1
|
Trivedi PD, Byrne BJ, Corti M. Evolving Horizons: Adenovirus Vectors' Timeless Influence on Cancer, Gene Therapy and Vaccines. Viruses 2023; 15:2378. [PMID: 38140619 PMCID: PMC10747483 DOI: 10.3390/v15122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Efficient and targeted delivery of a DNA payload is vital for developing safe gene therapy. Owing to the recent success of commercial oncolytic vector and multiple COVID-19 vaccines, adenovirus vectors are back in the spotlight. Adenovirus vectors can be used in gene therapy by altering the wild-type virus and making it replication-defective; specific viral genes can be removed and replaced with a segment that holds a therapeutic gene, and this vector can be used as delivery vehicle for tissue specific gene delivery. Modified conditionally replicative-oncolytic adenoviruses target tumors exclusively and have been studied in clinical trials extensively. This comprehensive review seeks to offer a summary of adenovirus vectors, exploring their characteristics, genetic enhancements, and diverse applications in clinical and preclinical settings. A significant emphasis is placed on their crucial role in advancing cancer therapy and the latest breakthroughs in vaccine clinical trials for various diseases. Additionally, we tackle current challenges and future avenues for optimizing adenovirus vectors, promising to open new frontiers in the fields of cell and gene therapies.
Collapse
Affiliation(s)
| | | | - Manuela Corti
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA; (P.D.T.); (B.J.B.)
| |
Collapse
|
2
|
Chon I, Saito R, Kyaw Y, Aye MM, Setk S, Phyu WW, Wagatsuma K, Li J, Sun Y, Otoguro T, Win SMK, Yoshioka S, Win NC, Ja LD, Tin HH, Watanabe H. Whole-Genome Analysis of Influenza A(H3N2) and B/Victoria Viruses Detected in Myanmar during the COVID-19 Pandemic in 2021. Viruses 2023; 15:v15020583. [PMID: 36851797 PMCID: PMC9964416 DOI: 10.3390/v15020583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
An influenza circulation was observed in Myanmar between October and November in 2021. Patients with symptoms of influenza-like illness were screened using rapid diagnostic test (RDT) kits, and 147/414 (35.5%) upper respiratory tract specimens presented positive results. All RDT-positive samples were screened by a commercial multiplex real-time polymerase chain reaction (RT-PCR) assay, and 30 samples positive for influenza A(H3N2) or B underwent further typing/subtyping for cycle threshold (Ct) value determination based on cycling probe RT-PCR. The majority of subtyped samples (n = 13) were influenza A(H3N2), while only three were B/Victoria. Clinical samples with low Ct values obtained by RT-PCR were used for whole-genome sequencing via next-generation sequencing technology. All collected viruses were distinct from the Southern Hemisphere vaccine strains of the corresponding season but matched with vaccines of the following season. Influenza A(H3N2) strains from Myanmar belonged to clade 2a.3 and shared the highest genetic proximity with Bahraini strains. B/Victoria viruses belonged to clade V1A.3a.2 and were genetically similar to Bangladeshi strains. This study highlights the importance of performing influenza virus surveillance with genetic characterization of the influenza virus in Myanmar, to contribute to global influenza surveillance during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Irina Chon
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Correspondence: ; Tel.: +81-25-227-2129
| | - Reiko Saito
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Infectious Diseases Research Center of Niigata University (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yadanar Kyaw
- Respiratory Medicine Department, Thingangyun General Hospital, Yangon 110-71, Myanmar
| | - Moe Myat Aye
- National Health Laboratory, Department of Medical Services, Dagon Township, Yangon 111-91, Myanmar
| | - Swe Setk
- National Health Laboratory, Department of Medical Services, Dagon Township, Yangon 111-91, Myanmar
| | - Wint Wint Phyu
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Keita Wagatsuma
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Jiaming Li
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yuyang Sun
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Teruhime Otoguro
- Infectious Diseases Research Center of Niigata University (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Su Mon Kyaw Win
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Yangon 111-91, Myanmar
| | - Sayaka Yoshioka
- Infectious Diseases Research Center of Niigata University (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Nay Chi Win
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Yangon 111-91, Myanmar
| | - Lasham Di Ja
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Yangon 111-91, Myanmar
| | - Htay Htay Tin
- National Health Laboratory, Department of Medical Services, Dagon Township, Yangon 111-91, Myanmar
| | - Hisami Watanabe
- Infectious Diseases Research Center of Niigata University (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
3
|
Wang J, Sun Y, Liu S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opin Emerg Drugs 2022; 27:389-403. [PMID: 36396398 DOI: 10.1080/14728214.2022.2149734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Both vaccines and antiviral drugs represent the mainstay for preventing and treating influenza. However, approved M2 ion channel inhibitors, neuraminidase inhibitors, polymerase inhibitors, and various vaccines cannot meet therapeutic needs because of viral resistance. Thus, the discovery of new targets for the virus or host and the development of more effective inhibitors are essential to protect humans from the influenza virus. AREAS COVERED This review summarizes the latest progress in vaccines and antiviral drug research to prevent and treat influenza, providing the foothold for developing novel antiviral inhibitors. EXPERT OPINION Vaccines embody the most effective approach to preventing influenza virus infection, and recombinant protein vaccines show promising prospects in developing next-generation vaccines. Compounds targeting the viral components of RNA polymerase, hemagglutinin and nucleoprotein, and the modification of trusted neuraminidase inhibitors are future research directions for anti-influenza virus drugs. In addition, some host factors affect the replication of virus in vivo, which can be used to develop antiviral drugs.
Collapse
Affiliation(s)
- Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Yihang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Nanfang Hospital, Guangzhou Guangdong China
| |
Collapse
|
4
|
McIlwain DR, Chen H, Apkarian M, Affrime M, Bock B, Kim K, Mukherjee N, Nolan GP, McNeal MM. Correction to: Performance of BioFire array or QuickVue influenza A + B test versus a validation qPCR assay for detection of influenza A during a volunteer A/California/2009/H1N1 challenge study. Virol J 2021; 18:55. [PMID: 33722237 PMCID: PMC7962296 DOI: 10.1186/s12985-021-01531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- David R McIlwain
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. .,WCCT Global, Cypress, CA, USA.
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | - Nilanjan Mukherjee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Monica M McNeal
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|