1
|
Palmer JA, Payne AM, Mirdamadi JL, Ting LH, Borich MR. Delayed Cortical Responses During Reactive Balance After Stroke Associated With Slower Kinetics and Clinical Balance Dysfunction. Neurorehabil Neural Repair 2024:15459683241282786. [PMID: 39328051 DOI: 10.1177/15459683241282786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND Slowed balance and mobility after stroke have been well-characterized. Yet the effects of unilateral cortical lesions on whole-body neuromechanical control is poorly understood, despite increased reliance on cortical resources for balance and mobility with aging. Objective. We tested whether individuals post stroke show impaired cortical responses evoked during reactive balance, and the effect of asymmetrical interlimb contributions to balance recovery and the evoked cortical response. METHODS Using electroencephalography, we assessed cortical N1 responses evoked over fronto-midline regions (Cz) during backward support-surface perturbations loading both legs and posterior-lateral directions that preferentially load the paretic or nonparetic leg in individuals' post-stroke and age-matched controls. We tested relationships between cortical responses and clinical balance/mobility function, as well as to center of pressure (CoP) rate of rise (RoR) during balance recovery. RESULTS Cortical N1 responses were smaller and delayed after stroke (P < .047), regardless of perturbation condition. In contrast to controls, slower cortical response latencies associated with lower clinical function in stroke (Mini Balance Evaluation Systems Test: r = -.61, P = .007; Timed-Up-and-Go: r = .53, P = .024; walking speed: r = -.46, P = .055). Paretic-loaded balance recovery revealed slower CoP RoR (P = .012) that was associated with delayed cortical response latencies (r = -.70, P = .003); these relationships were not present during bilateral and nonparetic-loaded conditions, nor in the older adults control group. CONCLUSIONS Individuals after stroke may be limited in their balance ability by the slowed speed of their cortical responses to destabilization. In particular, paretic leg loading may reveal cortical response impairments that reflect reduced paretic motor capacity.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | - Aiden M Payne
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, USA
| | - Jasmine L Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | - Lena H Ting
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
- Department of Biomedical Engineering, Emory and Georgia Tech, Atlanta, GA, USA
| | - Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Purohit R, Varas-Diaz G, Bhatt T. Functional electrical stimulation to enhance reactive balance among people with hemiparetic stroke. Exp Brain Res 2024; 242:559-570. [PMID: 38214733 DOI: 10.1007/s00221-023-06729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Individuals with stroke demonstrate a twofold higher fall incidence compared to healthy counterparts, potentially associated with deficits in reactive balance control, which is crucial for regaining balance from unpredictable perturbations to the body. Moreover, people with higher stroke-related motor impairment exhibit greater falls and cannot recover balance during higher perturbation intensities. Thus, they might need supplemental agents for fall prevention or even to be included in a perturbation-based protocol. Functional electrical stimulation is a widely used clinical modality for improving gait performance; however, it remains unknown whether it can enhance or interfere with reactive balance control. METHODS We recruited twelve ambulatory participants with hemiparetic stroke (61.48 ± 6.77 years) and moderate-to-high motor impairment (Chedoke-McMaster Stroke Leg Assessment ≤ 4/7). Each participant experienced 4 unpredicted paretic gait-slips, with and without functional electrical stimulation (provided 50-500 ms after perturbation) in random order. The paretic quadriceps muscle group was chosen to receive electrical stimulation, considering the role of support limb knee extensors for preventing limb-collapse. Outcomes including primary (laboratory falls), secondary (reactive stability, vertical limb support) and tertiary (compensatory step length, step initiation, execution time) measures were compared between the two conditions. RESULTS Participants demonstrated fewer falls, higher reactive stability, and higher vertical limb support (p < 0.05) following gait-slips with functional electrical stimulation compared to those without. This was accompanied by reduced step initiation time and a longer compensatory step (p < 0.05). CONCLUSION The application of functional electrical stimulation to paretic quadriceps following gait-slips reduced laboratory fall incidence with enhanced reactive balance outcomes among people with higher stroke-related motor impairment. Our results lay the preliminary groundwork for understanding the instantaneous neuromodulatory effect of functional electrical stimulation in preventing gait-slip falls, future studies could test its therapeutic effect on reactive balance. Clinical registry number: NCT04957355.
Collapse
Affiliation(s)
- Rudri Purohit
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, 1919 W Taylor Street, Chicago, IL, 60612, USA
- Ph.D. Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, 1919 W Taylor Street, Chicago, IL, 60612, USA
| | - Gonzalo Varas-Diaz
- Carrera de Kinesiología, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tanvi Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, 1919 W Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Palmer JA, Payne AM, Mirdamadi JL, Ting LH, Borich MR. Delayed cortical engagement associated with balance dysfunction after stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23299035. [PMID: 38076827 PMCID: PMC10705625 DOI: 10.1101/2023.11.28.23299035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Cortical resources are typically engaged for balance and mobility in older adults, but these resources are impaired post-stroke. Although slowed balance and mobility after stroke have been well-characterized, the effects of unilateral cortical lesions due to stroke on neuromechanical control of balance is poorly understood. Our central hypothesis is that stroke impairs the ability to rapidly and effectively engage the cerebral cortex during balance and mobility behaviors, resulting in asymmetrical contributions of each limb to balance control. Using electroencephalography (EEG), we assessed cortical N1 responses evoked over fronto-midline regions (Cz) during balance recovery in response to backward support-surface perturbations loading both legs, as well as posterior-lateral directions that preferentially load the paretic or nonparetic leg. Cortical N1 responses were smaller and delayed in the stroke group. While older adults exhibited weak or absent relationships between cortical responses and clinical function, stroke survivors exhibited strong associations between slower N1 latencies and slower walking, lower clinical mobility, and lower balance function. We further assessed kinetics of balance recovery during perturbations using center of pressure rate of rise. During backward support-surface perturbations that loaded the legs bilaterally, balance recovery kinetics were not different between stroke and control groups and were not associated with cortical response latency. However, lateralized perturbations revealed slower kinetic reactions during paretic loading compared to controls, and to non-paretic loading within stroke participants. Individuals post stroke had similar nonparetic-loaded kinetic reactions to controls implicating that they effectively compensate for impaired paretic leg kinetics when relying on the non-paretic leg. In contrast, paretic-loaded balance recovery revealed time-synchronized associations between slower cortical responses and slower kinetic reactions only in the stroke group, potentially reflecting the limits of cortical engagement for balance recovery revealed within the behavioral context of paretic motor capacity. Overall, our results implicate individuals after stroke may be uniquely limited in their balance ability by the slowed speed of their cortical engagement, particularly under challenging balance conditions that rely on the paretic leg. We expect this neuromechanical insight will enable progress toward an individualized framework for the assessment and treatment of balance impairments based on the interaction between neuropathology and behavioral context.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
| | - Aiden M Payne
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, USA
| | - Jasmine L Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
| | - Lena H Ting
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
- Department of Biomedical Engineering, Emory and Georgia Tech, 1760 Haygood Road, Atlanta, GA, 30322, USA
| | - Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Atlanta, GA 30322 USA
| |
Collapse
|
4
|
Bhatt T, Dusane S, Gangwani R, Wang S, Kannan L. Motor adaptation and immediate retention to overground gait-slip perturbation training in people with chronic stroke: an experimental trial with a comparison group. Front Sports Act Living 2023; 5:1195773. [PMID: 37780126 PMCID: PMC10533933 DOI: 10.3389/fspor.2023.1195773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Perturbation-based training has shown to be effective in reducing fall-risk in people with chronic stroke (PwCS). However, most evidence comes from treadmill-based stance studies, with a lack of research focusing on training overground perturbed walking and exploring the relative contributions of the paretic and non-paretic limbs. This study thus examined whether PwCS could acquire motor adaptation and demonstrate immediate retention of fall-resisting skills following bilateral overground gait-slip perturbation training. Methods 65 PwCS were randomly assigned to either (i) a training group, that received blocks of eight non-paretic (NP-S1 to NP-S8) and paretic (P-S1 to P-S8) overground slips during walking followed by a mixed block (seven non-paretic and paretic slips each interspersed with unperturbed walking trials) (NP-S9/P-S9 to NP-S15/P-S15) or (ii) a control group, that received a single non-paretic and paretic slip in random order. The assessor and training personnel were not blinded. Immediate retention was tested for the training group after a 30-minute rest break. Primary outcomes included laboratory-induced slip outcomes (falls and balance loss) and center of mass (CoM) state stability. Secondary outcomes to understand kinematic contributors to stability included recovery strategies, limb kinematics, slipping kinematics, and recovery stride length. Results PwCS within the training group showed reduced falls (p < 0.01) and improved post-slip stability (p < 0.01) from the first trial to the last trial of both paretic and non-paretic slip blocks (S1 vs. S8). During the mixed block training, there was no further improvement in stability and slipping kinematics (S9 vs. S15) (p > 0.01). On comparing the first and last training trial (S1 vs. S15), post-slip stability improved on both non-paretic and paretic slips, however, pre-slip stability improved only on the non-paretic slip (p < 0.01). On the retention trials, the training group had fewer falls and greater post-slip stability than the control group on both non-paretic and paretic slips (p < 0.01). Post-slip stability on the paretic slip was lower than that on the non-paretic slip for both groups on retention trials (p < 0.01). Conclusion PwCS can reduce laboratory-induced slip falls and backward balance loss outcomes by adapting their post-slip CoM state stability after bilateral overground gait-slip perturbation training. Such reactive adaptations were better acquired and retained post-training in PwCS especially on the non-paretic slips than paretic slips, suggesting a need for higher dosage for paretic slips. Clinical registry number NCT03205527.
Collapse
Affiliation(s)
- Tanvi Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
| | - Shamali Dusane
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
- Ph.D. program in Rehabilitation Sciences, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
| | - Rachana Gangwani
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
- MS program in Rehabilitation Sciences, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
| | - Shuaijie Wang
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
| | - Lakshmi Kannan
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
- Ph.D. program in Rehabilitation Sciences, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
| |
Collapse
|
5
|
Purohit R, Wang S, Dusane S, Bhatt T. Age-related differences in reactive balance control and fall-risk in people with chronic stroke. Gait Posture 2023; 102:186-192. [PMID: 37031629 DOI: 10.1016/j.gaitpost.2023.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Impaired reactive responses to sudden environmental perturbations contribute to heightened fall-risk in healthy aging and neurologically impaired populations. Previous studies have demonstrated individual contributions of paretic and non-paretic sides to fall-risk in people with stroke with variable levels of motor impairment. However, the combined effect of aging and unilateral cortical lesion on reactive balance control is not clearly understood. We therefore aimed to examine age-related differences in reactive balance control and fall-risk during laboratory-induced gait-slips in people with comparable stroke-related motor impairments. METHODS Thirteen younger (45.61 ± 4.61 years) and thirteen older (71.92 ± 6.50 years) adults with similar stroke-related impairment (on Fugl-Meyer Lower Extremity Assessment) were exposed to one overground gait-slip under each limb (paretic and non-paretic). Center of mass state stability and slipping kinematics (slip displacement and velocity) were computed. Clinical balance and mobility were also assessed. RESULTS On non-paretic slips, older adults with chronic stroke demonstrated greater falls and lower center of mass stability (its position and velocity) at post-slip touchdown compared to younger adults with chronic stroke (p < 0.01). This was accompanied with a greater peak slip displacement and faster peak slip velocity (p < 0.01). However, there were no such group differences noted on the paretic slips (p > 0.01). CONCLUSION Aging may have an independent, detrimental effect on reactive balance control in people with chronic stroke. Non-paretic deficits in controlling slip intensities (slip displacement and velocity) can accentuate fall-risk in older adults with chronic stroke. Further investigation is necessary to identify additional factors attributing to heightened fall-risk in older adults with chronic stroke.
Collapse
Affiliation(s)
- Rudri Purohit
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA; Ph.D. program in Rehabilitation Sciences, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Shuaijie Wang
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Shamali Dusane
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Tanvi Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Abdullahi A, Sabo B, Badaru UM, Saeys W, Truijen S. Factors influencing recovery of upper limb motor function during constraint-induced movement therapy for people with stroke. Transl Neurosci 2022; 13:453-459. [PMID: 36561290 PMCID: PMC9743202 DOI: 10.1515/tnsci-2022-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
Objective The aim of this study is to determine the personal and clinical factors that can predict recovery of motor function in people with stroke. Methods Characteristics of the study participants such as age, sex, time since stroke and type of stroke, motor function, shoulder pain, amount and quality of use of the affected limb in the real world, wrist and elbow spasticity, handedness, central post-stroke pain and dose of massed practice were recorded. The data obtained were analyzed using descriptive statistics and multiple regression. Results A total of 144 patients with stroke with mean age, 58.71 ± 19.90 years participated in the study. The result showed that, the whole model significantly explained the total variance by 88.4%, F(14, 144) = 32.870, R 2 = 0. 0.781, p < 0.001. However, in the final model, only four independent variables in the order of degree of predictability, amount of use of the limb in the real world (Beta = 0.455, p = 0.003), intensity of practice during rehabilitation session (Beta = 0.321, p < 0.001), wrist spasticity (Beta = 0.148, p = 0.004) and side affected (Beta = 0.093, p = 0.033) significantly predicted recovery of motor function. Conclusion Encouraging the use of the limb in the real world may be more important than practice during rehabilitation session in the clinic or in the laboratory.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Physiotherapy, Bayero University Kano, Kano, Nigeria
| | - Bishir Sabo
- Department of Physiotherapy, Bayero University Kano, Kano, Nigeria,Department of Physiotherapy, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | | | - Wim Saeys
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Movant, Wilrijk, Belgium
| | - Steven Truijen
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Movant, Wilrijk, Belgium
| |
Collapse
|
7
|
McCrum C, Bhatt TS, Gerards MHG, Karamanidis K, Rogers MW, Lord SR, Okubo Y. Perturbation-based balance training: Principles, mechanisms and implementation in clinical practice. Front Sports Act Living 2022; 4:1015394. [PMID: 36275443 PMCID: PMC9583884 DOI: 10.3389/fspor.2022.1015394] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Since the mid-2000s, perturbation-based balance training has been gaining interest as an efficient and effective way to prevent falls in older adults. It has been suggested that this task-specific training approach may present a paradigm shift in fall prevention. In this review, we discuss key concepts and common issues and questions regarding perturbation-based balance training. In doing so, we aim to provide a comprehensive synthesis of the current evidence on the mechanisms, feasibility and efficacy of perturbation-based balance training for researchers and practitioners. We address this in two sections: "Principles and Mechanisms" and "Implementation in Practice." In the first section, definitions, task-specificity, adaptation and retention mechanisms and the dose-response relationship are discussed. In the second section, issues related to safety, anxiety, evidence in clinical populations (e.g., Parkinson's disease, stroke), technology and training devices are discussed. Perturbation-based balance training is a promising approach to fall prevention. However, several fundamental and applied aspects of the approach need to be further investigated before it can be widely implemented in clinical practice.
Collapse
Affiliation(s)
- Christopher McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Tanvi S. Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, United States
| | - Marissa H. G. Gerards
- Department of Epidemiology, Care and Public Health Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
- Department of Physiotherapy, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Mark W. Rogers
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Stephen R. Lord
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Yoshiro Okubo
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Can prior exposure to repeated non-paretic slips improve reactive responses on novel paretic slips among people with chronic stroke? Exp Brain Res 2022; 240:1069-1080. [PMID: 35106605 DOI: 10.1007/s00221-021-06300-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/22/2021] [Indexed: 11/04/2022]
Abstract
This study examined if people with chronic stroke (PwCS) could adapt following non-paretic overground gait-slips and whether such prior exposure to non-paretic slips could improve reactive responses on novel paretic slip. Forty-nine PwCS were randomly assigned to either adaptation group, which received eight unexpected, overground, nonparetic-side gait-slips followed by two paretic-side slips or a control group, which received two paretic-side slips. Slip outcome, recovery strategies, center of mass (CoM) state stability, post-slip stride length and slipping kinematics were analyzed. The adaptation group demonstrated fall-reduction from first to eighth non-paretic slips, along with improved stability, stride length and slipping kinematics (p < 0.05). Within the adaptation group, on comparing novel slips, paretic-side demonstrated comparable pre-slip stability (p > 0.05); however, lower post-slip stability, increased slip velocity and falls was noted (p < 0.05). There was no difference in any variables between the novel paretic slips of adaptation and control group (p > 0.01). However, there was a rapid improvement on the 2nd slip such that adaptation group demonstrated improved performance from the first to second paretic slip compared to that in the control group (p < 0.01). PwCS demonstrated immediate proactive and reactive adaptation with overground, nonparetic-side gait-slips. However, PwCS did not demonstrate any inter-limb performance gain on the paretic-side after prior nonparetic-side adaptation when exposed to a novel paretic-side slip; but they did show significant positive gains with single slip priming on the paretic-side compared to controls without prior adaptation.Clinical registry number: NCT03205527.
Collapse
|
9
|
Varas-Diaz G, Bhatt T. Application of neuromuscular electrical stimulation on the support limb during reactive balance control in persons with stroke: a pilot study. Exp Brain Res 2021; 239:3635-3647. [PMID: 34609544 DOI: 10.1007/s00221-021-06209-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to investigate the effect of the application of neuromuscular electrical stimulation to the quadriceps muscle of the paretic limb during externally induced stance perturbations on reactive balance control and on fall outcomes in people with chronic stroke. Ten participants experienced 12 stance treadmill perturbation trails, 6 forward balance perturbation trials and 6 backward balance perturbation trials. For each perturbation condition, three perturbation trials were delivered synchronized with neuromuscular electrical stimulation applied to the quadriceps of the paretic limb and three perturbation trials were delivered without stimulation. Behavioral outcome measures, such as incidence of laboratory falls and number of compensatory steps, kinematic outcome measures, such as margin of stability and minimum hip high values after the perturbation, step initiation time, step execution time and step length of the stepping leg were analyzed. The application of neuromuscular electrical stimulation on the paretic quadriceps between the range of 50 and 500 ms after stance forward and backward perturbations reduced the laboratory falls incidence (p < 0.05), improved stability values (p < 0.05) and reduced the hip height descent (p < 0.05) compared to the experimental condition in which participants were exposed to stance perturbations without neuromuscular electrical stimulation. Additionally, step initiation time of the recovery step was lower in neuromuscular electrical stimulation condition during the forward balance perturbation protocol. Our results showed that the application of neuromuscular electrical stimulation on the knee extensor muscles of the paretic limb reduces the incidence of laboratory falls, enhances reactive stability control and reduces vertical limb collapse after stance forward and backward perturbations in people with chronic stroke.
Collapse
Affiliation(s)
- Gonzalo Varas-Diaz
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W, Taylor Street, Chicago, IL, 60612, USA.,School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W, Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Sorrento GU, Archambault PS, Fung J. Walking with robot-generated haptic forces in a virtual environment: a new approach to analyze lower limb coordination. J Neuroeng Rehabil 2021; 18:136. [PMID: 34503526 PMCID: PMC8428107 DOI: 10.1186/s12984-021-00823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Walking with a haptic tensile force applied to the hand in a virtual environment (VE) can induce adaptation effects in both chronic stroke and non-stroke individuals. These effects are reflected in spatiotemporal outcomes such as gait speed. However, the concurrent kinematic changes occurring in bilateral lower limb coordination have yet to be explored. Methods Chronic stroke participants were stratified based on overground gait speed into lower functioning (LF < 0.8 m/s, N = 7) and higher functioning (HF ≥ 0.8 m/s, N = 7) subgroups. These subgroups and an age-matched control group (N = 14, CG) walked on a self-paced treadmill in a VE with either robot-generated haptic leash forces delivered to the hand and then released or with an instrumented cane. Walking in both leash (10 and 15 N) and cane conditions were compared to pre-force baseline values to evaluate changes in lower limb coordination outcomes. Results All groups showed some kinematic changes in thigh, leg and foot segments when gait speed increased during force and post-force leash as well as cane walking. These changes were also reflected in intersegmental coordination and 3D phase diagrams, which illustrated increased intersegmental trajectory areas (p < 0.05) and angular velocity. These increases could also be observed when the paretic leg transitions from stance to swing phases while walking with the haptic leash. The Sobolev norm values accounted for both angular position and angular velocity, providing a single value for potentially quantifying bilateral (i.e. non-paretic vs paretic) coordination during walking. These values tended to increase (p < 0.05) proportionally for both limbs during force and post-force epochs as gait speed tended to increase. Conclusions Individuals with chronic stroke who increased their gait speed when walking with tensile haptic forces and immediately after force removal, also displayed moderate concurrent changes in lower limb intersegmental coordination patterns in terms of angular displacement and velocity. Similar results were also seen with cane walking. Although symmetry was less affected, these findings appear favourable to the functional recovery of gait. Both the use of 3D phase diagrams and assigning Sobolev norm values are potentially effective for detecting and quantifying these coordination changes.
Collapse
Affiliation(s)
- Gianluca U Sorrento
- School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada. .,Centre for Interdisciplinary Research in Rehabilitation (CRIR) of Greater Montreal, Jewish Rehabilitation Hospital (CISSS-Laval), Laval, QC, Canada.
| | - Philippe S Archambault
- School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada.,Centre for Interdisciplinary Research in Rehabilitation (CRIR) of Greater Montreal, Jewish Rehabilitation Hospital (CISSS-Laval), Laval, QC, Canada
| | - Joyce Fung
- School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada.,Centre for Interdisciplinary Research in Rehabilitation (CRIR) of Greater Montreal, Jewish Rehabilitation Hospital (CISSS-Laval), Laval, QC, Canada
| |
Collapse
|
11
|
Dusane S, Bhatt T. Effect of Multisession Progressive Gait-Slip Training on Fall-Resisting Skills of People with Chronic Stroke: Examining Motor Adaptation in Reactive Stability. Brain Sci 2021; 11:brainsci11070894. [PMID: 34356128 PMCID: PMC8303184 DOI: 10.3390/brainsci11070894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/28/2023] Open
Abstract
Background: This study examined whether a multisession gait-slip training could enhance reactive balance control and fall-resisting skills of people with chronic stroke (PwCS). Methods: A total of 11 PwCS underwent a four-week treadmill-based gait-slip training (four sessions). Pre- and post-training assessment was performed on six intensities of gait-slips (levels 1–6). Training consisted of 10 blocks of each progressively increasing intensity (four trials per block) until participants fell at >2 trials per block (fall threshold). In the next session, training began at a sub-fall threshold and progressed further. Fall outcome and threshold, number of compensatory steps, multiple stepping threshold, progression to higher intensities, pre- and post-slip center of mass (CoM), state stability, clinical measures, and treadmill walking speed were analyzed. Results: Post-training, PwCS demonstrated a reduction in falls and compensatory steps on levels 5 and 6 (p < 0.05) compared to pre-training. While an increase in pre-slip stability was limited to level 6 (p < 0.05), improvement in post-slip stability at lift-off was noted on levels 2, 3, and 5 (p < 0.05) along with improved post-slip minimum stability on levels 5 and 6 (p < 0.05). Post-training demonstrated improved fall (p < 0.05) and multiple stepping thresholds (p = 0.05). While most participants could progress to level 4 between the first and last training sessions, more participants progressed to level 6 (p < 0.05). Participants’ treadmill walking speed increased (p < 0.05); however, clinical measures remained unchanged (p > 0.05). Conclusions: Multisession, progressively increasing intensity of treadmill-based gait-slip training appears to induce significant adaptive improvement in falls, compensatory stepping, and postural stability among PwCS.
Collapse
Affiliation(s)
- Shamali Dusane
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA;
- Ph.D. Program in Rehabilitation Sciences, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Tanvi Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL 60612, USA;
- Correspondence: ; Tel.: +1-312-355-4443; Fax: +1-312-996-4583
| |
Collapse
|
12
|
Faria-Fortini I, Polese JC, Faria CDCM, Scianni AA, Nascimento LR, Teixeira-Salmela LF. Fall Efficacy Scale-International cut-off score discriminates fallers and non-fallers individuals who have had stroke. J Bodyw Mov Ther 2021; 26:167-173. [PMID: 33992239 DOI: 10.1016/j.jbmt.2020.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Falls, which are common events after stroke, may lead to activity limitations and increased dependence. It is important to identify which commonly employed clinical measures could differentiate individuals, who are fallers from the non-fallers. AIM To investigate specific cut-off values of clinical measures that could discriminate fallers and non-fallers individuals with chronic stroke. METHOD This cross-sectional study involved 105 community-dwelling individuals with stroke. The primary outcome was report of falls over the last six months. The clinical predictors included measures of mobility (walking speed, stair ascent/descent cadences, time to perform the Timed Up and Go test, and ABILOCO) and the Fall Efficacy Scale - International (FES-I) scores. To identify which measures were able to detect between-group differences, independent Student's t-tests were employed. For measures which were able to discriminate fallers from the non-fallers, the Receiver Operating Characteristics (ROC) and the Area Under the ROC Curve (AUC) were calculated. RESULTS Out of the 105 participants (61 men), 41% reported falls over the previous 6 months. Stair ascent cadence, ABILOCO, and FES-I scores significantly differentiated the groups, but only the FES-I demonstrated acceptable discriminatory ability (AUC = 0.71). The optimal FES-I cut-off score was 28 points (sensitivity = 0.71; specificity = 0.57; positive predictive value = 51%; and negative predictive value = 74%). CONCLUSIONS The FES-I demonstrated good discriminatory ability to classify individuals with chronic stroke, who were fallers from the non-fallers. The use of the established cut-off value of 28 points is recommended and may help clinical reasoning and decision-making in stroke rehabilitation.
Collapse
Affiliation(s)
- Iza Faria-Fortini
- Department of Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Janaíne C Polese
- Department of Physical Therapy, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
| | - Christina D C M Faria
- Department of Physical Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aline Alvim Scianni
- Department of Physical Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas R Nascimento
- Center of Health Sciences, Discipline of Physiotherapy, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | |
Collapse
|
13
|
Pigman J, Reisman DS, Pohlig RT, Jeka JJ, Wright TR, Conner BC, Petersen DA, Christensen MS, Crenshaw JR. Posterior fall-recovery training applied to individuals with chronic stroke: A single-group intervention study. Clin Biomech (Bristol, Avon) 2021; 82:105249. [PMID: 33421756 PMCID: PMC7940569 DOI: 10.1016/j.clinbiomech.2020.105249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND To assess the effects of the initial stepping limb on posterior fall recovery in individuals with chronic stroke, as well as to determine the benefits of fall-recovery training on these outcomes. METHODS This was a single-group intervention study of 13 individuals with chronic stroke. Participants performed up to six training sessions, each including progressively challenging, treadmill-induced perturbations from a standing position. Progressions focused on initial steps with the paretic or non-paretic limb. The highest perturbation level achieved, the proportion of successful recoveries, step and trunk kinematics, as well as stance-limb muscle activation about the ankle were compared between the initial stepping limbs in the first session. Limb-specific outcomes were also compared between the first and last training sessions. FINDINGS In the first session, initial steps with the non-paretic limb were associated with a higher proportion of success and larger perturbations than steps with the paretic limb (p = 0.02, Cohen's d = 0.8). Paretic-limb steps were wider relative to the center of mass (CoM; p = 0.01, d = 1.3), likely due to an initial standing position with the CoM closer to the non-paretic limb (p = 0.01, d = 1.4). In the last training session, participants recovered from a higher proportion of perturbations and advanced to larger perturbations (p < 0.05, d > 0.6). There were no notable changes in kinematic or electromyography variables with training (p > 0.07, d < 0.5). INTERPRETATION The skill of posterior stepping in response to a perturbation can be improved with practice in those with chronic stroke, we were not able to identify consistent underlying kinematic mechanisms behind this adaptation.
Collapse
Affiliation(s)
- Jamie Pigman
- Department of Kinesiology, Applied Physiology University of Delaware, Newark, DE, USA; Department of Health and Physical Education, Monmouth University, West, Long Branch, NJ, USA.
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE, USA.
| | - Ryan T Pohlig
- Biostatistics Core Facility, University of Delaware, Newark, DE, USA.
| | - John J Jeka
- Department of Kinesiology, Applied Physiology University of Delaware, Newark, DE, USA.
| | - Tamara R Wright
- Department of Physical Therapy, University of Delaware, Newark, DE, USA.
| | - Benjamin C Conner
- Department of Kinesiology, Applied Physiology University of Delaware, Newark, DE, USA; College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, USA.
| | - Drew A Petersen
- Department of Kinesiology, Applied Physiology University of Delaware, Newark, DE, USA; College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA.
| | - Michael S Christensen
- Department of Kinesiology, Applied Physiology University of Delaware, Newark, DE, USA.
| | - Jeremy R Crenshaw
- Department of Kinesiology, Applied Physiology University of Delaware, Newark, DE, USA.
| |
Collapse
|
14
|
Mansfield A, Inness EL, Danells CJ, Jagroop D, Bhatt T, Huntley AH. Determining the optimal dose of reactive balance training after stroke: study protocol for a pilot randomised controlled trial. BMJ Open 2020; 10:e038073. [PMID: 32847916 PMCID: PMC7451480 DOI: 10.1136/bmjopen-2020-038073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Falls risk poststroke is highest soon after discharge from rehabilitation. Reactive balance training (RBT) aims to improve control of reactions to prevent falling after a loss of balance. In healthy older adults, a single RBT session can lead to lasting improvements in reactive balance control and prevent falls in daily life. While increasing the dose of RBT does not appear to lead to additional benefit for healthy older adults, stroke survivors, who have more severely impaired balance control, may benefit from a higher RBT dose. Our long-term goal is to determine the optimal dose of RBT in people with subacute stroke. This assessor-blinded pilot randomised controlled trial aims to inform the design of a larger trial to address this long-term goal. METHODS AND ANALYSIS Participants (n=36) will be attending out-patient stroke rehabilitation, and will be randomly allocated to one of three groups: one, three or six RBT sessions. RBT will replace a portion of participants' regular physiotherapy so that the total physical rehabilitation time will be the same for the three groups. Balance and balance confidence will be assessed at: (1) study enrolment; (2) out-patient rehabilitation discharge; and (3) 6 months postdischarge. Participants will report falls and physical activity for 6 months postdischarge. Pilot data will be used to plan the larger trial (ie, sample size estimate using fall rates, and which groups should be included based on between-group trends in pre-to-post training effect sizes for reactive balance control measures). Pilot data will also be used to assess the feasibility of the larger trial (ie, based on the accrual rate, outcome completion rate and feasibility of prescribing specific training doses). ETHICS AND DISSEMINATION Institutional research ethics approval has been received. Study participants will receive a lay summary of results. We will also publish our findings in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04219696; Pre results.
Collapse
Affiliation(s)
- Avril Mansfield
- Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Elizabeth L Inness
- Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia J Danells
- Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - David Jagroop
- Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois, Chicago, Illinois, USA
| | - Andrew H Huntley
- Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Sozzi S, Nardone A, Schieppati M. Adaptation of balancing behaviour during continuous perturbations of stance. Supra-postural visual tasks and platform translation frequency modulate adaptation rate. PLoS One 2020; 15:e0236702. [PMID: 32735602 PMCID: PMC7394407 DOI: 10.1371/journal.pone.0236702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
When humans are administered continuous and predictable perturbations of stance, an adaptation period precedes the steady state of balancing behaviour. Little information is available on the modulation of adaptation by vision and perturbation frequency. Moreover, performance of supra-postural tasks may modulate adaptation in as yet unidentified ways. Our purpose was to identify differences in adaptation associated to distinct visual tasks and perturbation frequencies. Twenty non-disabled adult volunteers stood on a platform translating 10 cm in antero-posterior (AP) direction at low (LF, 0.18 Hz) and high frequency (HF, 0.56 Hz) with eyes open (EO) and closed (EC). Additional conditions were reading a text fixed to platform (EO-TP) and reading a text stationary on ground (EO-TG). Peak-to-peak (PP) displacement amplitude and AP position of head and pelvis markers were computed for each of 27 continuous perturbation cycles. The time constant and extent of head and pelvis adaptation and the cross-correlation coefficients between head and pelvis were compared across visual conditions and frequencies. Head and pelvis mean positions in space varied little across conditions and perturbation cycles but the mean head PP displacements changed over time. On average, at LF, the PP displacement of the head and pelvis increased progressively. Adaptation was rapid or ineffective with EO, but slower with EO-TG, EO-TP, EC. At HF, the head PP displacement amplitude decreased progressively with fast adaptation rates, while the pelvis adaptation was not apparent. The results show that visual tasks can modulate the adaptation rate, highlight the effect of the perturbation frequency on adaptation and provide evidence of priority assigned to pelvis stabilization over visual tasks at HF. The effects of perturbation frequency and optic flow and their interaction with other sensory inputs and cognitive tasks on the adaptation strategies should be investigated in impaired individuals and considered in the design of rehabilitation protocols.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie, ICS Maugeri SPA SB, IRCCS, Institute of Pavia, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, IRCCS Institute of Pavia, Pavia, Italy
- * E-mail:
| | | |
Collapse
|
16
|
Dusane S, Bhatt T. Mixed slip-trip perturbation training for improving reactive responses in people with chronic stroke. J Neurophysiol 2020; 124:20-31. [PMID: 32401150 DOI: 10.1152/jn.00671.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study determined the effect of mixed (slip- and trip-like stance perturbation) training on reactive responses in people with chronic stroke (PwCS) and examined modulation of their reactive responses on higher intensity perturbations posttraining (scaling). Twelve PwCS were exposed to consecutive blocks of treadmill-based slip-like and trip-like perturbations and mixed-stance perturbations. A higher intensity trial was provided postblock and postmixed training. Postural stability [center-of-mass position (CoMP) and velocity (CoMV)], compensatory step length, step count, and trunk angle were examined. PwCS demonstrated an anterior positioning of the CoM, increased step length, and reduced compensatory step count with slip-like block training (P < 0.05). Trip-like block training resulted in reductions in step count, step length, and trunk angle (P < 0.05); however, CoMP remained unchanged (P > 0.05). With mixed training, there was a decrease rather than an increase in step length for slip-like perturbations but a continued decrease in step length and trunk angle was seen on trip-like perturbations (P < 0.05); however, CoMP and step count remained unchanged for both. For both perturbations, the higher intensity trials demonstrated no change from the last block trial. Postmixed block, the higher intensity trial demonstrated an increase only in step count on trip-like perturbation. Between postblock and postmixed higher intensity trials, an increase in step count and decrease in step length was noted only for slip-like perturbations. Block training with slip- and trip-like stance perturbations can enhance reactive responses among PwCS. Although mixed perturbation training continued to improve trip-induced adaptation, prior slip-induced adaptive changes were not maintained and further slip-adaptation was not seen. PwCS demonstrated partial scaling of reactive responses postblock and postmixed training.NEW & NOTEWORTHY Block perturbation training led to development of favorable reactive responses to counteract treadmill-based, slip-like and trip-like stance perturbations among people with chronic stroke. During mixed block, previously acquired adaptive changes in reactive responses from slip-block training were not maintained, probably due to interference offered by trip block. Instead, on trip-like perturbations, trip block-induced adaptation was maintained and continued to show further improvement. Our findings might provide future direction for designing effective mixed perturbation training paradigms to counteract both opposing perturbation types.
Collapse
Affiliation(s)
- Shamali Dusane
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, Illinois
| | - Tanvi Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, Illinois
| |
Collapse
|
17
|
Poupore N, Strat D, Mackey T, Nathaniel TI. The Association Between an Antecedent of Transient Ischemic Attack Prior to Onset of Stroke and Functional Ambulatory Outcome. Clin Appl Thromb Hemost 2020; 26:1076029620906867. [PMID: 32122158 PMCID: PMC7288839 DOI: 10.1177/1076029620906867] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/06/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Specific clinical risk factors linked to transient ischemic attack (TIA) could affect functional ambulatory outcome following thrombolytic therapy in patients having ischemic stroke with a prior TIA (TIA-ischemic stroke). This issue was investigated in this study. METHODS We retrospectively analyzed data from 6379 ischemic stroke patients of which 1387 presented with an antecedent TIA prior to onset of stroke. We used logistic regression model to identify demographic and clinical risk factors that are associated with functional ambulatory outcome in patients with TIA-ischemic stroke treated with thrombolytic therapy. RESULTS In a population of TIA-ischemic stroke who received recombinant tissue plasminogen activator, patients with a history of stroke (odds ratio [OR] = 3.229, 95% confidence interval [CI] = 1.494-6.98, P = .003) were associated with increasing odds of improvement in functional ambulation, while the female gender (OR = 0.462, 95% CI = 0.223-0.956, P = .037) was associated with reducing odds of improvement. In the non-TIA group, dyslipidemia (OR = 1.351, 95% CI = 1.026-1.781, P = .032) and blood glucose (OR = 1.003, 95% CI = 1.0-1.005, P = .041) were associated with the increasing odds of improvement while older patients (OR = 0.989, 95% CI = 0.98-0.999, P = .029) with heart failure (OR = 0.513, 95% CI = 0.326-0.808, P = .004) and higher lipid level (OR = 0.834, 95% CI = 0.728-0.955, P = .009) were associated with reducing odds of improvement in ambulation. CONCLUSION In a population of TIA-ischemic stroke with thrombolytic therapy and a clearly defined TIA without focal ischemic injury, regardless of associated clinical risk factors, a TIA prior to a stroke is not associated with reducing odds of improved ambulatory outcome, except in female patients with TIA-ischemic stroke.
Collapse
Affiliation(s)
- Nicolas Poupore
- University of South Carolina School of Medicine, Greenville, SC, USA
| | - Dan Strat
- University of South Carolina School of Medicine, Greenville, SC, USA
| | - Tristan Mackey
- University of South Carolina School of Medicine, Greenville, SC, USA
| | | |
Collapse
|
18
|
Schinkel-Ivy A, Huntley AH, Danells CJ, Inness EL, Mansfield A. Improvements in balance reaction impairments following reactive balance training in individuals with sub-acute stroke: A prospective cohort study with historical control. Top Stroke Rehabil 2019; 27:262-271. [PMID: 31742486 DOI: 10.1080/10749357.2019.1690795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Reactive balance training (RBT) has been previously found to reduce fall risk in individuals with sub-acute stroke; however, our understanding of the effects of RBT on specific balance impairments is lacking.Objective: To quantify changes in common balance reaction impairments in individuals with sub-acute stroke resulting from RBT, relative to traditional balance training, using a prospective cohort study design with a historical control group.Methods: Individuals with sub-acute stroke completed either RBT or traditional balance training as part of their routine care during physiotherapy in inpatient rehabilitation. Reactive balance control was assessed using lean-and-release perturbations pre-intervention, post-intervention, and 6-months post-intervention (follow-up). Individuals with impaired balance reactions (delayed foot-off times, slide steps, and/or a preference for stepping with the preferred limb) at the pre-intervention assessment were identified using video and force plate data. Outcome measures (foot-off times, frequency of trials with slide steps, and stepping with the preferred limb) from the RBT participants with impaired reactions were compared for each of the three assessments to the mean values for the participants with impaired reactions in the historical control group.Results: Improvements were observed in all outcome measures for the RBT participants between pre-intervention and post-intervention, and/or between post-intervention and follow-up. These improvements were generally equivalent to, if not better than, the improvements demonstrated by the historical control group.Conclusions: Findings further support the use of RBT for post-stroke inpatient rehabilitation, and provide insight into specific balance reaction impairments that are improved by RBT.
Collapse
Affiliation(s)
- Alison Schinkel-Ivy
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrew H Huntley
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Cynthia J Danells
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth L Inness
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Avril Mansfield
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada.,Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Karamanidis K, Epro G, McCrum C, König M. Improving Trip- and Slip-Resisting Skills in Older People: Perturbation Dose Matters. Exerc Sport Sci Rev 2019; 48:40-47. [DOI: 10.1249/jes.0000000000000210] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Dusane S, Wang E, Bhatt T. Transfer of reactive balance adaptation from stance-slip perturbation to stance-trip perturbation in chronic stroke survivors. Restor Neurol Neurosci 2019; 37:469-482. [PMID: 31561399 DOI: 10.3233/rnn-190924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Chronic stroke survivors demonstrate the potential to acquire reactive adaptations to external perturbations. However, such adaptations in postural stability and compensatory stepping responses are perturbation-type specific and the ability to generalize such adaptation to an opposing perturbation has not been studied. OBJECTIVE The study aimed to examine whether improved reactive balance control acquired through prior slip-perturbation training would positively transfer to, or interfere with, the reactive response to an unexpected novel trip. METHODS Twenty-six chronic stroke survivors were assigned to either the training group (TR) who received treadmill-induced slips (12 m/s2) while standing followed by a novel trip (16.8 m/s2) or the control group (TC) who experienced a single unannounced trip. The primary outcome measure was postural stability (examined by relative center of mass position (RCoMP) and velocity (RCoMV)) with step length and trunk angle being secondary measures. Perturbation outcome (fall vs recovery) and number of compensatory steps were also recorded. RESULTS The TR group showed an anterior shift in RCoMP via longer compensatory backward step and reduced number of steps from first to last slip-perturbation (p < 0.05). Post-slip adaptation, the TR group exhibited a more posterior RCoMP on the novel trip along with a longer forward step and decreased trunk flexion compared to the TC group (p < 0.05). CONCLUSIONS Chronic stroke survivors demonstrated improved direction-specific compensatory stepping response on a novel trip-perturbation following reactive adaptation to large-magnitude, stance-slip perturbation training.The present study investigates the ability of chronic stroke survivors to generalize motor adaptation from stance-slip perturbation training to a novel, diametrically opposing trip-perturbation. We report that people with chronic hemi-paretic stroke could execute the acquired adaptation in reactive postural stability to improve reactive stepping responses to a novel stance-trip perturbation via generation of a direction-specific effective compensatory stepping response, such that the training group demonstrated a longer forward compensatory step and better control of postural stability than the control group.
Collapse
Affiliation(s)
- Shamali Dusane
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, USA
| | - Edward Wang
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, USA
| | - Tanvi Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois, Chicago, IL, USA
| |
Collapse
|