1
|
Sharaf A, Nuc P, Ripl J, Alquicer G, Ibrahim E, Wang X, Maruthi MN, Kundu JK. Transcriptome Dynamics in Triticum aestivum Genotypes Associated with Resistance against the Wheat Dwarf Virus. Viruses 2023; 15:v15030689. [PMID: 36992398 PMCID: PMC10054045 DOI: 10.3390/v15030689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Wheat dwarf virus (WDV) is one of the most important pathogens of cereal crops worldwide. To understand the molecular mechanism of resistance, here we investigated the comparative transcriptome of wheat genotypes with different levels of resistance (Svitava and Fengyou 3) and susceptibility (Akteur) to WDV. We found a significantly higher number of differentially expressed transcripts (DETs) in the susceptible genotype than in the resistant one (e.g., Svitava). The number of downregulated transcripts was also higher in the susceptible genotype than in the resistant one (Svitava) and the opposite was true for the upregulated transcripts. Further functional analysis of gene ontology (GO) enrichment identified a total of 114 GO terms for the DETs. Of these, 64 biological processes, 28 cellular components and 22 molecular function GO terms were significantly enriched. A few of these genes appear to have a specific expression pattern related to resistance or susceptibility to WDV infection. Validation of the expression pattern by RT-qPCR showed that glycosyltransferase was significantly downregulated in the susceptible genotype compared to the resistant genotypes after WDV infection, while CYCLIN-T1-3, a regulator of CDK kinases (cyclin-dependent kinase), was upregulated. On the other hand, the expression pattern of the transcription factor (TF) MYB (TraesCS4B02G174600.2; myeloblastosis domain of transcription factor) was downregulated by WDV infection in the resistant genotypes compared to the susceptible genotype, while a large number of TFs belonging to 54 TF families were differentially expressed due to WDV infection. In addition, two transcripts (TraesCS7A02G341400.1 and TraesCS3B02G239900.1) were upregulated with uncharacterised proteins involved in transport and regulation of cell growth, respectively. Altogether, our findings showed a clear gene expression profile associated with resistance or susceptibility of wheat to WDV. In future studies, we will explore the regulatory network within the same experiment context. This knowledge will broaden not only the future for the development of virus-resistant wheat genotypes but also the future of genetic improvement of cereals for resilience and WDV-resistance breeding.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Przemysław Nuc
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Jan Ripl
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Glenda Alquicer
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Emad Ibrahim
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Midatharahally N. Maruthi
- Agriculture, Health and Environment Department, Natural Resources Institute, Medway Campus, University of Greenwich, Chatham, Kent ME4 4TB, UK;
| | - Jiban Kumar Kundu
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
- Correspondence: ; Tel.: +420-233-022-410
| |
Collapse
|
2
|
Wang X, Wang B, Zhu X, Zhao Y, Jin B, Wei X. Exogenous Nitric Oxide Alleviates the Damage Caused by Tomato Yellow Leaf Curl Virus in Tomato through Regulation of Peptidase Inhibitor Genes. Int J Mol Sci 2022; 23:ijms232012542. [PMID: 36293408 PMCID: PMC9604136 DOI: 10.3390/ijms232012542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The tomato yellow leaf curl virus (TYLCV) is the causal agent of one of the most severe diseases affecting tomato growth; however, nitric oxide (NO) can mediate plant resistance. This study investigated the molecular mechanism of exogenous NO donor-mediated disease resistance in tomato seedlings. Tomato seedlings were treated with sodium nitroprusside and TYLCV and subjected to phenotypic, transcriptomic, and physiological analyses. The results show that exogenous NO significantly reduced disease index, MDA content, and virus content (71.4%), significantly increased stem length and fresh weight of diseased plants (p < 0.05), and improved photosynthesis with an induction effect of up to 44.0%. In this study, it was found that the reduction in virus content caused by the increased expression of peptidase inhibitor genes was the main reason for the increased resistance in tomatoes. The peptidase inhibitor inhibited protease activity and restrained virus synthesis, while the significant reduction in virus content inevitably caused a partial weakening or shutdown of the disease response process in the diseased plant. In addition, exogenous NO also induces superoxide dismutase, peroxidase activity, fatty acid elongation, resistance protein, lignin, and monoterpene synthesis to improve resistance. In summary, exogenous NO enhances resistance in tomatoes mainly by regulating peptidase inhibitor genes.
Collapse
Affiliation(s)
- Xian Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
| | - Ying Zhao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoxia Jin
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-138-9331-7951
| |
Collapse
|
3
|
Xu S, Zhang X, Xu K, Wang Z, Zhou X, Jiang L, Jiang T. Strawberry Vein Banding Virus Movement Protein P1 Interacts With Light-Harvesting Complex II Type 1 Like of Fragaria vesca to Promote Viral Infection. Front Microbiol 2022; 13:884044. [PMID: 35722273 PMCID: PMC9201980 DOI: 10.3389/fmicb.2022.884044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Chlorophyll a/b-binding protein of light-harvesting complex II type 1 like (LHC II-1L) is an essential component of photosynthesis, which mainly maintains the stability of the electron transport chain. However, how the LHC II-1L protein of Fragaria vesca (FvLHC II-1L) affects viral infection remains unclear. In this study, we demonstrated that the movement protein P1 of strawberry vein banding virus (SVBV P1) interacted with FvLHC II-1L in vivo and in vitro by bimolecular fluorescence complementation and pull-down assays. SVBV P1 was co-localized with FvLHC II-1L at the edge of epidermal cells of Nicotiana benthamiana leaves, and FvLHC II-1L protein expression was upregulated in SVBV-infected F. vesca. We also found that FvLHC II-1L effectively promoted SVBV P1 to compensate for the intercellular movement of movement-deficient potato virus X (PVXΔP25) and the systemic movement of movement-deficient cucumber mosaic virus (CMVΔMP). Transient overexpression of FvLHC II-1L and inoculation of an infectious clone of SVBV showed that the course of SVBV infection in F. vesca was accelerated. Collectively, the results showed that SVBV P1 protein can interact with FvLHC II-1L protein, which in turn promotes F. vesca infection by SVBV.
Collapse
Affiliation(s)
- Shiqiang Xu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiangxiang Zhang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Kai Xu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing, China
| | - Lei Jiang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- *Correspondence: Tong Jiang, Lei Jiang,
| | - Tong Jiang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- *Correspondence: Tong Jiang, Lei Jiang,
| |
Collapse
|
4
|
Pesti R, Kontra L, Paul K, Vass I, Csorba T, Havelda Z, Várallyay É. Differential gene expression and physiological changes during acute or persistent plant virus interactions may contribute to viral symptom differences. PLoS One 2019; 14:e0216618. [PMID: 31051010 PMCID: PMC6499435 DOI: 10.1371/journal.pone.0216618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Viruses have different strategies for infecting their hosts. Fast and acute infections result in the development of severe symptoms and may cause the death of the plant. By contrast, in a persistent interaction, the virus can survive within its host for a long time, inducing only mild symptoms. In this study, we investigated the gene expression changes induced in CymRSV-, crTMV-, and TCV-infected Nicotiana benthamiana and in PVX- and TMV-U1-infected Solanum lycopersicum plants after the systemic spread of the virus by two different high-throughput methods: microarray hybridization or RNA sequencing. Using these techniques, we were able to clearly differentiate between acute and persistent infections. We validated the gene expression changes of selected genes by Northern blot hybridization or by qRT-PCR. We show that, in contrast to persistent infections, the drastic shut-off of housekeeping genes, downregulation of photosynthesis-related transcripts and induction of stress genes are specific outcomes with acute infections. We also show that these changes are not a consequence of host necrosis or the presence of a viral silencing suppressor. Thermal imaging data and chlorophyll fluorescence measurements correlated very well with the molecular changes. We believe that the molecular and physiological changes detected during acute infections mostly contribute to virus symptom development. The observed characteristic physiological changes associated with economically more dangerous acute infections could serve as a basis for the elaboration of remote monitoring systems suitable for detecting developing virus infections in crops. Moreover, as molecular and physiological changes are characteristics of different types of virus lifestyles, this knowledge can support risk assessments of recently described novel viruses.
Collapse
Affiliation(s)
- Réka Pesti
- Diagnostic Group, Department of Genomics, Agricultural Biotechnology Research Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Levente Kontra
- Diagnostic Group, Department of Genomics, Agricultural Biotechnology Research Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Kenny Paul
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Tibor Csorba
- Virology Group, Department of Plant Biotechnology, Agricultural Biotechnology Research Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Zoltán Havelda
- Plant Developmental Biology Group, Department of Plant Biotechnology, Agricultural Biotechnology Research Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Éva Várallyay
- Diagnostic Group, Department of Genomics, Agricultural Biotechnology Research Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| |
Collapse
|
5
|
Li S, Hu Y, Jiang L, Rui P, Zhao Q, Feng J, Zuo D, Zhou X, Jiang T. Strawberry Vein Banding Virus P6 Protein Is a Translation Trans-Activator and Its Activity Can be Suppressed by FveIF3g. Viruses 2018; 10:E717. [PMID: 30558257 PMCID: PMC6316418 DOI: 10.3390/v10120717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 01/25/2023] Open
Abstract
The strawberry vein banding virus (SVBV) open reading frame (ORF) VI encodes a P6 protein known as the RNA silencing suppressor. This protein is known to form inclusion like granules of various sizes and accumulate in both the nuclei and the cytoplasm of SVBV-infected plant cells. In this study, we have determined that the P6 protein is the only trans-activator (TAV) encoded by SVBV, and can efficiently trans-activate the translation of downstream gfp mRNA in a bicistron derived from the SVBV. Furthermore, the P6 protein can trans-activate the expression of different bicistrons expressed by different caulimovirus promoters. The P6 protein encoded by SVBV from an infectious clone can also trans-activate the expression of bicistron. Through protein-protein interaction assays, we determined that the P6 protein could interact with the cell translation initiation factor FveIF3g of Fragaria vesca and co-localize with it in the nuclei of Nicotiana benthamiana cells. This interaction reduced the formation of P6 granules in cells and its trans-activation activity on translation.
Collapse
Affiliation(s)
- Shuai Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Yahui Hu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Penghuan Rui
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Qingqing Zhao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Jiying Feng
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Dengpan Zuo
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Xueping Zhou
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant protection, China Academy of Agricultural Sciences, Beijing 100193, China.
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Feng M, Zuo D, Jiang X, Li S, Chen J, Jiang L, Zhou X, Jiang T. Identification of Strawberry vein banding virus encoded P6 as an RNA silencing suppressor. Virology 2018; 520:103-110. [PMID: 29843054 DOI: 10.1016/j.virol.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022]
Abstract
RNA silencing is a common mechanism that plays a key role in antiviral defense. To overcome host defense responses, plant viruses encode silencing-suppressor proteins to target one or several key steps in the silencing machinery. Here, we report that the P6 protein encoded by Strawberry vein banding virus (SVBV) is an RNA silencing suppressor through Agrobacterium-mediated co-infiltration assays. SVBV P6 protein can suppress green fluorescent protein (GFP) gene silencing induced by single-stranded RNA but not by double-stranded RNA. The P6 protein can also inhibit systemic silencing of GFP through interfering the systemic spread of GFP silencing signal. Subcellular localization study indicated that P6 protein formed irregular bodies and distributed in both cytoplasm and nucleus of Nicotiana benthamiana cells. Furthermore, deletion analysis indicated that a nuclear localization signal (NLS, aa 402-426) in the P6 protein is responsible for the silencing suppression efficiency. In addition, expression of the P6 protein via a Potato virus X (PVX)-based vectors induced more severe mosaic symptoms in N. benthamiana leaves, and transgenic N. benthamiana plants expressing P6 showed obvious vein yellowing as well as severe mosaic symptoms in leaves. Taken together, our results demonstrates that SVBV P6 is a suppressor of RNA silencing, possibly acting at a upstream step for dsRNA generation.
Collapse
Affiliation(s)
- Mingfeng Feng
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Dengpan Zuo
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xizi Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Shuai Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Jing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
7
|
Hu P, Li G, Zhao X, Zhao F, Li L, Zhou H. Transcriptome profiling by RNA-Seq reveals differentially expressed genes related to fruit development and ripening characteristics in strawberries ( Fragaria × ananassa). PeerJ 2018; 6:e4976. [PMID: 29967718 PMCID: PMC6026456 DOI: 10.7717/peerj.4976] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/24/2018] [Indexed: 11/21/2022] Open
Abstract
Strawberry (Fragaria × ananassa) is an ideal plant for fruit development and ripening research due to the rapid substantial changes in fruit color, aroma, taste, and softening. To gain deeper insights into the genes that play a central regulatory role in strawberry fruit development and ripening characteristics, transcriptome profiling was performed for the large green fruit, white fruit, turning fruit, and red fruit stages of strawberry. A total of 6,608 differentially expressed genes (DEGs) with 2,643 up-regulated and 3,965 down-regulated genes were identified in the fruit development and ripening process. The DEGs related to fruit flavonoid biosynthesis, starch and sucrose biosynthesis, the citrate cycle, and cell-wall modification enzymes played important roles in the fruit development and ripening process. Particularly, some candidate genes related to the ubiquitin mediated proteolysis pathway and MADS-box were confirmed to be involved in fruit development and ripening according to their possible regulatory functions. A total of five ubiquitin-conjugating enzymes and 10 MADS-box transcription factors were differentially expressed between the four fruit ripening stages. The expression levels of DEGs relating to color, aroma, taste, and softening of fruit were confirmed by quantitative real-time polymerase chain reaction. Our study provides important insights into the complicated regulatory mechanism underlying the fruit ripening characteristics in Fragaria × ananassa.
Collapse
Affiliation(s)
- Panpan Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Fengli Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Liangjie Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Ghorbani A, Izadpanah K, Dietzgen RG. Changes in maize transcriptome in response to maize Iranian mosaic virus infection. PLoS One 2018; 13:e0194592. [PMID: 29634778 PMCID: PMC5892904 DOI: 10.1371/journal.pone.0194592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Background Maize Iranian mosaic virus (MIMV, genus Nucleorhabdovirus, family Rhabdoviridae) causes an economically important disease in maize and other gramineous crops in Iran. MIMV negative-sense RNA genome sequence of 12,426 nucleotides has recently been completed. Maize Genetics and Genomics database shows that 39,498 coding genes and 4,976 non-coding genes of maize have been determined, but still some transcripts could not be annotated. The molecular host cell responses of maize to MIMV infection including differential gene expression have so far not been elucidated. Methodology/Principal findings Complementary DNA libraries were prepared from total RNA of MIMV-infected and mock-inoculated maize leaves and sequenced using Illumina HiSeq 2500. Cleaned raw transcript reads from MIMV-infected maize were mapped to reads from uninfected maize and to a maize reference genome. Differentially expressed transcripts were characterized by gene ontology and biochemical pathway analyses. Transcriptome data for selected genes were validated by real-time quantitative PCR. Conclusion/Significance Approximately 42 million clean reads for each treatment were obtained. In MIMV-infected maize compared to uninfected plants, 1689 transcripts were up-regulated and 213 transcripts were down-regulated. In response to MIMV infection, several pathways were activated in maize including immune receptor signaling, metabolic pathways, RNA silencing, hormone-mediated pathways, protein degradation, protein kinase and ATP binding activity, and fatty acid metabolism. Also, several transcripts including those encoding hydrophobic protein RCI2B, adenosylmethionine decarboxylase NAC transcription factor and nucleic acid binding, leucine-rich repeat, heat shock protein, 26S proteasome, oxidoreductases and endonuclease activity protein were up-regulated. These data will contribute to the identification of genes and pathways involved in plant-virus interactions that may serve as future targets for improved disease control.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| | | | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
9
|
Li X, An M, Xia Z, Bai X, Wu Y. Transcriptome analysis of watermelon (Citrullus lanatus) fruits in response to Cucumber green mottle mosaic virus (CGMMV) infection. Sci Rep 2017; 7:16747. [PMID: 29196660 PMCID: PMC5711961 DOI: 10.1038/s41598-017-17140-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/22/2017] [Indexed: 11/22/2022] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) belongs to the Tobamovirus genus and is a major global plant virus on cucurbit plants. It causes severe disease symptoms on infected watermelon plants (Citrullus lanatus), particularly inducing fruit decay. However, little is known about the molecular mechanism of CGMMV-induced watermelon fruit decay. For this study, comparative analysis of transcriptome profiles of CGMMV-inoculated and mock-inoculated watermelon fruits were conducted via RNA-Seq. A total of 1,621 differently expressed genes (DEGs) were identified in CGMMV-inoculated watermelon, among which 1,052 were up-regulated and 569 were down-regulated. Functional annotation analysis showed that several DEGs were involved in carbohydrate metabolism, hormone biosynthesis and signaling transduction, secondary metabolites biosynthesis, and plant-pathogen interactions. We furthermore found that some DEGs were related to cell wall components and photosynthesis, which may directly be involve in the development of the symptoms associated with diseased watermelons. To confirm the RNA-Seq data, 15 DEGs were selected for gene expression analysis by qRT-PCR. The results showed a strong correlation between these two sets of data. Our study identified many candidate genes for further functional studies during CGMMV-watermelon interactions, and will furthermore help to clarify the understanding of pathogenic mechanism underlying CGMMV infection in cucurbit plants.
Collapse
Affiliation(s)
- Xiaodong Li
- Plant Virus Laboratory of Plant Protection College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mengnan An
- Plant Virus Laboratory of Plant Protection College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zihao Xia
- Plant Virus Laboratory of Plant Protection College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaojiao Bai
- Plant Virus Laboratory of Plant Protection College, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuanhua Wu
- Plant Virus Laboratory of Plant Protection College, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
10
|
Huang C, Cun Y, Yu H, Tong Z, Xiao B, Song Z, Wang B, Li Y, Liu Y. Transcriptomic profile of tobacco in response to Tomato zonate spot orthotospovirus infection. Virol J 2017; 14:153. [PMID: 28807054 PMCID: PMC5557316 DOI: 10.1186/s12985-017-0821-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/07/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tomato zonate spot virus (TZSV), a dominant species of thrips-transmitted orthotospoviruses in Yunnan and Guangxi provinces in China, causes significant loss of yield in lots of crops and is a major threat to incomes of rural families. However, the detailed molecular mechanism of crop disease caused by TZSV remains obscure. METHODS Next-generation sequencing (NGS)-based transcriptome analysis (RNA-seq) was performed to investigate and compare the gene expression changes in systemic leaves of tobacco upon infection with TZSV and mock-inoculated plants as a control. RESULTS De novo assembly and analysis of tobacco transcriptome data by RNA-Seq identified 135,395 unigenes. 2102 differentially expressed genes (DEGs) were obtained in tobacco with TZSV infection, among which 1518 DEGs were induced and 584 were repressed. Gene Ontology enrichment analysis revealed that these DEGs were associated with multiple biological functions, including metabolic process, oxidation-reduction process, photosynthesis process, protein kinase activity. The KEGG pathway analysis of these DEGs indicated that pathogenesis caused by TZSV may affect multiple processes including primary and secondary metabolism, photosynthesis and plant-pathogen interactions. CONCLUSION Our global survey of transcriptional changes in TZSV infected tobacco provides crucial information into the precise molecular mechanisms underlying pathogenesis and symptom development. This is the first report on the relationships in the TZSV-plant interaction using transcriptome analysis. Findings of present study will significantly help enhance our understanding of the complicated mechanisms of plant responses to orthotospoviral infection.
Collapse
Affiliation(s)
- Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Yupeng Cun
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Haiqin Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Zhijun Tong
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021 China
| |
Collapse
|
11
|
Ahmed MMS, Ji W, Wang M, Bian S, Xu M, Wang W, Zhang J, Xu Z, Yu M, Liu Q, Zhang C, Zhang H, Tang S, Gu M, Yu H. Transcriptional changes of rice in response to rice black-streaked dwarf virus. Gene 2017; 628:38-47. [PMID: 28700950 DOI: 10.1016/j.gene.2017.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 02/01/2023]
Abstract
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Although a great deal of effort has been made to elucidate the interactions among the virus, insect vectors, host and environmental conditions, few RBSDV proteins involved in pathogenesis have been identified, and the biological basis of disease development in rice remains largely unknown. Transcriptomic information associated with the disease development in rice would be helpful to unravel the biological mechanism. To determine how the rice transcriptome changes in response to RBSDV infection, we carried out RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar KTWYJ3. The transcriptomes of RBSDV-infected samples were compared to those of RBSDV-free (healthy) at two time points (time points are represented by group I and II). The results derived from the differential expression analysis in RBSDV-infected libraries vs. healthy ones in group I revealed that 102 out of a total of 281 significant differentially expressed genes (DEGs) were up-regulated and 179 DEGs were down-regulated. Of the 2592 identified DEGs in group II, 1588 DEGs were up-regulated and 1004 DEGs were down-regulated. A total of 66 DEGs were commonly identified in both groups. Of these 66 DEGs, expression patterns for 36 DEGs were similar in both groups. Our analysis demonstrated that some genes related to disease defense and stress resistance were up-regulated while genes associated with chloroplast were down-regulated in response to RBSDV infection. In addition, some genes associated with plant-height were differentially expressed. This result indicates those genes might be involved in dwarf symptoms caused by RBSDV. Taken together, our results provide a genome-wide transcriptome analysis for rice plants in response to RBSDV infection which may contribute to the understanding of the regulatory mechanisms involved in rice-RBSDV interaction and the biological basis of rice black-streaked dwarf disease development in rice.
Collapse
Affiliation(s)
- Mohamed M S Ahmed
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Department of Crop Protection, Faculty of Agriculture, University of Khartoum, Khartoum North 13314, Sudan
| | - Wen Ji
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Muyue Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Qingdao Saline-Alkali Tolerant Rice Research and Development Center, Qingdao 266100, China
| | - Shiquan Bian
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Qingdao Saline-Alkali Tolerant Rice Research and Development Center, Qingdao 266100, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weiyun Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jiangxiang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhihao Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Meimei Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Honggen Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shuzhu Tang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Feng M, Zhang H, Pan Y, Hu Y, Chen J, Zuo D, Jiang T. Complete nucleotide sequence of strawberry vein banding virus Chinese isolate and infectivity of its full-length DNA clone. Virol J 2016; 13:164. [PMID: 27716385 PMCID: PMC5052798 DOI: 10.1186/s12985-016-0624-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Strawberry vein banding virus (SVBV) is a double-stranded DNA plant virus, which has been found in North America, Australia, Brazil, Japan, Europe and several provinces of China. Infected strawberry plants exhibit mild vein-banding symptoms and chlorosis along the veins. It is one of the most economically important diseases in Asiatic, European and North American strawberry-growing areas. FINDINGS The complete genome of an SVBV Chinese isolate (SVBV-CN) was isolated and cloned from a naturally infected strawberry (Fragaria × ananassa cv. Sachinoka) sample found in Shenyang city of Liaoning province. Sequence analysis revealed a complete genome of 7864 nucleotides (nts) that indicated SVBV-CN was most closely related to SVBV from the United States (SVBV-US) with a sequence similarity of 85.8 %. Two major clades were identified based on phylogenetic analysis of the complete genome sequences of caulimoviruses. SVBV-CN clustered together with SVBV-US, whereas other caulimoviruses formed a separate branch. Agrobacterium-mediated inoculation of Fragaria vesca with an infectious clone of SVBV-CN results in systemic infection with distinct symptoms of yellowing bands along the main leaf veins. This suggests that the SVBV-CN infectious clone can recapitulate the symptoms observed in naturally infected strawberries, and therefore is likely the causal agent of the original disease observed in strawberries. Furthermore, strawberry plants inoculated with the infectious clone using vacuum infiltration developed symptoms with a very high infection rate of 86-100 % in 4-5 weeks post-inoculation. This compares to an infection rate of 20-40 % in 8-9 weeks post-inoculation using syringe-inoculation. CONCLUSIONS The complete nucleotide sequence of SVBV from a naturally infected strawberry was determined. Agroinfiltration of strawberry plants using an infectious clone of SVBV-CN resulted in symptoms typically found in infected strawberries from Shenyang city of Liaoning province in China. This is the first report describing an infectious clone of SVBV-CN, and that vacuum infiltration can be potentially used as a new and highly efficient means for inoculation of strawberry plants.
Collapse
Affiliation(s)
- Mingfeng Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Hanping Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Yuan Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Yahui Hu
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Jing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Dengpan Zuo
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| |
Collapse
|