1
|
Su C, Su C, Zheng C. Identifying an Abnormal Phosphorylated Adaptor by Viral Kinase Using Mass Spectrometry. Methods Mol Biol 2025; 2854:29-34. [PMID: 39192115 DOI: 10.1007/978-1-0716-4108-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Mass spectrometers are widely used to identify protein phosphorylation sites. The process usually involves selective isolation of phosphoproteins and subsequent fragmentation to identify both the peptide sequence and phosphorylation site. Immunoprecipitation could capture and purify the protein of interest, greatly reducing sample complexity before submitting it for mass spectrometry analysis. This chapter describes a method to identify an abnormal phosphorylated site of the adaptor protein by a viral kinase through immunoprecipitation followed by LC-MS/MS.
Collapse
Affiliation(s)
- Chenhe Su
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Chenhao Su
- Department of Nephrology and Rheumatology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Andrade VM, Pereira-Dutra F, Abrantes JL, Miranda MD, Souza TML. HSV1-induced enhancement of productive HIV-1 replication is associated with interferon pathway downregulation in human macrophages. Mem Inst Oswaldo Cruz 2024; 119:e240102. [PMID: 39476027 PMCID: PMC11520659 DOI: 10.1590/0074-02760240102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/05/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Herpesviruses are common co-pathogens in individuals infected with human immunodeficiency virus (HIV). Herpes simplex virus type 1 (HSV1) enhances HIV-1 replication and has evolved mechanisms to evade or disrupt host innate immune responses, including interference with interferon (IFN) signalling pathways. OBJECTIVES The aimed of this work was evaluated whether it HSV1 affects HIV-1 replication through the modulation of the IFN pathway in human macrophages. METHODS Co-infections with HSV1 and HIV-1 were performed in monocyte-derived human macrophages (hMDMs). The production of infectious HIV-1 and HSV-1 was monitored 48 h post-coinfection. Additionally, mRNA and protein expression levels of interferon-stimulated genes (ISGs) were evaluated in both HIV-1-HSV1 coinfections and HSV1 mono-infections. FINDINGS The HSV1 coinfection increasing the HIV-1 productive replication, following of downregulation of interferon-alpha (IFN-α) and interferon-induced transmembrane protein 3 (IFITM3) expression in hMDMs. Acyclovir treatment, in a dose-dependent manner, mitigated HSV1's ability to decrease IFITM3 levels. Knockdown of HSV1 Us11 and virion host shutoff (VHS) genes reactivated the IFN pathway, evidenced by restored IFITM3 expression and activation of eIF2-α and PKR. This knockdown also returned HIV-1 replication to baseline levels. MAIN CONCLUSIONS Our data suggested that HSV1 increases HIV-1 replication in human macrophages is associated with the downregulating interferon pathways and ISGs expression.
Collapse
Affiliation(s)
- Viviane M Andrade
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Rio de Janeiro, RJ, Brasil
| | - Filipe Pereira-Dutra
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
| | - Juliana L Abrantes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Rio de Janeiro, RJ, Brasil
| | - Milene D Miranda
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil
| | - Thiago Moreno L Souza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Kono T, Ozawa H, Laimins L. The roles of DNA damage repair and innate immune surveillance pathways in HPV pathogenesis. Virology 2024; 600:110266. [PMID: 39433009 DOI: 10.1016/j.virol.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Human papillomaviruses (HPV) infect epithelial tissues and induce a variety of proliferative lesions. A subset of HPV types are also the causative agents of many anogenital as well as oropharyngeal cancers. Following infection of basal epithelial cells, HPVs establish their genomes as episomes in undifferentiated cells and require differentiation for their productive life cycles. During HPV infections, viral oncoproteins alter cellular pathways such as those for DNA damage repair and innate immune surveillances to regulate their productive life cycles. These pathways provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Takeyuki Kono
- Dept of Otolaryngology-Head Neck Surgery, Keio University, School of Medicine, Tokyo, Japan; Dept of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA
| | - Hiroyuki Ozawa
- Dept of Otolaryngology-Head Neck Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Laimonis Laimins
- Dept of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Pashazadeh Azari P, Rezaei Zadeh Rukerd M, Charostad J, Bashash D, Farsiu N, Behzadi S, Mahdieh Khoshnazar S, Heydari S, Nakhaie M. Monkeypox (Mpox) vs. Innate immune responses: Insights into evasion mechanisms and potential therapeutic strategies. Cytokine 2024; 183:156751. [PMID: 39244831 DOI: 10.1016/j.cyto.2024.156751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Orthopoxviruses, a group of zoonotic viral infections, have emerged as a significant health emergency and global concern, particularly exemplified by the re-emergence of monkeypox (Mpox). Effectively addressing these viral infections necessitates a comprehensive understanding of the intricate interplay between the viruses and the host's immune response. In this review, we aim to elucidate the multifaceted aspects of innate immunity in the context of orthopoxviruses, with a specific focus on monkeypox virus (MPXV). We provide an in-depth analysis of the roles of key innate immune cells, including natural killer (NK) cells, dendritic cells (DCs), and granulocytes, in the host defense against MPXV. Furthermore, we explore the interferon (IFN) response, highlighting the involvement of toll-like receptors (TLRs) and cytosolic DNA/RNA sensors in detecting and responding to the viral presence. This review also examines the complement system's contribution to the immune response and provides a detailed analysis of the immune evasion strategies employed by MPXV to evade host defenses. Additionally, we discuss current prevention and treatment strategies for Mpox, including pre-exposure (PrEP) and post-exposure (PoEP) prophylaxis, supportive treatments, antivirals, and vaccinia immune globulin (VIG).
Collapse
Affiliation(s)
- Pouya Pashazadeh Azari
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Farsiu
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saleh Behzadi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjad Heydari
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Parameswaran P, Payne L, Powers J, Rashighi M, Orzalli MH. A viral E3 ubiquitin ligase produced by herpes simplex virus 1 inhibits the NLRP1 inflammasome. J Exp Med 2024; 221:e20231518. [PMID: 38861480 PMCID: PMC11167375 DOI: 10.1084/jem.20231518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Guard proteins initiate defense mechanisms upon sensing pathogen-encoded virulence factors. Successful viral pathogens likely inhibit guard protein activity, but these interactions have been largely undefined. Here, we demonstrate that the human pathogen herpes simplex virus 1 (HSV-1) stimulates and inhibits an antiviral pathway initiated by NLRP1, a guard protein that induces inflammasome formation and pyroptotic cell death when activated. Notably, HSV-1 infection of human keratinocytes promotes posttranslational modifications to NLRP1, consistent with MAPK-dependent NLRP1 activation, but does not result in downstream inflammasome formation. We identify infected cell protein 0 (ICP0) as the critical HSV-1 protein that is necessary and sufficient for inhibition of the NLRP1 pathway. Mechanistically, ICP0's cytoplasmic localization and function as an E3 ubiquitin ligase prevents proteasomal degradation of the auto-inhibitory NT-NLRP1 fragment, thereby preventing inflammasome formation. Further, we demonstrate that inhibiting this inflammasome is important for promoting HSV-1 replication. Thus, we have established a mechanism by which HSV-1 overcomes a guard-mediated antiviral defense strategy in humans.
Collapse
Affiliation(s)
- Pooja Parameswaran
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Laurellee Payne
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jennifer Powers
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mehdi Rashighi
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Megan H. Orzalli
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
7
|
Caproni A, Nordi C, Fontana R, Facchini M, Melija S, Pappadà M, Buratto M, Marconi P. Herpes Simplex Virus ICP27 Protein Inhibits AIM 2-Dependent Inflammasome Influencing Pro-Inflammatory Cytokines Release in Human Pigment Epithelial Cells (hTert-RPE 1). Int J Mol Sci 2024; 25:4608. [PMID: 38731826 PMCID: PMC11083950 DOI: 10.3390/ijms25094608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Although Herpes simplex virus type 1 (HSV-1) has been deeply studied, significant gaps remain in the fundamental understanding of HSV-host interactions: our work focused on studying the Infected Cell Protein 27 (ICP27) as an inhibitor of the Absent-in-melanoma-2 (AIM 2) inflammasome pathway, leading to reduced pro-inflammatory cytokines that influence the activation of a protective innate immune response to infection. To assess the inhibition of the inflammasome by the ICP27, hTert-immortalized Retinal Pigment Epithelial cells (hTert-RPE 1) infected with HSV-1 wild type were compared to HSV-1 lacking functional ICP27 (HSV-1∆ICP27) infected cells. The activation of the inflammasome by HSV-1∆ICP27 was demonstrated by quantifying the gene and protein expression of the inflammasome constituents using real-time PCR and Western blot. The detection of the cleavage of the pro-caspase-1 into the active form was performed by using a bioluminescent assay, while the quantification of interleukins 1β (IL-1β) and 18 (IL-18)released in the supernatant was quantified using an ELISA assay. The data showed that the presence of the ICP27 expressed by HSV-1 induces, in contrast to HSV-1∆ICP27 vector, a significant downregulation of AIM 2 inflammasome constituent proteins and, consequently, the release of pro-inflammatory interleukins into the extracellular environment reducing an effective response in counteracting infection.
Collapse
Affiliation(s)
- Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Chiara Nordi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Martina Facchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Sara Melija
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Mariangela Pappadà
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Mattia Buratto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Iyer M, Ravichandran N, Karuppusamy PA, Gnanarajan R, Yadav MK, Narayanasamy A, Vellingiri B. Molecular insights and promise of oncolytic virus based immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:419-492. [PMID: 38762277 DOI: 10.1016/bs.apcsb.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Nandita Ravichandran
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Roselin Gnanarajan
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
9
|
Bhattacharya I, Volety I, Shukla D. OPTN-TBK1 axis and a role for PLK1 in HSV-1 infection. mBio 2023; 14:e0271523. [PMID: 38019030 PMCID: PMC10746225 DOI: 10.1128/mbio.02715-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Herpes simplex virus type 1 (HSV-1) is globally prevalent, with latent infections observed in up to 80% of the population. The virus is known for subverting host defense mechanisms and infiltrating the nervous system to establish latency in peripheral ganglia. Multiple stressors can reactivate the virus, and recurrent herpes has been linked to vision loss and neurodegeneration. Identifying critical host factors that limit the spread of HSV-1 and the subsequent establishment of latent infection holds the potential to drive new intervention strategies for eradicating the virus. Numerous pieces of evidence underscore the significance of Tank-binding kinase 1 (TBK1) in restricting HSV-1. Reports have also suggested that phosphorylation of optineurin (OPTN) by TBK1 is required for triggering OPTN-mediated autophagy for HSV degradation. This report adds new insights into the roles of OPTN and TBK1 in HSV-1 infection and provides proof of a TBK1-independent HSV-1 restriction through OPTN. It confirms that TBK1 activation can be substituted by PLK1 to provide protection against HSV-1. In contrast, the activation of OPTN is likely an indispensable host defense mechanism for optimal defense against HSV-1.
Collapse
Affiliation(s)
- Ilina Bhattacharya
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ipsita Volety
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Ying M, Wang H, Liu T, Han Z, Lin K, Shi Q, Zheng N, Ye T, Gong H, Xu F. CLEAR Strategy Inhibited HSV Proliferation Using Viral Vectors Delivered CRISPR-Cas9. Pathogens 2023; 12:814. [PMID: 37375504 DOI: 10.3390/pathogens12060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a leading cause of encephalitis and infectious blindness. The commonly used clinical therapeutic drugs are nucleoside analogues such as acyclovir. However, current drugs for HSV cannot eliminate the latent virus or viral reactivation. Therefore, the development of new treatment strategies against latent HSV has become an urgent need. To comprehensively suppress the proliferation of HSV, we designed the CLEAR strategy (coordinated lifecycle elimination against viral replication). VP16, ICP27, ICP4, and gD-which are crucial genes that perform significant functions in different stages of the HSV infection lifecycle-were selected as targeting sites based on CRISPR-Cas9 editing system. In vitro and in vivo investigations revealed that genome editing by VP16, ICP27, ICP4 or gD single gene targeting could effectively inhibit HSV replication. Moreover, the combined administration method (termed "Cocktail") showed superior effects compared to single gene editing, which resulted in the greatest decrease in viral proliferation. Lentivirus-delivered CRISPR-Cas9/gRNA editing could effectively block HSV replication. The CLEAR strategy may provide new insights into the potential treatment of refractory HSV-1-associated diseases, particularly when conventional approaches have encountered resistance.
Collapse
Affiliation(s)
- Min Ying
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huadong Wang
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtan Liu
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunzhang Lin
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Shi
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ning Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tao Ye
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Huinan Gong
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, College of Life Sciences, Xuzhou Medical University, Xuzhou 221004, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
11
|
Fernández-Álvarez M, Horcajo P, Jiménez-Meléndez A, Diezma-Díaz C, Ferre I, Pastor-Fernández I, Miguel Ortega-Mora L, Álvarez-García G. Transcriptional changes associated with apoptosis and Type I IFN underlie the early interaction between Besnoitia besnoiti tachyzoites and monocyte-derived macrophages. Int J Parasitol 2023:S0020-7519(23)00094-2. [PMID: 37207972 DOI: 10.1016/j.ijpara.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Besnoitia besnoiti-infected bulls may develop severe systemic clinical signs and orchitis that may ultimately cause sterility during the acute infection. Macrophages might play a relevant role in pathogenesis of the disease and the immune response raised against B. besnoiti infection. This study aimed to dissect the early interaction between B. besnoiti tachyzoites and primary bovine monocyte-derived macrophages in vitro. First, the B. besnoiti tachyzoite lytic cycle was characterized. Next, dual transcriptomic profiling of B. besnoiti tachyzoites and macrophages was conducted at early infection (4 h and 8 h p.i. by high-throughput RNA sequencing. Macrophages inoculated with heat-killed tachyzoites (MO-hkBb) and non-infected macrophages (MO) were used as controls. Besnoitia besnoiti was able to invade and proliferate in macrophages. Upon infection, macrophage activation was demonstrated by morphological and transcriptomic changes. Infected macrophages were smaller, round and lacked filopodial structures, which might be associated with a migratory phenotype demonstrated in other apicomplexan parasites. The number of differentially expressed genes (DEGs) increased substantially during infection. In B. besnoiti-infected macrophages (MO-Bb), apoptosis and mitogen-activated protein kinase (MAPK) pathways were regulated at 4 h p.i., and apoptosis was confirmed by TUNEL assay. The Herpes simplex virus 1 infection pathway was the only significantly enriched pathway in MO-Bb at 8 h p.i. Relevant DEGs of the Herpes simplex virus 1 infection (IFNα) and the apoptosis pathways (CHOP-2) were also significantly regulated in the testicular parenchyma of naturally infected bulls. Furthermore, the parasite transcriptomic analysis revealed DEGs mainly related to host cell invasion and metabolism. These results provide a deep overview of the earliest macrophage modulation by B. besnoiti that may favour parasite survival and proliferation in a specialized phagocytic immune cell. Putative parasite effectors were also identified.
Collapse
Affiliation(s)
- María Fernández-Álvarez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Pilar Horcajo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Alejandro Jiménez-Meléndez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Carlos Diezma-Díaz
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Iván Pastor-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain
| | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Spain.
| |
Collapse
|
12
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Sutter J, Bruggeman PJ, Wigdahl B, Krebs FC, Miller V. Manipulation of Oxidative Stress Responses by Non-Thermal Plasma to Treat Herpes Simplex Virus Type 1 Infection and Disease. Int J Mol Sci 2023; 24:4673. [PMID: 36902102 PMCID: PMC10003306 DOI: 10.3390/ijms24054673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a contagious pathogen with a large global footprint, due to its ability to cause lifelong infection in patients. Current antiviral therapies are effective in limiting viral replication in the epithelial cells to alleviate clinical symptoms, but ineffective in eliminating latent viral reservoirs in neurons. Much of HSV-1 pathogenesis is dependent on its ability to manipulate oxidative stress responses to craft a cellular environment that favors HSV-1 replication. However, to maintain redox homeostasis and to promote antiviral immune responses, the infected cell can upregulate reactive oxygen and nitrogen species (RONS) while having a tight control on antioxidant concentrations to prevent cellular damage. Non-thermal plasma (NTP), which we propose as a potential therapy alternative directed against HSV-1 infection, is a means to deliver RONS that affect redox homeostasis in the infected cell. This review emphasizes how NTP can be an effective therapy for HSV-1 infections through the direct antiviral activity of RONS and via immunomodulatory changes in the infected cells that will stimulate anti-HSV-1 adaptive immune responses. Overall, NTP application can control HSV-1 replication and address the challenges of latency by decreasing the size of the viral reservoir in the nervous system.
Collapse
Affiliation(s)
- Julia Sutter
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Peter J. Bruggeman
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Fred C. Krebs
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
14
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
15
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
16
|
He Y, Wang C, Liang Q, Guo R, Jiang J, Shen W, Hu K. PKHB1 peptide induces antiviral effects through induction of immunogenic cell death in herpes simplex keratitis. Front Pharmacol 2022; 13:1048978. [PMID: 36532743 PMCID: PMC9751201 DOI: 10.3389/fphar.2022.1048978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 12/26/2023] Open
Abstract
Herpes simplex keratitis (HSK) is a severe, infectious corneal disease caused by herpes simplex virus type 1 (HSV-1) infection. The increasing prevalence of acyclovir resistance, the side effects of hormonal drugs, and the ease of recurrence after surgery have made it crucial to develop new methods of treating HSK. HSV-1 evades the host immune response through various mechanisms. Therefore, we explored the role of the immunogenic cell death inducer PKHB1 peptide in HSK. After subconjunctival injection of PKHB1 peptide, we observed the ocular surface lesions and survival of HSK mice and detected the virus levels in tear fluid, corneas, and trigeminal ganglions. We found that PKHB1 peptide reduced HSV-1 levels in the eye and alleviated the severity of HSK. Moreover, it increased the number of corneal infiltrating antigen-presenting cells (APCs), such as macrophages and dendritic cells, and CD8+ T cells in ocular draining lymph nodes. We further observed that PKHB1 peptide promoted the exposure of calreticulin, as well as the release of ATP and high-mobility group box 1 in HSV-1-infected cells in vitro. Our findings suggested that PKHB1 peptide promoted the recruitment and maturation of APCs by inducing the release of large amounts of damage-associated molecular patterns from infected cells. APCs then phagocytized antigenic materials and translocated to the lymph nodes, triggering a cytotoxic T lymphocyte-dependent immune response that ultimately alleviated HSK.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kai Hu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Shayan S, Arashkia A, Azadmanesh K. Modifying oncolytic virotherapy to overcome the barrier of the hypoxic tumor microenvironment. Where do we stand? Cancer Cell Int 2022; 22:370. [PMID: 36424577 PMCID: PMC9686061 DOI: 10.1186/s12935-022-02774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Viruses are completely dependent on host cell machinery for their reproduction. As a result, factors that influence the state of cells, such as signaling pathways and gene expression, could determine the outcome of viral pathogenicity. One of the important factors influencing cells or the outcome of viral infection is the level of oxygen. Recently, oncolytic virotherapy has attracted attention as a promising approach to improving cancer treatment. However, it was shown that tumor cells are mostly less oxygenated compared with their normal counterparts, which might affect the outcome of oncolytic virotherapy. Therefore, knowing how oncolytic viruses could cope with stressful environments, particularly hypoxic environments, might be essential for improving oncolytic virotherapy.
Collapse
Affiliation(s)
- Sara Shayan
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| | - Arash Arashkia
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| | - Kayhan Azadmanesh
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| |
Collapse
|
18
|
Th1 regulatory events by infectious pathogens, herpes zoster and herpes simplex viruses: prospects for therapeutic options for atopic eczema. Postepy Dermatol Alergol 2022; 39:662-667. [PMID: 36090727 PMCID: PMC9454353 DOI: 10.5114/ada.2022.118920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/31/2020] [Indexed: 11/29/2022] Open
Abstract
Infections caused by viral and bacterial pathogens are typically perceived as harmful, such as in cases of herpes zoster and herpes simplex virus infections. However, clinical observation of an improvement in atopic skin lesions upon herpes virus infection has been noted, particularly at the site of varicella and Kaposi’s varicelliform eruption. Th1 immune cells and cytokines, mobilized and induced for protection against infectious pathogens, are expected to improve Th2 dominant atopic symptoms. This study focuses on Th1 immunoregulatory events mediated by infectious pathogens, particularly herpes viruses. Immunoregulatory events induced by herpes viruses may have a potential therapeutic value for treating atopic eczema.
Collapse
|
19
|
The Virus-Induced Upregulation of the miR-183/96/182 Cluster and the FoxO Family Protein Members Are Not Required for Efficient Replication of HSV-1. Viruses 2022; 14:v14081661. [PMID: 36016282 PMCID: PMC9414244 DOI: 10.3390/v14081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/07/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) expresses a large number of miRNAs, and their function is still not completely understood. In addition, HSV-1 has been found to deregulate host miRNAs, which adds to the complexity of the regulation of efficient virus replication. In this study, we comprehensively addressed the deregulation of host miRNAs by massive-parallel sequencing. We found that only miRNAs expressed from a single cluster, miR-183/96/182, are reproducibly deregulated during productive infection. These miRNAs are predicted to regulate a great number of potential targets involved in different cellular processes and have only 33 shared targets. Among these, members of the FoxO family of proteins were identified as potential targets for all three miRNAs. However, our study shows that the upregulated miRNAs do not affect the expression of FoxO proteins, moreover, these proteins were upregulated in HSV-1 infection. Furthermore, we show that the individual FoxO proteins are not required for efficient HSV-1 replication. Taken together, our results indicate a complex and redundant response of infected cells to the virus infection that is efficiently inhibited by the virus.
Collapse
|
20
|
Scanlan H, Coffman Z, Bettencourt J, Shipley T, Bramblett DE. Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front Oncol 2022; 12:940019. [PMID: 35965554 PMCID: PMC9364694 DOI: 10.3389/fonc.2022.940019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
The need for efficacious and non-toxic cancer therapies is paramount. Oncolytic viruses (OVs) are showing great promise and are introducing new possibilities in cancer treatment with their ability to selectively infect tumor cells and trigger antitumor immune responses. Herpes Simplex Virus 1 (HSV-1) is a commonly selected OV candidate due to its large genome, relative safety profile, and ability to infect a variety of cell types. Talimogene laherparevec (T-VEC) is an HSV-1-derived OV variant and the first and only OV therapy currently approved for clinical use by the United States Food and Drug Administration (FDA). This review provides a concise description of HSV-1 as an OV candidate and the genomic organization of T-VEC. Furthermore, this review focuses on the advantages and limitations in the use of T-VEC compared to other HSV-1 OV variants currently in clinical trials. In addition, approaches for future directions of HSV-1 OVs as cancer therapy is discussed.
Collapse
Affiliation(s)
- Hayle Scanlan
- Rowan School of Medicine, RowanSOM-Jefferson Health-Virtua Our Lady of Lourdes Hospital, Stratford, NJ, United States
| | - Zachary Coffman
- Monroe Clinic Rural Family Medicine Program, The University of Illinois College of Medicine Rockford, Monroe, WI, United States
| | - Jeffrey Bettencourt
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Timothy Shipley
- Department of Biomedical Sciences, A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, United States
| | - Debra E. Bramblett
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
- *Correspondence: Debra E. Bramblett,
| |
Collapse
|
21
|
The Nuclear DNA Sensor IFI16 Indiscriminately Binds to and Diminishes Accessibility of the HSV-1 Genome to Suppress Infection. mSystems 2022; 7:e0019822. [PMID: 35575489 PMCID: PMC9239196 DOI: 10.1128/msystems.00198-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human cells identify invading pathogens and activate immune signaling pathways through a wide array of pattern recognition receptors, including DNA sensors. The interferon-inducible protein 16 (IFI16) is a nuclear DNA sensor that recognizes double-stranded DNA from a number of viral sources, including genomes of nuclear-replicating viruses. Among these is the prevalent human pathogen herpes simplex virus 1 (HSV-1). Upon binding to the HSV-1 DNA genome, IFI16 both induces antiviral cytokine expression and suppresses virus gene expression. Here, we used a multiomics approach of DNA sequencing techniques paired with targeted mass spectrometry to obtain an extensive view of the interaction between IFI16 and the HSV-1 genome and how this binding affects the viral DNA structure and protein expression. Through chromatin immunoaffinity purification coupled with next-generation DNA sequencing (ChIP-seq), we found that IFI16 binds to the HSV-1 genome in a sequence-independent manner while simultaneously exhibiting broad enrichment at two loci: UL30, the viral DNA polymerase gene, and US1 to US7. The assay for transposase-accessible chromatin with sequencing (ATAC-seq) revealed that these two regions are among the most accessible stretches of DNA on the genome, thereby facilitating IFI16 binding. Accessibility of the entire HSV-1 genome is elevated upon IFI16 knockout, indicating that expression of IFI16 globally induces chromatinization of viral DNA. Deletion of IFI16 also results in a global increase in the expression of HSV-1 proteins, as measured by parallel reaction monitoring-mass spectrometry of viral proteins representing 80% of the HSV-1 genome. Altogether, we demonstrate that IFI16 interacts with the HSV-1 genome in a sequence-independent manner, coordinating epigenetic silencing of the viral genome and decreasing protein expression and virus replication. IMPORTANCE Mammalian host defense against viral infection includes broad-acting cellular restriction factors, as well as effectors of intrinsic and innate immunity. IFI16 is a critical nuclear host defense factor and intrinsic immune protein involved in binding viral DNA genomes, thereby repressing the replication of nucleus-replicating viruses, including the human herpes simplex virus 1. What has remained unclear is where on the viral genome IFI16 binds and how binding affects both viral DNA structural accessibility and viral protein expression. Our study provides a global view of where and how a nuclear restriction factor of DNA viruses associates with viral genomes to exert antiviral functions during early stages of an acute virus infection. Our study can additionally serve as a systems-level model to evaluate nuclear DNA sensor interactions with viral genomes, as well as the antiviral outcomes of transcriptionally silencing pathogen-derived DNA.
Collapse
|
22
|
Zhang X, Liang Z, Wang C, Shen Z, Sun S, Gong C, Hu X. Viral Circular RNAs and Their Possible Roles in Virus-Host Interaction. Front Immunol 2022; 13:939768. [PMID: 35784275 PMCID: PMC9247149 DOI: 10.3389/fimmu.2022.939768] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) as novel regulatory molecules have been recognized in diverse species, including viruses. The virus-derived circRNAs play various roles in the host biological process and the life cycle of the viruses. This review summarized the circRNAs from the DNA and RNA viruses and discussed the biogenesis of viral and host circRNAs, the potential roles of viral circRNAs, and their future perspective. This review will elaborate on new insights gained on viruses encoded circRNAs during virus infection.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Zi Liang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Chonglong Wang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Zeen Shen
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Sufei Sun
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
- *Correspondence: Xiaolong Hu, ; Chengliang Gong,
| | - Xiaolong Hu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
- *Correspondence: Xiaolong Hu, ; Chengliang Gong,
| |
Collapse
|
23
|
Zheng ZQ, Fu YZ, Wang SY, Xu ZS, Zou HM, Wang YY. Herpes simplex virus protein UL56 inhibits cGAS-Mediated DNA sensing to evade antiviral immunity. CELL INSIGHT 2022; 1:100014. [PMID: 37193132 PMCID: PMC10120305 DOI: 10.1016/j.cellin.2022.100014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 05/18/2023]
Abstract
After herpes simplex virus type 1 (HSV-1) infection, the cytosolic sensor cyclic GMP-AMP synthase (cGAS) recognizes DNA and catalyzes synthesis of the second messenger 2'3'-cGAMP. cGAMP binds to the ER-localized adaptor protein MITA (also known as STING) to activate downstream antiviral responses. Conversely, HSV-1-encoded proteins evade antiviral immune responses via a wide variety of delicate mechanisms, promoting viral replication and pathogenesis. Here, we identified HSV-1 envelop protein UL56 as a negative regulator of cGAS-mediated innate immune responses. Overexpression of UL56 inhibited double-stranded DNA-triggered antiviral responses, whereas UL56-deficiency increased HSV-1-triggered induction of downstream antiviral genes. UL56-deficiency inhibited HSV-1 replication in wild-type but not MITA-deficient cells. UL56-deficient HSV-1 showed reduced replication in the brain of infected mice and was less lethal to infected mice. Mechanistically, UL56 interacted with cGAS and inhibited its DNA binding and enzymatic activity. Furthermore, we found that UL56 homologous proteins from different herpesviruses had similar roles in antagonizing cGAS-mediated innate immune responses. Our findings suggest that UL56 is a component of HSV-1 evasion of host innate immune responses by antagonizing the DNA sensor cGAS, which contributes to our understanding of the comprehensive mechanisms of immune evasion by herpesviruses.
Collapse
Affiliation(s)
- Zhou-Qin Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Zhi Fu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Su-Yun Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhi-Sheng Xu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hong-Mei Zou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Global profiling reveals common and distinct N6-methyladenosine (m6A) regulation of innate immune responses during bacterial and viral infections. Cell Death Dis 2022; 13:234. [PMID: 35288544 PMCID: PMC8921188 DOI: 10.1038/s41419-022-04681-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
N6-methyladenosine (m6A) is a dynamic post-transcriptional RNA modification influencing all aspects of mRNA biology. While m6A modifications during numerous viral infections have been described, the role of m6A in innate immune response remains unclear. Here, we examined cellular m6A epitranscriptomes during infections of Pseudomonas aeruginosa and herpes simplex virus type 1 (HSV-1), and lipopolysaccharide (LPS) stimulation to identify m6A-regulated innate immune response genes. We showed that a significant portion of cellular genes including many innate immune response genes underwent m6A modifications in 5'UTR and 3'UTR. We identified common and distinct m6A-modified genes under different stimulating conditions. Significantly, the expression of a subset of innate immune response genes was positively correlated with m6A level. Importantly, we identified genes that had significant enrichments of m6A peaks during P. aeruginosa infection following knockdown of m6A "eraser" ALKBH5, confirming the regulation of these genes by m6A and ALKBH5. Among them, we confirmed the association of m6A modification with gene expression in immune response genes TNFAIP3, IFIT1, IFIT2 and IFIH1. Taken together, our results revealed the vital role of m6A in regulating innate immunity against bacterial and viral infections. These works also provided rich resources for the scientific community.
Collapse
|
25
|
Ye G, Liu H, Zhou Q, Liu X, Huang L, Weng C. A Tug of War: Pseudorabies Virus and Host Antiviral Innate Immunity. Viruses 2022; 14:v14030547. [PMID: 35336954 PMCID: PMC8949863 DOI: 10.3390/v14030547] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The non-specific innate immunity can initiate host antiviral innate immune responses within minutes to hours after the invasion of pathogenic microorganisms. Therefore, the natural immune response is the first line of defense for the host to resist the invaders, including viruses, bacteria, fungi. Host pattern recognition receptors (PRRs) in the infected cells or bystander cells recognize pathogen-associated molecular patterns (PAMPs) of invading pathogens and initiate a series of signal cascades, resulting in the expression of type I interferons (IFN-I) and inflammatory cytokines to antagonize the infection of microorganisms. In contrast, the invading pathogens take a variety of mechanisms to inhibit the induction of IFN-I production from avoiding being cleared. Pseudorabies virus (PRV) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. PRV is the causative agent of Aujeszky’s disease (AD, pseudorabies). Although the natural host of PRV is swine, it can infect a wide variety of mammals, such as cattle, sheep, cats, and dogs. The disease is usually fatal to these hosts. PRV mainly infects the peripheral nervous system (PNS) in swine. For other species, PRV mainly invades the PNS first and then progresses to the central nervous system (CNS), which leads to acute death of the host with serious clinical and neurological symptoms. In recent years, new PRV variant strains have appeared in some areas, and sporadic cases of PRV infection in humans have also been reported, suggesting that PRV is still an important emerging and re-emerging infectious disease. This review summarizes the strategies of PRV evading host innate immunity and new targets for inhibition of PRV replication, which will provide more information for the development of effective inactivated vaccines and drugs for PRV.
Collapse
Affiliation(s)
- Guangqiang Ye
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Qiongqiong Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Xiaohong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence:
| |
Collapse
|
26
|
Yang X, Xiang Z, Sun Z, Ji F, Ren K, Pan D. Host MOV10 is induced to restrict herpes simplex virus 1 lytic infection by promoting type I interferon response. PLoS Pathog 2022; 18:e1010301. [PMID: 35157734 PMCID: PMC8880913 DOI: 10.1371/journal.ppat.1010301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/25/2022] [Accepted: 01/23/2022] [Indexed: 11/18/2022] Open
Abstract
Moloney leukemia virus 10 protein (MOV10) is an interferon (IFN)-inducible RNA helicase implicated in antiviral activity against RNA viruses, yet its role in herpesvirus infection has not been investigated. After corneal inoculation of mice with herpes simplex virus 1 (HSV-1), we observed strong upregulation of both MOV10 mRNA and protein in acutely infected mouse trigeminal ganglia. MOV10 suppressed HSV-1 replication in both neuronal and non-neuronal cells, and this suppression required the N-terminus, but not C-terminal helicase domain of MOV10. MOV10 repressed expression of the viral gene ICP0 in transfected cells, but suppressed HSV-1 replication independently of ICP0. MOV10 increased expression of type I IFN in HSV-1 infected cells with little effect on IFN downstream signaling. Treating the cells with IFN-α or an inhibitor of the IFN receptor eliminated MOV10 suppression of HSV-1 replication. MOV10 enhanced IFN production stimulated by cytoplasmic RNA rather than DNA. IKKε co-immunoprecipitated with MOV10 and was required for MOV10 restriction of HSV-1 replication. Mass spectrometry identified ICP27 as a viral protein interacting with MOV10. Co-immunoprecipitation results suggested that this interaction depended on the RGG box of ICP27 and both termini of MOV10. Overexpressed ICP27, but not its RGG-Box deletion mutant, rendered MOV10 unable to regulate HSV-1 replication and type I IFN production. In summary, MOV10 is induced to restrict HSV-1 lytic infection by promoting the type I IFN response through an IKKε-mediated RNA sensing pathway, and its activity is potentially antagonized by ICP27 in an RGG box dependent manner. Herpes simplex virus 1 (HSV-1) is a ubiquitous DNA virus that can cause various human diseases. Upon HSV-1 invasion, the host elicited the type I interferon (IFN) response as the first line of defense, in which numerous host factors are induced to restrict viral infection, yet our knowledge about these restriction factors remains limited. Here we show that during HSV-1 acute infection Moloney leukemia virus 10 protein (MOV10) was induced to restrict HSV-1 productive infection. MOV10 restricted HSV-1 replication by promoting type I IFN production through an IKKε-mediated RNA sensing pathway. Moreover, we identified ICP27 as a viral protein that can interact with MOV10 and antagonize its antiviral activity. Thus we establish MOV10 as a host restriction factor against a herpesvirus for the first time and expand our knowledge about how viral and host proteins modulate the IFN response.
Collapse
Affiliation(s)
- Xiyuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ze Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongli Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
27
|
Wang C, Wang T, Duan L, Chen H, Hu R, Wang X, Jia Y, Chu Z, Liu H, Wang X, Zhang S, Xiao S, Wang J, Dang R, Yang Z. Evasion of Host Antiviral Innate Immunity by Paramyxovirus Accessory Proteins. Front Microbiol 2022; 12:790191. [PMID: 35173691 PMCID: PMC8841848 DOI: 10.3389/fmicb.2021.790191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
For efficient replication, viruses have developed multiple strategies to evade host antiviral innate immunity. Paramyxoviruses are a large family of enveloped RNA viruses that comprises diverse human and animal pathogens which jeopardize global public health and the economy. The accessory proteins expressed from the P gene by RNA editing or overlapping open reading frames (ORFs) are major viral immune evasion factors antagonizing type I interferon (IFN-I) production and other antiviral innate immune responses. However, the antagonistic mechanisms against antiviral innate immunity by accessory proteins differ among viruses. Here, we summarize the current understandings of immune evasion mechanisms by paramyxovirus accessory proteins, specifically how accessory proteins directly or indirectly target the adaptors in the antiviral innate immune signaling pathway to facilitate virus replication. Additionally, some cellular responses, which are also involved in viral replication, will be briefly summarized.
Collapse
|
28
|
Jia J, Fu J, Tang H. Activation and Evasion of RLR Signaling by DNA Virus Infection. Front Microbiol 2022; 12:804511. [PMID: 34987495 PMCID: PMC8721196 DOI: 10.3389/fmicb.2021.804511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Antiviral innate immune response triggered by nucleic acid recognition plays an extremely important role in controlling viral infections. The initiation of antiviral immune response against RNA viruses through ligand recognition of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) was extensively studied. RLR’s role in DNA virus infection, which is less known, is increasing attention. Here, we review the research progress of the ligand recognition of RLRs during the DNA virus infection process and the viral evasion mechanism from host immune responses.
Collapse
Affiliation(s)
- Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jiangan Fu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Zhang R, Tang J. Evasion of I Interferon-Mediated Innate Immunity by Pseudorabies Virus. Front Microbiol 2022; 12:801257. [PMID: 34970252 PMCID: PMC8712723 DOI: 10.3389/fmicb.2021.801257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Type I interferon (IFN-I) mediated innate immunity serves as the first line of host defense against viral infection, ranging from IFN-I production upon viral detection, IFN-I triggered signaling pathway that induces antiviral gene transcription the antiviral effects of IFN-I induced gene products. During coevolution, herpesviruses have developed multiple countermeasures to inhibit the various steps involved to evade the IFN response. This mini-review focuses on the strategies used by the alphaherpesvirus Pseudorabies virus (PRV) to antagonize IFN-I mediated innate immunity, with a particular emphasis on the mechanisms inhibiting IFN-I induced gene transcription through the JAK-STAT pathway. The knowledge obtained from PRV enriches the current understanding of the alphaherpesviral immune evasion mechanisms and provides insight into the vaccine development for PRV control.
Collapse
Affiliation(s)
- Rui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Sobkowiak MJ, Paquin-Proulx D, Bosnjak L, Moll M, Sällberg Chen M, Sandberg JK. Dynamics of IL-15/IL-15R-α expression in response to HSV-1 infection reveal a novel mode of viral immune evasion counteracted by iNKT cells. Eur J Immunol 2021; 52:462-471. [PMID: 34910820 DOI: 10.1002/eji.202149287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/12/2021] [Accepted: 12/10/2021] [Indexed: 11/10/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) infects and persists in most of the human population. Interleukin-15 (IL-15) has an important role in the activation of cell-mediated immune responses and acts in complex with IL-15 receptor alpha (IL-15R-α) through cell surface transpresentation. Here, we have examined the IL-15/IL-15R-α complex response dynamics during HSV-1 infection in human keratinocytes. Surface expression of the IL-15/IL-15R-α complex rapidly increased in response to HSV-1, reaching a peak around 12 h after infection. This response was dependent on detection of viral replication by TLR3, and enhancement of IL15 and IL15RA gene expression. Beyond the peak of expression, levels of IL-15 and IL-15R-α gradually declined, reaching a profound loss of surface expression beyond 24 h of infection. This involved the loss of IL15 and IL15RA transcription. Interestingly, invariant natural killer T (iNKT) cells inhibited the viral interference with IL-15/IL-15R-α complex expression in an IFNγ-dependent manner. These results indicate that rapid upregulation of the IL-15/IL-15R-α complex occurs in HSV-1 infected keratinocytes, and that this response is targeted by viral interference. Shutdown of the IL-15 axis represents a novel mode of HSV-1 immune evasion, which can be inhibited by the host iNKT cell response.
Collapse
Affiliation(s)
- Michał J Sobkowiak
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden.,Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Dominic Paquin-Proulx
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden
| | - Lidija Bosnjak
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden
| | - Markus Moll
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden
| | | | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden
| |
Collapse
|
31
|
Xie J, Zhang X, Chen L, Bi Y, Idris A, Xu S, Li X, Zhang Y, Feng R. Pseudorabies Virus US3 Protein Inhibits IFN-β Production by Interacting With IRF3 to Block Its Activation. Front Microbiol 2021; 12:761282. [PMID: 34745071 PMCID: PMC8569920 DOI: 10.3389/fmicb.2021.761282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudorabies virus is a typical swine alphaherpesvirus, which can cause obvious neurological disorders and reproductive failure in pigs. It is capable of evading host antiviral immune response. However, the mechanism by which many PRV proteins assist the virus to evade innate immunity is not fully understood. This study identified PRV US3 protein as a crucial antagonistic viral factor that represses interferon beta (IFN-β) expression. A in-depth study showed that US3 protein restricted type I IFN production by targeting interferon regulatory factor 3 (IRF3), a key molecule required for type I IFN induction. Additionally, US3 protein interacted with IRF3, degraded its protein expression to block the phosphorylation of IRF3. These findings suggested a novel strategy utilized by PRV to inhibit IFN-β production and escape the host innate immunity.
Collapse
Affiliation(s)
- Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Lei Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yingjie Bi
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Shujuan Xu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
32
|
Sui H, Hao M, Chang W, Imamichi T. The Role of Ku70 as a Cytosolic DNA Sensor in Innate Immunity and Beyond. Front Cell Infect Microbiol 2021; 11:761983. [PMID: 34746031 PMCID: PMC8566972 DOI: 10.3389/fcimb.2021.761983] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Human Ku70 is a well-known endogenous nuclear protein involved in the non-homologous end joining pathway to repair double-stranded breaks in DNA. However, Ku70 has been studied in multiple contexts and grown into a multifunctional protein. In addition to the extensive functional study of Ku70 in DNA repair process, many studies have emphasized the role of Ku70 in various other cellular processes, including apoptosis, aging, and HIV replication. In this review, we focus on discussing the role of Ku70 in inducing interferons and proinflammatory cytokines as a cytosolic DNA sensor. We explored the unique structure of Ku70 binding with DNA; illustrated, with evidence, how Ku70, as a nuclear protein, responds to extracellular DNA stimulation; and summarized the mechanisms of the Ku70-involved innate immune response pathway. Finally, we discussed several new strategies to modulate Ku70-mediated innate immune response and highlighted some potential physiological insights based on the role of Ku70 in innate immunity.
Collapse
Affiliation(s)
- Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | | | | | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
33
|
Kim B, Kim YS, Hwang YH, Yang HJ, Li W, Kwon EB, Kim TI, Go Y, Choi JG. Quercus acuta Thunb. (Fagaceae) and Its Component, Isoquercitrin, Inhibit HSV-1 Replication by Suppressing Virus-Induced ROS Production and NF-κB Activation. Antioxidants (Basel) 2021; 10:antiox10101638. [PMID: 34679772 PMCID: PMC8533069 DOI: 10.3390/antiox10101638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
HSV-1 is a neurotropic virus that replicates lytically during acute infection and establishes latency in peripheral neurons. Currently, the clinically approved compounds for the prevention of HSV-1 infection include acyclovir and penciclovir; however, long-term use of the drug is associated with serious side effects, and drug-resistant strains often appear. Therefore, it is important to find a safe and novel antiviral agent for HSV-1 infection. Quercus acuta Thunb. (Fagaceae) (QA) is widely distributed as an ornamental and dietary plant in Korea, Taiwan, China, and Japan. Thus far, the effects of QA extract and its active ingredients are known to have antioxidant, antibacterial, and anti-inflammatory activity, but studies of possible antiviral effects have not been reported. We studied the antiviral effects and molecular mechanism of QA after HSV-1 infection at the cellular level. We confirmed that QA suppresses ROS expression after HSV-1 infection and also suppresses inflammatory cytokine expression through inhibition of NF-кB activity. In addition, we found that QA increases the phosphorylation activity of IRF3 through induction of TBK1 activity during HSV-1 infection. QA exhibits an antiviral effect, and we confirmed through UPLC-DAD-mass spectrometer (MS)/MS analysis that it contains five main components: catechin, chlorogenic acid, fraxin, isoquercitrin, and taxifolin. Of these, isoquercitrin was confirmed to exhibit an antiviral effect on SK-N-SH cells through ICP27 inhibition. Overall, our results suggest that QA is a novel inhibitor with antiviral effects against HSV-1 infection and may be used specifically to prevent and treat of herpes simplex virus encephalitis infection.
Collapse
|
34
|
Greenan E, Gallagher S, Khalil R, Murphy CC, Ní Gabhann-Dromgoole J. Advancing Our Understanding of Corneal Herpes Simplex Virus-1 Immune Evasion Mechanisms and Future Therapeutics. Viruses 2021; 13:v13091856. [PMID: 34578437 PMCID: PMC8473450 DOI: 10.3390/v13091856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/24/2022] Open
Abstract
Herpes stromal keratitis (HSK) is a disease that commonly affects the cornea and external eye and is caused by Herpes Simplex Virus type 1 (HSV-1). This virus infects approximately 66% of people worldwide; however, only a small portion of these people will develop symptoms in their lifetime. There is no cure or vaccine available for HSV-1; however, there are treatments available that aim to control the inflammation caused by the virus and prevent its recurrence. While these treatments are beneficial to those suffering with HSK, there is a need for more effective treatments to minimise the need for topical steroids, which can have harmful effects, and to prevent bouts of disease reactivation, which can lead to progressive corneal scarring and visual impairment. This review details the current understanding of HSV-1 infection and discusses potential novel treatment options including microRNAs, TLRs, mAbs, and aptamers.
Collapse
Affiliation(s)
- Emily Greenan
- Department of Ophthalmology, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland; (E.G.); (C.C.M.)
- School of Pharmacy and Biomolecular Sciences (PBS), RSCI Research Institute, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland;
| | - Sophie Gallagher
- School of Biological and Health Sciences, Technological University (TU) Dublin, Kevin Street, D02 XK51 Dublin, Ireland;
| | - Rana Khalil
- School of Pharmacy and Biomolecular Sciences (PBS), RSCI Research Institute, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland;
| | - Conor C. Murphy
- Department of Ophthalmology, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland; (E.G.); (C.C.M.)
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland
| | - Joan Ní Gabhann-Dromgoole
- Department of Ophthalmology, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland; (E.G.); (C.C.M.)
- School of Pharmacy and Biomolecular Sciences (PBS), RSCI Research Institute, Royal College of Surgeons in Ireland, D02 XK51 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
35
|
St. Leger AJ, Koelle DM, Kinchington PR, Verjans GMGM. Local Immune Control of Latent Herpes Simplex Virus Type 1 in Ganglia of Mice and Man. Front Immunol 2021; 12:723809. [PMID: 34603296 PMCID: PMC8479180 DOI: 10.3389/fimmu.2021.723809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen. HSV-1 genomes persist in trigeminal ganglia neuronal nuclei as chromatinized episomes, while epithelial cells are typically killed by lytic infection. Fluctuations in anti-viral responses, broadly defined, may underlay periodic reactivations. The ganglionic immune response to HSV-1 infection includes cell-intrinsic responses in neurons, innate sensing by several cell types, and the infiltration and persistence of antigen-specific T-cells. The mechanisms specifying the contrasting fates of HSV-1 in neurons and epithelial cells may include differential genome silencing and chromatinization, dictated by variation in access of immune modulating viral tegument proteins to the cell body, and protection of neurons by autophagy. Innate responses have the capacity of recruiting additional immune cells and paracrine activity on parenchymal cells, for example via chemokines and type I interferons. In both mice and humans, HSV-1-specific CD8 and CD4 T-cells are recruited to ganglia, with mechanistic studies suggesting active roles in immune surveillance and control of reactivation. In this review we focus mainly on HSV-1 and the TG, comparing and contrasting where possible observational, interventional, and in vitro studies between humans and animal hosts.
Collapse
Affiliation(s)
- Anthony J. St. Leger
- Department of Ophthalmology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Paul R. Kinchington
- Department of Ophthalmology and Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | |
Collapse
|
36
|
Prasad V, Greber UF. The endoplasmic reticulum unfolded protein response - homeostasis, cell death and evolution in virus infections. FEMS Microbiol Rev 2021; 45:fuab016. [PMID: 33765123 PMCID: PMC8498563 DOI: 10.1093/femsre/fuab016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Viruses elicit cell and organismic stress, and offset homeostasis. They trigger intrinsic, innate and adaptive immune responses, which limit infection. Viruses restore homeostasis by harnessing evolutionary conserved stress responses, such as the endoplasmic reticulum (ER) unfolded protein response (UPRER). The canonical UPRER restores homeostasis based on a cell-autonomous signalling network modulating transcriptional and translational output. The UPRER remedies cell damage, but upon severe and chronic stress leads to cell death. Signals from the UPRER flow along three branches with distinct stress sensors, the inositol requiring enzyme (Ire) 1, protein kinase R (PKR)-like ER kinase (PERK), and the activating transcription factor 6 (ATF6). This review shows how both enveloped and non-enveloped viruses use the UPRER to control cell stress and metabolic pathways, and thereby enhance infection and progeny formation, or undergo cell death. We highlight how the Ire1 axis bypasses apoptosis, boosts viral transcription and maintains dormant viral genomes during latency and persistence periods concurrent with long term survival of infected cells. These considerations open new options for oncolytic virus therapies against cancer cells where the UPRER is frequently upregulated. We conclude with a discussion of the evolutionary impact that viruses, in particular retroviruses, and anti-viral defense has on the UPRER.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
37
|
Tseng YY, Gowripalan A, Croft SN, Smith SA, Helbig KJ, Man SM, Tscharke DC. Viperin has species-specific roles in response to herpes simplex virus infection. J Gen Virol 2021; 102. [PMID: 34406117 PMCID: PMC8513645 DOI: 10.1099/jgv.0.001638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viperin is a gene with a broad spectrum of antiviral functions and various mechanisms of action. The role of viperin in herpes simplex virus type 1 (HSV-1) infection is unclear, with conflicting data in the literature that is derived from a single human cell type. We have addressed this gap by investigating viperin during HSV-1 infection in several cell types, spanning species and including immortalized, non-immortalized and primary cells. We demonstrate that viperin upregulation by HSV-1 infection is cell-type-specific, with mouse cells typically showing greater increases compared with those of human origin. Further, overexpression and knockout of mouse, but not human viperin significantly impedes and increases HSV-1 replication, respectively. In primary mouse fibroblasts, viperin upregulation by infection requires viral gene transcription and occurs in a predominantly IFN-independent manner. Further we identify the N-terminal domain of viperin as being required for the anti-HSV-1 activity. Interestingly, this is the region of viperin that differs most between mouse and human, which may explain the apparent species-specific activity against HSV-1. Finally, we show that HSV-1 virion host shutoff (vhs) protein is a key viral factor that antagonises viperin in mouse cells. We conclude that viperin can be upregulated by HSV-1 in mouse and human cells, and that mouse viperin has anti-HSV-1 activity.
Collapse
Affiliation(s)
- Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anjali Gowripalan
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N. Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart A. Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Si Ming Man
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- *Correspondence: David C. Tscharke,
| |
Collapse
|
38
|
Liu Y, Tang Q, Rao Z, Fang Y, Jiang X, Liu W, Luan F, Zeng N. Inhibition of herpes simplex virus 1 by cepharanthine via promoting cellular autophagy through up-regulation of STING/TBK1/P62 pathway. Antiviral Res 2021; 193:105143. [PMID: 34303748 DOI: 10.1016/j.antiviral.2021.105143] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cepharanthine (CEP), a naturally occurring isoquinoline alkaloid extracted from the genus CEP of the Tetrandrine family, was reported to possess many biological activities such as anti-inflammatory, antitumor, antiviral, and immune-enhancing effects. Nevertheless, the underlying mechanisms of CEP against herpes simplex virus type 1 (HSV-1) are still elusive. In this study, we explored the anti-HSV effects and mechanisms of CEP in vitro. The results showed that CEP possessed a strong inhibitory effect against HSV-1 infection with the TC50 of 5.4 μg/mL, the IC50 of 0.835 μg/mL, and the TI of 6.47. Most importantly, CEP could promote the phosphorylation of STING, TBK1, and P62 and the expression of LC3II without induction of interferon by directly targeting the STING/TBK1/P62 signaling pathways. Electron microscopy showed that autophagy induced by CEP could degrade viral particles and cellular components. RT-PCR results revealed that a sharp reduction of large numbers of virus gene transcription in 16 h after CEP treatment. Furthermore, CEP also reduced the HSV-1 gB and gC transcription. In conclusion, one of the effects of CEP was to promote interferon-independent autophagy through STING mediated signaling.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610083, PR China
| | - Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Zhili Rao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yang Fang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Xinni Jiang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan 610083, PR China
| | - Wenjun Liu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan 610083, PR China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
39
|
Zhang R, Chen S, Zhang Y, Wang M, Qin C, Yu C, Zhang Y, Li Y, Chen L, Zhang X, Yuan X, Tang J. Pseudorabies Virus DNA Polymerase Processivity Factor UL42 Inhibits Type I IFN Response by Preventing ISGF3-ISRE Interaction. THE JOURNAL OF IMMUNOLOGY 2021; 207:613-625. [PMID: 34272232 DOI: 10.4049/jimmunol.2001306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/13/2021] [Indexed: 01/01/2023]
Abstract
Alphaherpesviruses are large dsDNA viruses with an ability to establish persistent infection in hosts, which rely partly on their ability to evade host innate immune responses, notably the type I IFN response. However, the relevant molecular mechanisms are not well understood. In this study, we report the UL42 proteins of alphaherpesvirus pseudorabies virus (PRV) and HSV type 1 (HSV1) as a potent antagonist of the IFN-I-induced JAK-STAT signaling pathway. We found that ectopic expression of UL42 in porcine macrophage CRL and human HeLa cells significantly suppresses IFN-α-mediated activation of the IFN-stimulated response element (ISRE), leading to a decreased transcription and expression of IFN-stimulated genes (ISGs). Mechanistically, UL42 directly interacts with ISRE and interferes with ISG factor 3 (ISGF3) from binding to ISRE for efficient gene transcription, and four conserved DNA-binding sites of UL42 are required for this interaction. The substitution of these DNA-binding sites with alanines results in reduced ISRE-binding ability of UL42 and impairs for PRV to evade the IFN response. Knockdown of UL42 in PRV remarkably attenuates the antagonism of virus to IFN in porcine kidney PK15 cells. Our results indicate that the UL42 protein of alphaherpesviruses possesses the ability to suppress IFN-I signaling by preventing the association of ISGF3 and ISRE, thereby contributing to immune evasion. This finding reveals UL42 as a potential antiviral target.
Collapse
Affiliation(s)
- Rui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shifan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Ying Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Mengdong Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Chao Qin
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Cuilian Yu
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Yunfan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Yue Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Liankai Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xinrui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| |
Collapse
|
40
|
Rai KR, Shrestha P, Yang B, Chen Y, Liu S, Maarouf M, Chen JL. Acute Infection of Viral Pathogens and Their Innate Immune Escape. Front Microbiol 2021; 12:672026. [PMID: 34239508 PMCID: PMC8258165 DOI: 10.3389/fmicb.2021.672026] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Viral infections can cause rampant disease in human beings, ranging from mild to acute, that can often be fatal unless resolved. An acute viral infection is characterized by sudden or rapid onset of disease, which can be resolved quickly by robust innate immune responses exerted by the host or, instead, may kill the host. Immediately after viral infection, elements of innate immunity, such as physical barriers, various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, provide the first line of defense for viral clearance. Innate immunity not only plays a critical role in rapid viral clearance but can also lead to disease progression through immune-mediated host tissue injury. Although elements of antiviral innate immunity are armed to counter the viral invasion, viruses have evolved various strategies to escape host immune surveillance to establish successful infections. Understanding complex mechanisms underlying the interaction between viruses and host’s innate immune system would help develop rational treatment strategies for acute viral infectious diseases. In this review, we discuss the pathogenesis of acute infections caused by viral pathogens and highlight broad immune escape strategies exhibited by viruses.
Collapse
Affiliation(s)
- Kul Raj Rai
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Prasha Shrestha
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bincai Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shasha Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
41
|
Herpes simplex virus 1 infection induces ubiquitination of UBE1a. Biochem J 2021; 478:261-279. [PMID: 33355669 DOI: 10.1042/bcj20200885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a human DNA virus that causes cold sores, keratitis, meningitis, and encephalitis. Ubiquitination is a post-translational protein modification essential for regulation of cellular events, such as proteasomal degradation, signal transduction, and protein trafficking. The process is also involved in events for establishing viral infection and replication. The first step in ubiquitination involves ubiquitin (Ub) binding with Ub-activating enzyme (E1, also termed UBE1) via a thioester linkage. Our results show that HSV-1 infection alters protein ubiquitination pattern in host cells, as evidenced by MS spectra and co-immunoprecipitation assays. HSV-1 induced ubiquitination of UBE1a isoform via an isopeptide bond with Lys604. Moreover, we show that ubiquitination of K604 in UBE1a enhances UBE1a activity; that is, the activity of ubiquitin-transfer to E2 enzyme. Subsequently, we investigated the functional role of UBE1a and ubiquitination of K604 in UBE1a. We found that UBE1-knockdown increased HSV-1 DNA replication and viral production. Furthermore, overexpression of UBE1a, but not a UBE1a K604A mutant, suppressed viral replication. Furthermore, we found that UBE1a and ubiquitination at K604 in UBE1a retarded expression of HSV-1 major capsid protein, ICP5. Our findings show that UBE1a functions as an antiviral factor that becomes activated upon ubiquitination at Lys604.
Collapse
|
42
|
Damour A, Garcia M, Seneschal J, Lévêque N, Bodet C. Eczema Herpeticum: Clinical and Pathophysiological Aspects. Clin Rev Allergy Immunol 2021; 59:1-18. [PMID: 31836943 DOI: 10.1007/s12016-019-08768-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the world. AD is a complex pathology mainly characterized by an impaired skin barrier, immune response dysfunction, and unbalanced skin microbiota. Moreover, AD patients exhibit an increased risk of developing bacterial and viral infections. One of the most current, and potentially life-threatening, viral infection is caused by herpes simplex virus (HSV), which occurs in about 3% of AD patients under the name of eczema herpeticum (EH). Following a first part dedicated to the clinical features, virological diagnosis, and current treatments of EH, this review will focus on the description of the pathophysiology and, more particularly, the presently known predisposing factors to herpetic complications in AD patients. These factors include those related to impairment of the skin barrier such as deficit in filaggrin and anomalies in tight and adherens junctions. In addition, low production of the antimicrobial peptides cathelicidin LL-37 and human β-defensins; overexpression of cytokines such as interleukin (IL)-4, IL-13, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP); or downregulation of type I to III interferons as well as defect in functions of immune cells such as dendritic, natural killer, and regulatory T cells have been involved. Otherwise, genetic polymorphisms and AD topical calcineurin inhibitor treatments have been associated with an increased risk of EH. Finally, dysbiosis of skin microbiota characterized in AD patients by Staphylococcus aureus colonization and toxin secretion, such as α-toxin, has been described as promoting HSV replication and could therefore contribute to EH.
Collapse
Affiliation(s)
- Alexia Damour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France
| | - Magali Garcia
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France.,Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France
| | - Julien Seneschal
- INSERM U1035, BMGIC, Immuno-dermatologie ATIP-AVENIR, Bordeaux, France.,Département de Dermatologie and Dermatologie Pédiatrique, Centre national de référence pour les maladies rares de la peau, Hôpital Saint-André, Bordeaux, France
| | - Nicolas Lévêque
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France.,Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France.
| |
Collapse
|
43
|
Yin Y, Favoreel HW. Herpesviruses and the Type III Interferon System. Virol Sin 2021; 36:577-587. [PMID: 33400088 DOI: 10.1007/s12250-020-00330-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Type III interferons (IFNs) represent the most recently discovered group of IFNs. Together with type I IFNs (e.g. IFN-α/β), type III IFNs (IFN-λ) are produced as part of the innate immune response to virus infection, and elicit an anti-viral state by inducing expression of interferon stimulated genes (ISGs). It was initially thought that type I IFNs and type III IFNs perform largely redundant functions. However, it has become evident that type III IFNs particularly play a major role in antiviral protection of mucosal epithelial barriers, thereby serving an important role in the first-line defense against virus infection and invasion at contact areas with the outside world, versus the generally more broad, potent and systemic antiviral effects of type I IFNs. Herpesviruseses are large DNA viruses, which enter their host via mucosal surfaces and establish lifelong, latent infections. Despite the importance of mucosal epithelial cells in the pathogenesis of herpesviruses, our current knowledge on the interaction of herpesviruses with type III IFN is limited and largely restricted to studies on the alphaherpesvirus herpes simplex virus (HSV). This review summarizes the current understanding about the role of IFN-λ in the immune response against herpesvirus infections.
Collapse
Affiliation(s)
- Yue Yin
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
44
|
Hanif H, Elikaei A, Vazini H, Mohammadi A. Anticancer and Antibacterial Effect of Eucalyptus Camaldulensis, in Vitro. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.29252/mlj.15.1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
45
|
Herpes simplex virus 1 targets IRF7 via ICP0 to limit type I IFN induction. Sci Rep 2020; 10:22216. [PMID: 33335135 PMCID: PMC7747705 DOI: 10.1038/s41598-020-77725-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV-1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear film, where it encounters a multi-pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti-viral and pro-inflammatory cytokines. However, given that HSV-1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual's lifetime, there is significant interest in understanding the mechanisms employed by HSV-1 to downregulate the anti-viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identified interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These findings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target.
Collapse
|
46
|
UBE1a Suppresses Herpes Simplex Virus-1 Replication. Viruses 2020; 12:v12121391. [PMID: 33291814 PMCID: PMC7762088 DOI: 10.3390/v12121391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is the causative agent of cold sores, keratitis, meningitis, and encephalitis. HSV-1-encoded ICP5, the major capsid protein, is essential for capsid assembly during viral replication. Ubiquitination is a post-translational modification that plays a critical role in the regulation of cellular events such as proteasomal degradation, protein trafficking, and the antiviral response and viral events such as the establishment of infection and viral replication. Ub-activating enzyme (E1, also named UBE1) is involved in the first step in the ubiquitination. However, it is still unknown whether UBE1 contributes to viral infection or the cellular antiviral response. Here, we found that UBE1a suppressed HSV-1 replication and contributed to the antiviral response. The UBE1a inhibitor PYR-41 increased HSV-1 production. Immunofluorescence analysis revealed that UBE1a highly expressing cells presented low ICP5 expression, and vice versa. UBE1a inhibition by PYR-41 and shRNA increased ICP5 expression in HSV-1-infected cells. UBE1a reduced and retarded ICP5 protein expression, without affecting transcription of ICP5 mRNA or degradation of ICP5 protein. Additionally, UBE1a interacted with ICP27, and both partially co-localized at the Hsc70 foci/virus-induced chaperone-enriched (VICE) domains. PYR-41 reduced the co-localization of UBE1a and ICP27. Thus, our findings provide insights into the mechanism of UBE1a in the cellular response to viral infection.
Collapse
|
47
|
PRV-encoded UL13 protein kinase acts as an antagonist of innate immunity by targeting IRF3-signaling pathways. Vet Microbiol 2020; 250:108860. [PMID: 33045632 DOI: 10.1016/j.vetmic.2020.108860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022]
Abstract
Pseudorabies virus (PRV), a porcine alphaherpesvirus, causes neurological disorders and reproductive failure in swine. It is capable of avoiding host antiviral responses, resulting in viral latency in infected animals. The mechanisms by which many PRV proteins help the virus to evade immune surveillance are poorly understood. In this study, we found that the PRV protein kinase, UL13, inhibits the IFN-β signaling pathway by targeting interferon regulatory factor 3 (IRF3) for ubiquitination and degradation. PRV with mutant of UL13 is impaired in its ability to hinder IRF3 and interferon-β (IFN-β) activation, and has significantly less pathogenesis in mice that wild-type PRV. Our findings reveal an as yet undescribed mechanism utilized by PRV to evade host immune responses. PRV UL13 is a potential target for attenuated vaccines and antiviral drugs.
Collapse
|
48
|
Li W, Luo Z, Yan CY, Wang XH, He ZJ, Ouyang SH, Yan C, Liu LF, Zhou QQ, Mu HL, Gong HB, Duan WJ, Liang L, Kurihara H, Feng D, Li YF, He RR. Autophagic degradation of PML promotes susceptibility to HSV-1 by stress-induced corticosterone. Am J Cancer Res 2020; 10:9032-9049. [PMID: 32802177 PMCID: PMC7415815 DOI: 10.7150/thno.46921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: Herpes simplex virus type 1 (HSV-1) is a neurotropic virus that can cause a variety of clinical syndromes including mucocutaneous disease and HSV-1 encephalitis (HSE). Here, we characterize the molecular mechanisms underlying the susceptibility to HSV-1 under stressful conditions. Methods: Restraint stress and corticosterone (CORT, a primary stress hormone) were respectively used to establish HSV-1 susceptible model in vivo and in vitro. Viral titers were determined by plaque assay. Western blotting, immunofluorescence, transmission electron microscopy (TEM), qRT-PCR, H&E staining, IHC staining and flow cytometry were employed to evaluate virus-related protein expressions and detect the activation of autophagy. Loss- and gain-function assays, co-immunoprecipitation (co-IP) technique and autophagy agonist/antagonist treatments were applied in mechanistic experiments. Results: Restraint stress increased the susceptibility of mouse brain to HSV-1. Similarly, CORT treatment enhanced the susceptibility of neural cells to HSV-1. Furthermore, PML protein level in HSV-1 infected brain tissues and neural cells was remarkably decreased by stress treatment in vivo or CORT treatment in vitro, while its transcriptional level was not affected. Notably, a striking decline in protein expressions of ICP27 and gB was observed in PML-overexpressing cells, which was reversed by CORT treatment. By contrast, protein expression of gB was increased by knockdown with si-PML in virus-infected SH-SY5Y cells. We further discovered that CORT-driven PML degradation was dependent on the activation of autophagy in a ULK1-independent manner, rather than proteasome pathway. Bafilomycin A1 (BaF1) attenuated the augmentation effect of CORT on HSV-1 infection. The expressions of viral proteins were reduced in LC3-depleted cells, and the degradation of PML by CORT-induced autophagy was prevented in cells with LC3 knockdown by RNAi. Interestingly, PML was revealed to interact with the autophagic cargo receptor P62 and the autophagic effector protein LC3. Additionally, CORT failed to increase gB protein level when PML was silenced, providing direct evidence linking autophagic degradation of PML and CORT-induced virus susceptibility. Conclusion: Our results revealed that restraint stress/CORT increased HSV-1 susceptibility by delivering PML into autolysosomes for degradation. The results obtained from in vitro and in vivo models not only demonstrated the adverse effects of stress on HSV-1 infection, but also systematically investigated the underlying molecular mechanisms. These discoveries broaden our understanding of the interplay between host and viruses, and a comprehensive understanding of the role of autophagy in viral infection will provide information for future development of innovative drugs against viral infection.
Collapse
|
49
|
Yamashiro LH, Wilson SC, Morrison HM, Karalis V, Chung JYJ, Chen KJ, Bateup HS, Szpara ML, Lee AY, Cox JS, Vance RE. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nat Commun 2020; 11:3382. [PMID: 32636381 PMCID: PMC7341812 DOI: 10.1038/s41467-020-17156-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
The Stimulator of Interferon Genes (STING) pathway initiates potent immune responses upon recognition of DNA. To initiate signaling, serine 365 (S365) in the C-terminal tail (CTT) of STING is phosphorylated, leading to induction of type I interferons (IFNs). Additionally, evolutionary conserved responses such as autophagy also occur downstream of STING, but their relative importance during in vivo infections remains unclear. Here we report that mice harboring a serine 365-to-alanine (S365A) mutation in STING are unexpectedly resistant to Herpes Simplex Virus (HSV)-1, despite lacking STING-induced type I IFN responses. By contrast, resistance to HSV-1 is abolished in mice lacking the STING CTT, suggesting that the STING CTT initiates protective responses against HSV-1, independently of type I IFNs. Interestingly, we find that STING-induced autophagy is a CTT- and TBK1-dependent but IRF3-independent process that is conserved in the STING S365A mice. Thus, interferon-independent functions of STING mediate STING-dependent antiviral responses in vivo.
Collapse
Affiliation(s)
- Lívia H Yamashiro
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Stephen C Wilson
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Bristol Myers Squibb, 200 Cambridge Park Dr, Cambridge, MA, 02140, USA
| | - Huntly M Morrison
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Vasiliki Karalis
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Jing-Yi J Chung
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Katherine J Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Helen S Bateup
- Division of Neurobiology, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Moriah L Szpara
- Departments of Biology and Biochemistry & Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, PA, 16801, USA
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, CA, 94720, USA
| | - Jeffery S Cox
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley, CA, 94720, USA
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA.
- Cancer Research Laboratory, University of California, Berkeley, CA, 94720, USA.
- Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
50
|
Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020302. [PMID: 32545507 PMCID: PMC7350219 DOI: 10.3390/vaccines8020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.
Collapse
|