the hypoxic- and crowding stress-mediated responses. This study will contribute to better explain and understand the different stress resilience of farmed fish across individuals and species.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Verónica de Las Heras
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Josep Àlvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
15
|
Martos-Sitcha JA, Sosa J, Ramos-Valido D, Bravo FJ, Carmona-Duarte C, Gomes HL, Calduch-Giner JÀ, Cabruja E, Vega A, Ferrer MÁ, Lozano M, Montiel-Nelson JA, Afonso JM, Pérez-Sánchez J. Ultra-Low Power Sensor Devices for Monitoring Physical Activity and Respiratory Frequency in Farmed Fish. Front Physiol 2019; 10:667. [PMID: 31191358 PMCID: PMC6548888 DOI: 10.3389/fphys.2019.00667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/09/2019] [Indexed: 01/31/2023] Open
Abstract
Integration of technological solutions aims to improve accuracy, precision and repeatability in farming operations, and biosensor devices are increasingly used for understanding basic biology during livestock production. The aim of this study was to design and validate a miniaturized tri-axial accelerometer for non-invasive monitoring of farmed fish with re-programmable schedule protocols. The current device (AE-FishBIT v.1s) is a small (14 mm × 7 mm × 7 mm), stand-alone system with a total mass of 600 mg, which allows monitoring animals from 30 to 35 g onwards. The device was attached to the operculum of gilthead sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax) juveniles for monitoring their physical activity by measurements of movement accelerations in x- and y-axes, while records of operculum beats (z-axis) served as a measurement of respiratory frequency. Data post-processing of exercised fish in swimming test chambers revealed an exponential increase of fish accelerations with the increase of fish speed from 1 body-length to 4 body-lengths per second, while a close relationship between oxygen consumption (MO2) and opercular frequency was consistently found. Preliminary tests in free-swimming fish kept in rearing tanks also showed that device data recording was able to detect changes in daily fish activity. The usefulness of low computational load for data pre-processing with on-board algorithms was verified from low to submaximal exercise, increasing this procedure the autonomy of the system up to 6 h of data recording with different programmable schedules. Visual observations regarding tissue damage, feeding behavior and circulating levels of stress markers (cortisol, glucose, and lactate) did not reveal at short term a negative impact of device tagging. Reduced plasma levels of triglycerides revealed a transient inhibition of feed intake in small fish (sea bream 50-90 g, sea bass 100-200 g), but this disturbance was not detected in larger fish. All this considered together is the proof of concept that miniaturized devices are suitable for non-invasive and reliable metabolic phenotyping of farmed fish to improve their overall performance and welfare. Further work is underway for improving the attachment procedure and the full device packaging.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain.,Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Cádiz, Spain
| | - Javier Sosa
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Dailos Ramos-Valido
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Francisco Javier Bravo
- Institute of Microelectronics of Barcelona (IMB-CNM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Cristina Carmona-Duarte
- Technological Centre for Innovation in Communications (iDeTIC), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | - Josep Àlvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - Enric Cabruja
- Institute of Microelectronics of Barcelona (IMB-CNM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Aurelio Vega
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Miguel Ángel Ferrer
- Technological Centre for Innovation in Communications (iDeTIC), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Manuel Lozano
- Institute of Microelectronics of Barcelona (IMB-CNM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | - Juan Manuel Afonso
- Aquaculture Research Group, Institute of Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| |
Collapse
|
16
|
Cadiz L, Bundgaard A, Malte H, Fago A. Hypoxia enhances blood O 2 affinity and depresses skeletal muscle O 2 consumption in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2019; 234:18-25. [PMID: 31075501 DOI: 10.1016/j.cbpb.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
Zebrafish (Danio rerio) are widely used animal models. Nevertheless, the mechanisms underlying hypoxia tolerance in this species have remained poorly understood. In the present study, we have determined the effects of hypoxia on blood-O2 transport properties and mitochondrial respiration rate in permeabilized muscle fibres of adult zebrafish exposed to either 1) a gradual decrease in O2 levels until fish lost equilibrium (~1 h, acute hypoxia), or 2) severe hypoxia (PO2 ∼ 15 Torr) for 48 h (prolonged hypoxia). Acute, short-term hypoxia caused an increase in hemoglobin (Hb) O2 affinity (decrease in P50), due to a decrease in erythrocyte ATP after erythrocyte swelling. No changes in isoHb expression patterns were observed between hypoxic and normoxic treatments. Prolonged hypoxia elicited additional reponses on O2 consumption: lactate accumulated in the blood, indicating that zebrafish relied on glycolysis for ATP production, and mitochondrial respiration of skeletal muscle was overall significantly inhibited. In addition, male zebrafish had higher hypoxia tolerance (measured as time to loss of equilibrium) than females. The present study contributes to our understanding of the adaptive mechanisms that allow zebrafish, and by inference other fish species, to cope with low O2 levels.
Collapse
Affiliation(s)
- Laura Cadiz
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Amanda Bundgaard
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Hans Malte
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Angela Fago
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
17
|
Piazzon MC, Mladineo I, Naya-Català F, Dirks RP, Jong-Raadsen S, Vrbatović A, Hrabar J, Pérez-Sánchez J, Sitjà-Bobadilla A. Acting locally - affecting globally: RNA sequencing of gilthead sea bream with a mild Sparicotyle chrysophrii infection reveals effects on apoptosis, immune and hypoxia related genes. BMC Genomics 2019; 20:200. [PMID: 30866816 PMCID: PMC6416957 DOI: 10.1186/s12864-019-5581-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/03/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Monogenean flatworms are the main fish ectoparasites inflicting serious economic losses in aquaculture. The polyopisthocotylean Sparicotyle chrysophrii parasitizes the gills of gilthead sea bream (GSB, Sparus aurata) causing anaemia, lamellae fusion and sloughing of epithelial cells, with the consequent hypoxia, emaciation, lethargy and mortality. Currently no preventive or curative measures against this disease exist and therefore information on the host-parasite interaction is crucial to find mitigation solutions for sparicotylosis. The knowledge about gene regulation in monogenean-host models mostly comes from freshwater monopysthocotyleans and almost nothing is known about polyopisthocotyleans. The current study aims to decipher the host response at local (gills) and systemic (spleen, liver) levels in farmed GSB with a mild natural S. chrysophrii infection by transcriptomic analysis. RESULTS Using Illumina RNA sequencing and transcriptomic analysis, a total of 2581 differentially expressed transcripts were identified in infected fish when compared to uninfected controls. Gill tissues in contact with the parasite (P gills) displayed regulation of fewer genes (700) than gill portions not in contact with the parasite (NP gills) (1235), most likely due to a local silencing effect of the parasite. The systemic reaction in the spleen was much higher than that at the parasite attachment site (local) (1240), and higher than in liver (334). NP gills displayed a strong enrichment of genes mainly related to immune response and apoptosis. Processes such as apoptosis, inflammation and cell proliferation dominated gills, whereas inhibition of apoptosis, autophagy, platelet activation, signalling and aggregation, and inflammasome were observed in spleen. Proteasome markers were increased in all tissues, whereas hypoxia-related genes were down-regulated in gills and spleen. CONCLUSIONS Contrasting forces seem to be acting at local and systemic levels. The splenic down-regulation could be part of a hypometabolic response, to counteract the hypoxia induced by the parasite damage to the gills and to concentrate the energy on defence and repair responses. Alternatively, it can be also interpreted as the often observed action of helminths to modify host immunity in its own interest. These results provide the first toolkit for future studies towards understanding and management of this parasitosis.
Collapse
Affiliation(s)
- M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| | | | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.,Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Ron P Dirks
- Future Genomics Technology, Leiden, The Netherlands
| | | | | | - Jerko Hrabar
- Institute of Oceanography and Fisheries, Split, Croatia
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
18
|
Napolitano G, Venditti P, Fasciolo G, Esposito D, Uliano E, Agnisola C. Acute hypoxia/reoxygenation affects muscle mitochondrial respiration and redox state as well as swimming endurance in zebrafish. J Comp Physiol B 2018; 189:97-108. [DOI: 10.1007/s00360-018-1198-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
|
19
|
Simó-Mirabet P, Perera E, Calduch-Giner JA, Afonso JM, Pérez-Sánchez J. Co-expression Analysis of Sirtuins and Related Metabolic Biomarkers in Juveniles of Gilthead Sea Bream ( Sparus aurata) With Differences in Growth Performance. Front Physiol 2018; 9:608. [PMID: 29922168 PMCID: PMC5996159 DOI: 10.3389/fphys.2018.00608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
Sirtuins (SIRTs) represent a conserved protein family of deacetylases that act as master regulators of metabolism, but little is known about their roles in fish and livestock animals in general. The present study aimed to assess the value of SIRTs for the metabolic phenotyping of fish by assessing their co-expression with a wide-representation of markers of energy and lipid metabolism and intestinal function and health in two genetically different gilthead sea bream strains with differences in growth performance. Fish from the fast-growing strain exhibited higher feed intake, feed efficiency and plasma IGF-I levels, along with higher hepatosomatic index and lower mesenteric fat (lean phenotype). These observations suggest differences in tissue energy partitioning with an increased flux of fatty acids from adipose tissue toward the liver. The resulting increased risk of hepatic steatosis may be counteracted in the liver by reduced lipogenesis and enhanced triglyceride catabolism, in combination with a higher and more efficient oxidative metabolism in white skeletal muscle. These effects were supported by co-regulated changes in the expression profile of SIRTs (liver, sirt1; skeletal muscle, sirt2; adipose tissue, sirt5-6) and markers of oxidative metabolism (pgc1α, cpt1a, cs, nd2, cox1), mitochondrial respiration uncoupling (ucp3) and fatty acid and triglyceride metabolism (pparα, pparγ, elovl5, scd1a, lpl, atgl) that were specific to each strain and tissue. The anterior intestine of the fast-growing strain was better suited to cope with improved growth by increased expression of markers of nutrient absorption (fabp2), epithelial barrier integrity (cdh1, cdh17) and immunity (il1β, cd8b, lgals1, lgals8, sIgT, mIgT), which were correlated with low expression levels of sirt4 and markers of fatty acid oxidation (cpt1a). In the posterior intestine, the fast-growing strain showed a consistent up-regulation of sirt2, sirt3, sirt5 and sirt7 concurrently with increased expression levels of markers of cell proliferation (pcna), oxidative metabolism (nd2) and immunity (sIgT, mIgT). Together, these findings indicate that SIRTs may play different roles in the regulation of metabolism, inflammatory tone and growth in farmed fish, arising as powerful biomarkers for a reliable metabolic phenotyping of fish at the tissue-specific level.
Collapse
Affiliation(s)
- Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Erick Perera
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| | - Juan M Afonso
- Aquaculture Research Group, Institute of Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria (GIA), Las Palmas, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal-CSIC, Castellón, Spain
| |
Collapse
|
20
|
Skrzynska AK, Maiorano E, Bastaroli M, Naderi F, Míguez JM, Martínez-Rodríguez G, Mancera JM, Martos-Sitcha JA. Impact of Air Exposure on Vasotocinergic and Isotocinergic Systems in Gilthead Sea Bream ( Sparus aurata): New Insights on Fish Stress Response. Front Physiol 2018; 9:96. [PMID: 29487539 PMCID: PMC5816901 DOI: 10.3389/fphys.2018.00096] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
The hypothalamus-pituitary-interrenal (HPI) and hypothalamus-sympathetic-chromaffin cell (HSC) axes are involved in the regulation of the stress response in teleost. In this regard, the activation of a complex network of endocrine players is needed, including corticotrophin-releasing hormone (Crh), Crh binding protein (Crhbp), proopiomelanocortin (Pomc), thyrotropin-releasing hormone (Trh), arginine vasotocin (Avt), and isotocin (It) to finally produce pleiotropic functions. We aimed to investigate, using the gilthead sea bream (Sparus aurata) as a biological model, the transcriptomic response of different endocrine factors (crh, crhbp, pomcs, trh), neuropeptides (avt and it), and their specific receptors (avtrv1a, avtrv2, and itr) in four important target tissues (hypothalamus, pituitary, kidney and liver), after an acute stress situation. We also investigated several stress hormones (catecholamines and cortisol). The stress condition was induced by air exposure for 3 min, and hormonal, metabolic and transcriptomic parameters were analyzed in a time course response (15 and 30 min, and 1, 2, 4, and 8 h post-stress) in a total of 64 fish (n = 8 fish per experimental group; p = 0.05; statistical power = 95%). Our results showed that plasma noradrenaline, adrenaline and cortisol values increased few minutes after stress exposure. At hypothalamic and hypophyseal levels, acute stress affected mRNA expression of all measured precursors and hormonal factors, as well as their receptors (avtrs and itr), showing the activation, at central level, of HPI, HSC, and Avt/It axes in the acute stress response. In addition, stress response also affected mRNA levels of avtrs and itr in the head kidney, as well as the steroidogenic acute regulatory protein (star) and tyrosine hydroxylase (th) expression, suggesting their participation in the HPI and HSC axes activation. Moreover, the pattern of changes in hepatic avtrs and itr gene expression also highlights an important role of vasotocinergic and isotocinergic pathways in liver metabolic organization after acute stress events. Our results demonstrate, both at transcriptional and circulating levels of several hormones, the existence of a complex activation of different endocrine pathways in S. aurata related to the stress pathways, where vasotocinergic and isotocinergic systems can also be considered key players of the acute stress response orchestration.
Collapse
Affiliation(s)
- Arleta K Skrzynska
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Elisabetta Maiorano
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Marco Bastaroli
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Fatemeh Naderi
- Laboratorio de Fisiología animal, Departamento de Biología Funcional y CC. de la Salud, Facultad de Biología, Universidade de Vigo, Pontevedra, Spain
| | - Jesús M Míguez
- Laboratorio de Fisiología animal, Departamento de Biología Funcional y CC. de la Salud, Facultad de Biología, Universidade de Vigo, Pontevedra, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquacuture, Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Cádiz, Spain
| | - Juan M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Juan A Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain.,Department of Marine Biology and Aquacuture, Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Cádiz, Spain.,Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas, Castellón, Spain
| |
Collapse
|
21
|
Pérez-Sánchez J, Simó-Mirabet P, Naya-Català F, Martos-Sitcha JA, Perera E, Bermejo-Nogales A, Benedito-Palos L, Calduch-Giner JA. Somatotropic Axis Regulation Unravels the Differential Effects of Nutritional and Environmental Factors in Growth Performance of Marine Farmed Fishes. Front Endocrinol (Lausanne) 2018; 9:687. [PMID: 30538673 PMCID: PMC6277588 DOI: 10.3389/fendo.2018.00687] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022] Open
Abstract
The Gh/Prl/Sl family has evolved differentially through evolution, resulting in varying relationships between the somatotropic axis and growth rates within and across fish species. This is due to a wide range of endogenous and exogenous factors that make this association variable throughout season and life cycle, and the present minireview aims to better define the nutritional and environmental regulation of the endocrine growth cascade over precisely defined groups of fishes, focusing on Mediterranean farmed fishes. As a result, circulating Gh and Igf-i are revitalized as reliable growth markers, with a close association with growth rates of gilthead sea bream juveniles with deficiency signs in both macro- or micro-nutrients. This, together with other regulated responses, promotes the use of Gh and Igf-i as key performance indicators of growth, aerobic scope, and nutritional condition in gilthead sea bream. Moreover, the sirtuin-energy sensors might modulate the growth-promoting action of somatotropic axis. In this scenario, transcripts of igf-i and gh receptors mirror changes in plasma Gh and Igf-i levels, with the ghr-i/ghr-ii expression ratio mostly unaltered over season. However, this ratio is nutritionally regulated, and enriched plant-based diets or diets with specific nutrient deficiencies downregulate hepatic ghr-i, decreasing the ghr-i/ghr-ii ratio. The same trend, due to a ghr-ii increase, is found in skeletal muscle, whereas impaired growth during overwintering is related to increase in the ghr-i/ghr-ii and igf-ii/igf-i ratios in liver and skeletal muscle, respectively. Overall, expression of insulin receptors and igf receptors is less regulated, though the expression quotient is especially high in the liver and muscle of sea bream. Nutritional and environmental regulation of the full Igf binding protein 1-6 repertoire remains to be understood. However, tissue-specific expression profiling highlights an enhanced and nutritionally regulated expression of the igfbp-1/-2/-4 clade in liver, whereas the igfbp-3/-5/-6 clade is overexpressed and regulated in skeletal muscle. The somatotropic axis is, therefore, highly informative of a wide-range of growth-disturbing and stressful stimuli, and multivariate analysis supports its use as a reliable toolset for the assessment of growth potentiality and nutrient deficiencies and requirements, especially in combination with selected panels of other nutritionally regulated metabolic biomarkers.
Collapse
|