1
|
Tian B, Tian Y, Wang X, Cai D, Wu L, Wang M, Jia R, Chen S, Zhu D, Liu M, Yang Q, Wu Y, Zhao X, Zhang S, Sun D, Huang J, Ou X, Wu Z, Cheng A. Duck STING mediates antiviral autophagy directing the interferon signaling pathway to inhibit duck plague virus infection. Vet Res 2024; 55:83. [PMID: 38943190 PMCID: PMC11214240 DOI: 10.1186/s13567-024-01338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 07/01/2024] Open
Abstract
Migratory birds are important vectors for virus transmission, how migratory birds recognize viruses and viruses are sustained in birds is still enigmatic. As an animal model for waterfowl among migratory birds, studying and dissecting the antiviral immunity and viral evasion in duck cells may pave a path to deciphering these puzzles. Here, we studied the mechanism of antiviral autophagy mediated by duck STING in DEF cells. The results collaborated that duck STING could significantly enhance LC3B-II/I turnover, LC3B-EGFP puncta formation, and mCherry/EGFP ratio, indicating that duck STING could induce autophagy. The autophagy induced by duck STING is not affected by shRNA knockdown of ATG5 expression, deletion of the C-terminal tail of STING, or TBK1 inhibitor BX795 treatment, indicating that duck STING activated non-classical selective autophagy is independent of interaction with TBK1, TBK1 phosphorylation, and interferon (IFN) signaling. The STING R235A mutant and Sar1A/B kinase mutant abolished duck STING induced autophagy, suggesting binding with cGAMP and COPII complex mediated transport are the critical prerequisite. Duck STING interacted with LC3B through LIR motifs to induce autophagy, the LIR 4/7 motif mutants of duck STING abolished the interaction with LC3B, and neither activated autophagy nor IFN expression, indicating that duck STING associates with LC3B directed autophagy and dictated innate immunity activation. Finally, we found that duck STING mediated autophagy significantly inhibited duck plague virus (DPV) infection via ubiquitously degraded viral proteins. Our study may shed light on one scenario about the control and evasion of diseases transmitted by migratory birds.
Collapse
Affiliation(s)
- Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanming Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuetong Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liping Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Lorenz C, de Azevedo TS, Chiaravalloti-Neto F. Impact of climate change on West Nile virus distribution in South America. Trans R Soc Trop Med Hyg 2022; 116:1043-1053. [PMID: 35640005 DOI: 10.1093/trstmh/trac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND West Nile virus (WNV) is a vector-borne pathogen of global relevance and is currently the most widely distributed flavivirus causing encephalitis worldwide. Climate conditions have direct and indirect impacts on vector abundance and virus dynamics within the mosquito. The significance of environmental variables as drivers in WNV epidemiology is increasing under the current climate change scenario. In this study we used a machine learning algorithm to model WNV distributions in South America. METHODS Our model evaluated eight environmental variables for their contribution to the occurrence of WNV since its introduction in South America in 2004. RESULTS Our results showed that environmental variables can directly alter the occurrence of WNV, with lower precipitation and higher temperatures associated with increased virus incidence. High-risk areas may be modified in the coming years, becoming more evident with high greenhouse gas emission levels. Countries such as Bolivia, Paraguay and several Brazilian areas, mainly in the northeast and midwest regions and the Pantanal biome, will be greatly affected, drastically changing the current WNV distribution. CONCLUSIONS Understanding the linkages between climatological and ecological change as determinants of disease emergence and redistribution will help optimize preventive strategies. Increased virus surveillance, integrated modelling and the use of geographically based data systems will provide more anticipatory measures by the scientific community.
Collapse
Affiliation(s)
- Camila Lorenz
- Department of Epidemiology, School of Public Health, University of Sao Paulo, Av. Dr Arnaldo, 715, São Paulo CEP 05509-300, Brazil
| | - Thiago Salomão de Azevedo
- Secretary of Health, Municipality of Santa Barbara d'Oeste - CEP 13450-021, Sao Paulo, Brazil.,Laboratory of Entomology and Molecular Systematic, School of Public Health, University of Sao Paulo, Av. Dr Arnaldo, 715, São Paulo CEP 05509-300, Brazil
| | - Francisco Chiaravalloti-Neto
- Department of Epidemiology, School of Public Health, University of Sao Paulo, Av. Dr Arnaldo, 715, São Paulo CEP 05509-300, Brazil
| |
Collapse
|
3
|
Lorenz C, Chiaravalloti-Neto F. Why are there no human West Nile virus outbreaks in South America? LANCET REGIONAL HEALTH. AMERICAS 2022; 12:100276. [PMID: 36776433 PMCID: PMC9903813 DOI: 10.1016/j.lana.2022.100276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Camila Lorenz
- Corresponding author at: Department of Epidemiology, School of Public Health - FSP, University of Sao Paulo - USP, Av. Dr. Arnaldo, 715, São Paulo, SP, Brazil.
| | | |
Collapse
|
4
|
Zhang Y, Lei W, Wang Y, Sui H, Liu B, Li F, He Y, Li Z, Fu S, Wang L, Xu L, Mahe M, Gao Z, Mamutijiang T, Lv Z, Xiang N, Zhou L, Ni D, Liang G, Li Q, Wang H, Feng Z. Surveillance of West Nile virus infection in Kashgar Region, Xinjiang, China, 2013-2016. Sci Rep 2021; 11:14010. [PMID: 34234184 PMCID: PMC8263600 DOI: 10.1038/s41598-021-93309-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/07/2021] [Indexed: 11/25/2022] Open
Abstract
West Nile virus (WNV) was first isolated in mainland China from mosquitoes in Jiashi County, Kashgar Region, Xinjiang in 2011, following local outbreaks of viral meningitis and encephalitis caused by WNV. To elaborate the epidemiological characteristics of the WNV, surveillance of WNV infection in Kashgar Region, Xinjiang from 2013 to 2016 were carried out. Blood and CSF samples from surveillance human cases, blood of domestic chicken, cattle, sheep and mosquitoes in Kashgar Region were collected and detected. There were human 65 WNV Immunoglobulin M (IgM) antibody positive cases by ELISA screening, 6 confirmed WNV cases by the plaque reduction neutralization test (PRNT) screening. These cases occurred mainly concentrated in August to September of each year, and most of them were males. WNV-neutralizing antibodies were detected in both chickens and sheep, and the positive rates of neutralizing antibodies were 15.5% and 1.78%, respectively. A total of 15,637 mosquitoes were collected in 2013–2016, with Culex pipiens as the dominant mosquito species. Four and 1 WNV-positive mosquito pools were detected by RT-qPCR in 2013 and 2016 respectively. From these data, we can confirm that Jiashi County may be a natural epidemic foci of WNV disease, the trend highlights the routine virology surveillance in WNV surveillance cases, mosquitoes and avian should be maintained and enhanced to provide to prediction and early warning of outbreak an epidemic of WNV in China.
Collapse
Affiliation(s)
- Yanping Zhang
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Wenwen Lei
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Yali Wang
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Haitian Sui
- China National Biotec Group Company Limited, Beijing, 100024, People's Republic of China
| | - Bo Liu
- Center for Drug Evaluation of the China National Medical Products Administration, Beijing, 100022, People's Republic of China
| | - Fan Li
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Ying He
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Zhaoxia Li
- Kashgar Center for Disease Control and Prevention of Xinjiang, Kashgar, 844000, People's Republic of China
| | - Shihong Fu
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Lu Wang
- Kashgar Center for Disease Control and Prevention of Xinjiang, Kashgar, 844000, People's Republic of China
| | - Limin Xu
- Kashgar Center for Disease Control and Prevention of Xinjiang, Kashgar, 844000, People's Republic of China
| | - Muti Mahe
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, 830001, People's Republic of China
| | - Zhenguo Gao
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, 830001, People's Republic of China
| | - Tuerxun Mamutijiang
- Jiashi Center for Disease Control and Prevention, Jiashi, 844300, People's Republic of China
| | - Zhi Lv
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Nijuan Xiang
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Lei Zhou
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Daxin Ni
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Guodong Liang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Qun Li
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Huanyu Wang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Zijian Feng
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| |
Collapse
|
5
|
Hoyos-López R, Atencia-Pineda MC, Gallego-Gómez JC. Phylogenetic analysis of Dengue-2 serotypes circulating in mangroves in Northern Cordoba, Colombia. Rev Soc Bras Med Trop 2019; 52:e20190060. [PMID: 31188919 DOI: 10.1590/0037-8682-0060-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/21/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION In this study, we aimed to identify DENV-2 subtypes in Aedes aegypti pools collected between 2011 and 2017 in a rural area of Northern Cordoba, Colombia ("La Balsa"). METHODS RT-PCR was performed to analyze the capsid/pre-membrane region (C-PrM). Sequencing and phylogenetic bayesian inference using reference DENV-2 sequences were performed. RESULTS Twelve pools that tested positive for DENV-2 were characterized based on the C-PrM region and grouped under the Asian/American clade. CONCLUSIONS This study is the first to report the DENV-2 Asian-American subtype in a rural area of Cordoba region, which is associated with severe dengue and local epidemics.
Collapse
Affiliation(s)
- Richard Hoyos-López
- Grupo de Investigación en Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Facultad de Ciencias de la Salud, Montería-Córdoba, Colombia
| | - Maria Claudia Atencia-Pineda
- Grupo de Investigación en Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Facultad de Ciencias de la Salud, Montería-Córdoba, Colombia
| | - Juan Carlos Gallego-Gómez
- Molecular and Translational Medicine Group, Medical Research Institute, Faculty of Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
6
|
Miranda J, Mattar S, Gonzalez M, Hoyos-López R, Aleman A, Aponte J. First report of Culex flavivirus infection from Culex coronator (Diptera: Culicidae), Colombia. Virol J 2019; 16:1. [PMID: 30606229 PMCID: PMC6318882 DOI: 10.1186/s12985-018-1108-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Flaviviruses are important pathogens for humans and animals (Dengue viruses, Yellow fever virus, Zika virus and West Nile virus). Culex flavivirus (CxFV) is an insect-specific virus of the genus Flavivirus, detected in a wide variety of mosquito species. OBJECTIVE To detect Flavivirus in mosquitoes of a tropical region of the Colombian Caribbean. METHODS In 2014, an entomological surveillance of arboviruses was conducted in the department of Cordoba area of the Caribbean, Colombia. A total of 8270 mosquitoes were captured as follow: Mansonia (n = 3271/39.5%), Culex (n = 2668/32.26%), Anopheles (n = 840/10.15%), Aedeomyia (n = 411/4.9%), Psorophora (n = 397/4.8%), Coquilletidia (n = 369/4.46%), Uranotaenia (n = 261/3.15%) and Aedes (n = 53/0.6%). All mosquito species were collected in dry tropical forest of the Caribbean area. Universal primers for NS5 gene (958 pb), RT-PCR for flavivirus and sequencing were used for molecular identification of viruses detected. RESULTS Two pools belonging to Culex coronator were positive for flavivirus RNA sequence by RT-PCR. The sequences of the PCR amplicons, matched that of the Culex flaviviruses, CxFv COL PM_149 (GenBank: KR014201) and CxFv COL PM_212 (GenBank: KT307717). Phylogenetic analysis of the NS5 protein sequences of the Culex flaviviruses sequences with those of reference sequences available in GenBank indicated viruses of Genotype II, closely related to the Brazilian strain, BR_SJRP_01_ (GenBank: KT726939), from Culex sp. The alignment of Culex flavivirus sequences CxFv COL_ PM 212 and CxFv COL_ PM 149 with sequences of strains detected in different geographical regions grouped the strains in a Latin American clade reported in Brazil, Argentina and Mexico. CONCLUSIONS The present work illustrated that CxFV was circulating among vectors of human pathogenic arboviruses in Colombia, but the impact of CxFV on other flaviviruses which are endemic in the study area still remains to be explored.
Collapse
Affiliation(s)
- Jorge Miranda
- Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Salim Mattar
- Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Marco Gonzalez
- Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Richard Hoyos-López
- Grupo de Investigación en Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Colombia
| | - Ader Aleman
- Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Jose Aponte
- Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| |
Collapse
|
7
|
The Effects of Sampling Location and Predictor Point Estimate Certainty on Posterior Support in Bayesian Phylogeographic Generalized Linear Models. Sci Rep 2018; 8:5905. [PMID: 29651124 PMCID: PMC5897398 DOI: 10.1038/s41598-018-24264-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
The use of generalized linear models in Bayesian phylogeography has enabled researchers to simultaneously reconstruct the spatiotemporal history of a virus and quantify the contribution of predictor variables to that process. However, little is known about the sensitivity of this method to the choice of the discrete state partition. Here we investigate this question by analyzing a data set containing 299 sequences of the West Nile virus envelope gene sampled in the United States and fifteen predictors aggregated at four spatial levels. We demonstrate that although the topology of the viral phylogenies was consistent across analyses, support for the predictors depended on the level of aggregation. In particular, we found that the variance of the predictor support metrics was minimized at the most precise level for several predictors and maximized at more sparse levels of aggregation. These results suggest that caution should be taken when partitioning a region into discrete locations to ensure that interpretable, reproducible posterior estimates are obtained. These results also demonstrate why researchers should use the most precise discrete states possible to minimize the posterior variance in such estimates and reveal what truly drives the diffusion of viruses.
Collapse
|
8
|
A four-year survey (2011-2014) of West Nile virus infection in humans, mosquitoes and birds, including the 2012 meningoencephalitis outbreak in Tunisia. Emerg Microbes Infect 2018. [PMID: 29535295 PMCID: PMC5849722 DOI: 10.1038/s41426-018-0028-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A West Nile virus (WNV) outbreak occurred in Tunisia between mid-July and December 2012. To assess the epidemiological features of the WNV transmission cycle, human cerebrospinal fluid samples from patients with suspected cases (n = 79), Culex pipiens mosquitoes (n = 583) and serum specimens from domestic and migratory birds (n = 70) were collected for 4 years (2011–2014) in the Tunisian Sahel region. Viral testing was performed by polymerase chain reaction (PCR). The WNV genome was detected in 7 patients (8.8%), 4 Culex pipiens pools, and a domestic mallard (Anas platyrhynchos). All PCR-positive samples were from the Monastir region. Phylogenetic analysis revealed that two different WNV strain groups circulated, and isolates from the reservoir (bird), vector (Culex pipiens), and dead-end hosts (humans) were closely related. The Monastir region is a hot-spot for WNV infection, and the reiterative presence of WNV over the years has increased the risk of viral reemergence in Tunisia, which highlights the need for more enhanced and effective WNV surveillance in humans with public awareness campaigns strengthened by monitoring mosquitoes and maintaining avian surveillance for early detection of WNV circulation.
Collapse
|
9
|
Abstract
Mosquitoes are the most important vectors for arboviral human diseases across the world. Diseases such as Dengue Fever (DF), West Nile Virus (WNV), Yellow Fever (YF), Japanese Encephalitis (JE), Venezuelan Equine Encephalitis (VEE), and St. Louis Encephalitis (SLE), among others, have a deep impact in public health. Usually mosquitoes acquire the arboviral infection when they feed on viremic animals (birds or mammals), so their infection can be detected along the year or in short periods of time (seasons). All of this depends on the frequency and seasonality of the encounters between viremic animals and vectors.With the convergence of several phenomena like the increasing traveling of human populations, globalization of economy and more recently the global warming, the introduction of nonendemic arbovirus into new areas has become the current scenario. As examples of this new social and environmental frame we can mention the outbreak of West Nile Virus in North America in the late 1990s and more recently the outbreaks of chikungunya and Zika virus in the Americas. The present chapter deals with one of the first steps in the development of research studies and diagnosis programs, the surveillance of arboviruses in their vectors, the sampling design and mosquito trapping methods. The chapter also includes some important considerations and tips to be taken into account during the mosquito fieldwork.
Collapse
|
10
|
Rosero-garcÍa D, Bickersmith SA, Suaza-Vasco JD, Porter C, Correa MM, Conn JE, Uribe-Soto S. Molecular operational taxonomic units of mosquitoes (Diptera: Culicidae) collected in high Andean mountain ecosystems of Antioquia, Colombia. Zootaxa 2017; 4277:369-385. [PMID: 30308638 DOI: 10.11646/zootaxa.4277.3.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 11/04/2022]
Abstract
Accurate taxonomic identification of highland mosquito species may be complicated because of the lack of comprehensive regional morphological keys and taxonomic specialists, particularly for mosquitoes of medical or ecological importance. We applied a multi-locus approach to explore the diversity of genera/species collected, to define the Molecular Operational Taxonomic Units (MOTUs) and to perform phylogenetic clustering. Twenty MOTUs and three single sequences were revealed from 78 concatenated cox1 + ITS2 sequences, and the species name was allocated for five of these. This study provides molecular taxonomic information of culicid fauna present in high Andean mountain ecosystems in Antioquia, Colombia. However, future morphological and integrative taxonomic studies should be conducted to achieve the specific identity of all detected MOTUs.
Collapse
Affiliation(s)
- Doris Rosero-garcÍa
- Grupo de Investigación en Sistemática Molecular, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Calle 59A 63-20. Bloque 16, Laboratorio 102. Medellin, Colombia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Hoyos-López R, Suaza-Vasco J, Rúa-Uribe G, Uribe S, Gallego-Gómez JC. Molecular detection of flaviviruses and alphaviruses in mosquitoes (Diptera: Culicidae) from coastal ecosystems in the Colombian Caribbean. Mem Inst Oswaldo Cruz 2016; 111:625-634. [PMID: 27706377 PMCID: PMC5066328 DOI: 10.1590/0074-02760160096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022] Open
Abstract
Arboviruses belonging to the genera Flavivirus and Alphavirus were detected in mosquitoes in a rural area of San Bernardo del Viento (Córdoba, Colombia). A total of 22,180 mosquitoes were collected, sorted into 2,102 pools, and tested by generic/nested reverse transcription-polymerase chain reaction. Venezuelan equine encephalitis virus, dengue virus, West Nile virus, St. Louis encephalitis virus, yellow fever virus, and Culex flavivirus were detected and identified by sequencing. The detection of arboviral pathogens in this zone represents possible circulation and indicates a human health risk, demonstrating the importance of virological surveillance activities.
Collapse
Affiliation(s)
- Richard Hoyos-López
- Universidad de Antioquia, Translational and Molecular Medicine Group,
Medellín, Antioquia, Colombia
| | - Juan Suaza-Vasco
- Universidad Nacional de Colombia, Grupo de Investigación en Sistemática
Molecular, Medellín, Antioquia, Colombia
| | - Guillermo Rúa-Uribe
- Universidad de Antioquia, Facultad de Medicina, Grupo de Entomología
Médica, Medellín, Antioquia, Colombia
| | - Sandra Uribe
- Universidad Nacional de Colombia, Grupo de Investigación en Sistemática
Molecular, Medellín, Antioquia, Colombia
| | | |
Collapse
|
12
|
Castellanos JE. Virology, more necessary than ever. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2016; 36:5-9. [PMID: 27622798 DOI: 10.7705/biomedica.v36i0.3579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
|
13
|
Caraballo EV, Hunsperger E, Martínez I. Characterization of Puerto Rican West Nile Virus isolates in mice. Virol J 2015; 12:137. [PMID: 26357867 PMCID: PMC4566862 DOI: 10.1186/s12985-015-0363-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/18/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND West Nile virus (WNV) is a neurotropic arbovirus that was first isolated in 1937 in the West Nile District of Uganda. The virus emerged in New York in 1999 and is now endemic in North America (2007). The first virus isolates from Puerto Rico were obtained in 2007 from a chicken (PR20wh) and a mosquito pool (PR423). Our study further characterized these viral isolates using in vitro plaque morphology assays and in vivo using a Balb/c mice pathogenesis model. METHODS AND RESULTS In the in vitro experiments, PR WNV isolates produced significantly smaller plaques in Vero cells compared to the New York 1999 strain (NY99). For the in vivo experiments, PR WNV isolates were propagated in mammalian (Vero) and insect (C6/36) cell lines and then inoculated in Balb/c mice. When WNV was propagated in Vero cells, we observed a trend towards significance in the survival rate with PR20wh compared to NY99 (log rank, p = 0.092). Regardless of whether the viral isolates were propagated in Vero or C6/36 cells, we found a significantly greater survival in mice infected with PR20wh strain, when compared to NY99 (log rank, p = 0.04), while no statistical difference was detected between PR423 and NY99 (p = 0.84). The average survival time (AST) in mice was significantly lower in C6/36-derived PR423 when compared to C6/36-derived NY99 (t-test, p = 0.013), and Vero-derived PR423 (t-test, p < 0.001). Eight days post infection in mice the viral load in brain tissue for Vero-derived PR423 was significantly higher when compared to NY99 and PR20wh. CONCLUSIONS These results suggest that the PR WNV isolate, PR20wh, is a less pathogenic strain in mice than NY99. Moreover, we found that PR423 is a pathogenic isolate that causes faster mortality than NY99, when propagated in C6/36.
Collapse
Affiliation(s)
- Elba V Caraballo
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Room A-355 UPR-Medical Sciences Campus, PO Box 365067, San Juan, 00936-5067, Puerto Rico.
| | - Elizabeth Hunsperger
- Centers for Disease Control, Division of Vector Borne Diseases, Dengue Branch San Juan, San Juan, Puerto Rico.
| | - Idalí Martínez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Room A-355 UPR-Medical Sciences Campus, PO Box 365067, San Juan, 00936-5067, Puerto Rico.
| |
Collapse
|
14
|
Hoyos-López R, Soto SU, Rúa-Uribe G, Gallego-Gómez JC. Molecular identification of Saint Louis encephalitis virus genotype IV in Colombia. Mem Inst Oswaldo Cruz 2015; 110:719-25. [PMID: 26313538 PMCID: PMC4667573 DOI: 10.1590/0074-02760280040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/14/2015] [Indexed: 11/22/2022] Open
Abstract
Saint Louis encephalitis virus (SLEV) is a member of the Japanese-encephalitis virus
serocomplex of the genus Flavivirus. SLEV is broadly distributed in the Americas and
the Caribbean Islands, where it is usually transmitted by mosquitoes of the
genus Culex and primarily to birds and mammalian-hosts. Humans
are occasionally infected by the virus and are dead-end hosts. SLEV causes
encephalitis in temperate regions, while in tropical regions of the Americas, several
human cases and a wide biological diversity of SLEV-strains have been reported. The
phylogenetic analysis of the envelope (E) protein genes indicated eight-genotypes of
SLEV with geographic overlap. The present paper describes the genotyping of two SLEV
viruses detected in mosquito-pools collected in northern Colombia (department of
Cordoba). We used reverse transcription-polymerase chain reaction to amplify a
fragment of theE-gene to confirm the virus identity and
completeE-gene sequencing for phylogenetic analysis and
genotyping of the two-SLEV viruses found circulating in Córdoba. This is the first
report of SLEV genotype IV in Colombia (Córdoba) in mosquitoes from a region of human
inhabitation, implicating the risk of human disease due to SLEV infection. Physicians
should consider SLEV as a possible aetiology for undiagnosed febrile and neurologic
syndromes among their patients who report exposure to mosquito-bites.
Collapse
Affiliation(s)
| | | | - Guillermo Rúa-Uribe
- Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | | |
Collapse
|