1
|
Larkin CI, Dunn MD, Shoemaker JE, Klimstra WB, Faeder JR. A detailed kinetic model of Eastern equine encephalitis virus replication in a susceptible host cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628424. [PMID: 39764060 PMCID: PMC11703215 DOI: 10.1101/2024.12.13.628424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care. Although the general characteristics of EEEV infection within the host cell are well-studied, it remains unclear how these interactions lead to rapid production of progeny viral particles, limiting development of antiviral therapies. Here, we present a novel rule-based model that describes attachment, entry, uncoating, replication, assembly, and export of both infectious virions and virus-like particles within mammalian cells. Additionally, it quantitatively characterizes host ribosome activity in EEEV replication via a model parameter defining ribosome density on viral RNA. To calibrate the model, we performed experiments to quantify viral RNA, protein, and infectious particle production during acute infection. We used Bayesian inference to calibrate the model, discovering in the process that an additional constraint was required to ensure consistency with previous experimental observations of a high ratio between the amounts of full-length positive-sense viral genome and negative-sense template strand. Overall, the model recapitulates the experimental data and predicts that EEEV rapidly concentrates host ribosomes densely on viral RNA. Dense packing of host ribosomes was determined to be critical to establishing the characteristic positive to negative RNA strand ratio because of its role in governing the kinetics of transcription. Sensitivity analysis identified viral transcription as the critical step for infectious particle production, making it a potential target for future therapeutic development.
Collapse
Affiliation(s)
- Caroline I. Larkin
- Joint Carnegie Mellon University - University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jason E. Shoemaker
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
2
|
Schimek A, Ng JK, Basbas I, Martin F, Xin D, Saleh D, Hubbuch J. An HPLC-SEC-based rapid quantification method for vesicular stomatitis virus particles to facilitate process development. Mol Ther Methods Clin Dev 2024; 32:101252. [PMID: 38774583 PMCID: PMC11107205 DOI: 10.1016/j.omtm.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/18/2024] [Indexed: 05/24/2024]
Abstract
Virus particle (VP) quantification plays a pivotal role in the development of production processes of VPs for virus-based therapies. The yield based on total VP count serves as a process performance indicator for evaluating process efficiency and consistency. Here, a label-free particle quantification method for enveloped VPs was developed, with potential applications in oncolytic virotherapy, vaccine development, and gene therapy. The method comprises size-exclusion chromatography (SEC) separation using high-performance liquid chromatography (HPLC) instruments. Ultraviolet (UV) was used for particle quantification and multi-angle light scattering (MALS) for particle characterization. Consistent recoveries of over 97% in the SEC were achieved upon mobile phase screenings and addition of bovine serum albumin (BSA) as sample stabilizer. A calibration curve was generated, and the method's performance and applicability to in-process samples were characterized. The assay's repeatability variation was <1% and its intermediate precision variation was <3%. The linear range of the method spans from 7.08 × 108 to 1.72 × 1011 VP/mL, with a limit of detection (LOD) of 7.72 × 107 VP/mL and a lower limit of quantification (LLOQ) of 4.20 × 108 VP/mL. The method, characterized by its high precision, requires minimal hands-on time and provides same-day results, making it efficient for process development.
Collapse
Affiliation(s)
- Adrian Schimek
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria
| | - Judy K.M. Ng
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria
| | - Ioannes Basbas
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria
| | - Fabian Martin
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria
| | - Dongyue Xin
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | - David Saleh
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV Biomolecular Separation Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Khong E, Oh JJ, Jimenez JM, Liu R, Dunham S, Monsibais A, Rhoads A, Ghatbale P, Garcia A, Cobián Güemes AG, Blanc AN, Chiu M, Kuo P, Proost M, Kline A, Aslam S, Schooley RT, Whiteson K, Fraley SI, Pride DT. A simple solid media assay for detection of synergy between bacteriophages and antibiotics. Microbiol Spectr 2024; 12:e0322123. [PMID: 38526142 PMCID: PMC11064537 DOI: 10.1128/spectrum.03221-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/24/2024] [Indexed: 03/26/2024] Open
Abstract
The emergence of antibiotic-resistant bacteria (ARB) has necessitated the development of alternative therapies to deal with this global threat. Bacteriophages (viruses that target bacteria) that kill ARB are one such alternative. Although phages have been used clinically for decades with inconsistent results, a number of recent advances in phage selection, propagation, and purification have enabled a reevaluation of their utility in contemporary clinical medicine. In most phage therapy cases, phages are administered in combination with antibiotics to ensure that patients receive the standard-of-care treatment. Some phages may work cooperatively with antibiotics to eradicate ARB, as often determined using non-standardized broth assays. We sought to develop a solid media-based assay to assess cooperativity between antibiotics and phages to offer a standardized platform for such testing. We modeled the interactions that occur between antibiotics and phages on solid medium to measure additive, antagonistic, and synergistic interactions. We then tested the method using different bacterial isolates and identified a number of isolates where synergistic interactions were identified. These interactions were not dependent on the specific organism, phage family, or antibiotic used. A priori susceptibility to the antibiotic or the specific phage were not requirements to observe synergistic interactions. Our data also confirm the potential for the restoration of vancomycin to treat vancomycin-resistant Enterococcus (VRE) when used in combination with phages. Solid media assays for the detection of cooperative interactions between antibiotics and phages can be an accessible technique adopted by clinical laboratories to evaluate antibiotic and phage choices in phage therapy.IMPORTANCEBacteriophages have become an important alternative treatment for individuals with life-threatening antibiotic-resistant bacteria (ARB) infections. Because antibiotics represent the standard-of-care for treatment of ARB, antibiotics and phages often are delivered together without evidence that they work cooperatively. Testing for cooperativity can be difficult due to the equipment necessary and a lack of standardized means for performing the testing in liquid medium. We developed an assay using solid medium to identify interactions between antibiotics and phages for gram-positive and gram-negative bacteria. We modeled the interactions between antibiotics and phages on solid medium, and then tested multiple replicates of vancomycin-resistant Enterococcus (VRE) and Stenotrophomonas in the assay. For each organism, we identified synergy between different phage and antibiotic combinations. The development of this solid media assay for assessing synergy between phages and antibiotics will better inform the use of these combinations in the treatment of ARB infections.
Collapse
Affiliation(s)
- Ethan Khong
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Joseph J. Oh
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Julian M. Jimenez
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Roland Liu
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Sage Dunham
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Alisha Monsibais
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Alison Rhoads
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Pooja Ghatbale
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Andrew Garcia
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | | | - Alisha N. Blanc
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Megan Chiu
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Peiting Kuo
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Marissa Proost
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Ahnika Kline
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Saima Aslam
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert T. Schooley
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - David T. Pride
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Sehit E, Yao G, Battocchio G, Radfar R, Trimpert J, Mroginski MA, Süssmuth R, Altintas Z. Computationally Designed Epitope-Mediated Imprinted Polymers versus Conventional Epitope Imprints for the Detection of Human Adenovirus in Water and Human Serum Samples. ACS Sens 2024; 9:1831-1841. [PMID: 38489767 PMCID: PMC11059108 DOI: 10.1021/acssensors.3c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
Detection of pathogenic viruses for point-of-care applications has attracted great attention since the COVID-19 pandemic. Current virus diagnostic tools are laborious and expensive, while requiring medically trained staff. Although user-friendly and cost-effective biosensors are utilized for virus detection, many of them rely on recognition elements that suffer major drawbacks. Herein, computationally designed epitope-imprinted polymers (eIPs) are conjugated with a portable piezoelectric sensing platform to establish a sensitive and robust biosensor for the human pathogenic adenovirus (HAdV). The template epitope is selected from the knob part of the HAdV capsid, ensuring surface accessibility. Computational simulations are performed to evaluate the conformational stability of the selected epitope. Further, molecular dynamics simulations are executed to investigate the interactions between the epitope and the different functional monomers for the smart design of eIPs. The HAdV epitope is imprinted via the solid-phase synthesis method to produce eIPs using in silico-selected ingredients. The synthetic receptors show a remarkable detection sensitivity (LOD: 102 pfu mL-1) and affinity (dissociation constant (Kd): 6.48 × 10-12 M) for HAdV. Moreover, the computational eIPs lead to around twofold improved binding behavior than the eIPs synthesized with a well-established conventional recipe. The proposed computational strategy holds enormous potential for the intelligent design of ultrasensitive imprinted polymer binders.
Collapse
Affiliation(s)
- Ekin Sehit
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Guiyang Yao
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Giovanni Battocchio
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Rahil Radfar
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Jakob Trimpert
- Institute
of Virology, Free University of Berlin, 14163 Berlin, Germany
| | - Maria A. Mroginski
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Roderich Süssmuth
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Zeynep Altintas
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Kiel
Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany
| |
Collapse
|
5
|
Talts T, Mosscrop LG, Williams D, Tregoning JS, Paulo W, Kohli A, Williams TC, Hoschler K, Ellis J, de Lusignan S, Zambon M. Robust and sensitive amplicon-based whole-genome sequencing assay of respiratory syncytial virus subtype A and B. Microbiol Spectr 2024; 12:e0306723. [PMID: 38411056 PMCID: PMC10986592 DOI: 10.1128/spectrum.03067-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Prevention of respiratory syncytial virus (RSV) infection is now a global health priority, with a long-acting monoclonal antibody and two RSV vaccines recently licenced for clinical use. Most licenced and candidate interventions target the RSV fusion (RSV-F) protein. New interventions may be associated with the spread of mutations, reducing susceptibility to antibody neutralization in RSV-F. There is a need for ongoing longitudinal global surveillance of circulating RSV strains. To achieve this large-scale genomic surveillance, a reliable, high-throughput RSV sequencing assay is required. Here we report an improved high-throughput RSV whole-genome sequencing (WGS) assay performed directly on clinical samples without additional enrichment, using a 4-primer-pool, short-amplicon PCR-tiling approach that is suitable for short-read sequencing platforms. Using upper respiratory tract (URT) RSV-positive clinical samples obtained from a sentinel network of primary care providers and from hospital patients (29.7% and 70.2%, respectively; n = 1,037), collected over the period 2019 to 2023, this assay had a threshold of approximately 4 × 103 to 8 × 103 copies/mL (RSV-B and RSV-A sub-types, respectively) as the lowest amount of virus needed in the sample to achieve >96% of whole-genome coverage at a high-quality level. Using a Ct value of 31 as an empirical cut-off, the overall assay success rate of obtaining >90% genome coverage at a read depth minimum of 20 was 96.83% for clinical specimens successfully sequenced from a total of 1,071. The RSV WGS approach described in this study has increased sensitivity compared to previous approaches and can be applied to clinical specimens without the requirement for enrichment. The updated approach produces sequences of high quality consistently and cost-effectively, suitable for implementation to underpin national programs for the surveillance of RSV genomic variation. IMPORTANCE In this paper, we report an improved high-throughput respiratory syncytial virus (RSV) whole-genome sequencing (WGS) assay performed directly on clinical samples, using a 4-primer-pool, short-amplicon PCR-tiling approach that is suitable for short-read sequencing platforms. The RSV WGS approach described in this study has increased sensitivity compared to previous approaches and can be applied to clinical specimens without the requirement for enrichment. The updated approach produces sequences of high quality consistently and cost-effectively, suitable for implementation to underpin national and global programs for the surveillance of RSV genomic variation. The quality of sequence produced is essential for preparedness for new interventions in monitoring antigenic escape, where a single point mutation might lead to a reduction in antibody binding effectiveness and neutralizing activity, or indeed in the monitoring of retaining susceptibility to neutralization by existing and new interventions.
Collapse
Affiliation(s)
- Tiina Talts
- UK Health Security Agency, London, United Kingdom
| | | | | | | | | | | | | | | | - Joanna Ellis
- UK Health Security Agency, London, United Kingdom
| | | | - Maria Zambon
- UK Health Security Agency, London, United Kingdom
| |
Collapse
|
6
|
Nagarkar M, Keely SP, Wheaton EA, Rao V, Jahne MA, Garland JL, Brinkman NE. Evaluating endogenous viral targets as potential treatment monitoring surrogates for onsite non-potable water reuse. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:971-981. [PMID: 39877237 PMCID: PMC11770558 DOI: 10.1039/d3ew00714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Onsite non-potable water reuse systems (ONWS) are decentralized systems that treat and repurpose locally collected waters (e.g. greywater or combined wastewater) for uses such as irrigation and flushing toilets. To ensure that treatment is meeting risk benchmarks, it is necessary to monitor the efficacy of pathogen removal. However, accurate assessment of pathogen reduction is hampered by their sporadic and low occurrence rates in source waters and concentrations in treated water that are generally below measurement detection limits. An alternative metric for evaluation of onsite water treatment is log reduction of a more abundant organism that can serve as a surrogate for the pathogen removal. Viruses endogenous to the decentralized system could serve as monitoring surrogates to verify that treatment meets the relevant viral log reduction targets. This study assesses eight candidate PCR targets representing potential monitoring surrogates from different viral classes to determine whether they could be used to verify the efficacy of treatment in onsite non-potable water reuse systems. Candidates tested include markers for Carjivirus (formerly CrAssphage), Pepper Mild Mottle Virus (PMMoV), Microviridae, and T4 Coliphage. We quantified these targets in untreated influent wastewater at three onsite non-potable water reuse systems, two that use greywater and one that uses combined wastewater. We also confirmed, using amplicon sequencing, that the widely used Carjivirus and PMMoV primers correctly target their respective regions of interest, and found sequence diversity within the amplicons including in the probe binding region. Ultimately, we found that the surrogates assessed are not abundant enough for end uses with higher exposure use and concomitant greater removal requirements (e.g., indoor non-potable uses), but may be effective for end uses where exposure risk is lower (e.g., irrigation).
Collapse
Affiliation(s)
- Maitreyi Nagarkar
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Scott P Keely
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Emily A Wheaton
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Varun Rao
- University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore, MD 21201, USA
| | - Michael A Jahne
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Jay L Garland
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Nichole E Brinkman
- U.S. Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| |
Collapse
|
7
|
Zhdanov G, Gambaryan A, Akhmetova A, Yaminsky I, Kukushkin V, Zavyalova E. Nanoisland SERS-Substrates for Specific Detection and Quantification of Influenza A Virus. BIOSENSORS 2023; 14:20. [PMID: 38248397 PMCID: PMC10813417 DOI: 10.3390/bios14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based aptasensors for virus determination have attracted a lot of interest recently. This approach provides both specificity due to an aptamer component and a low limit of detection due to signal enhancement by a SERS substrate. The most successful SERS-based aptasensors have a limit of detection (LoD) of 10-100 viral particles per mL (VP/mL) that is advantageous compared to polymerase chain reactions. These characteristics of the sensors require the use of complex substrates. Previously, we described silver nanoisland SERS-substrate with a reproducible and uniform surface, demonstrating high potency for industrial production and a suboptimal LoD of 4 × 105 VP/mL of influenza A virus. Here we describe a study of the sensor morphology, revealing an unexpected mechanism of signal enhancement through the distortion of the nanoisland layer. A novel modification of the aptasensor was proposed with chromium-enhanced adhesion of silver nanoparticles to the surface as well as elimination of the buffer-dependent distortion-triggering steps. As a result, the LoD of the Influenza A virus was decreased to 190 VP/mL, placing the nanoisland SERS-based aptasensors in the rank of the most powerful sensors for viral detection.
Collapse
Affiliation(s)
- Gleb Zhdanov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (E.Z.)
- Moscow Institute of Physics and Technology, Institute of Quantum Technologies, 141700 Dolgoprudny, Russia
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia
| | - Assel Akhmetova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.); (I.Y.)
| | - Igor Yaminsky
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.); (I.Y.)
| | - Vladimir Kukushkin
- Osipyan Institute of Solid State Physics of the Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (E.Z.)
- Moscow Institute of Physics and Technology, Institute of Quantum Technologies, 141700 Dolgoprudny, Russia
| |
Collapse
|
8
|
Pham TX, Huynh TTX, Choi J, Lee JB, Park SC, Kim B, Lim YS, Hwang SB. SARS-CoV-2 exploits cellular RAD51 to promote viral propagation: implication of RAD51 inhibitor as a potential drug candidate against COVID-19. J Virol 2023; 97:e0173723. [PMID: 38051260 PMCID: PMC10734463 DOI: 10.1128/jvi.01737-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Viruses are constantly evolving to promote propagation in the host. Here, we show that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes host RAD51 for replication. Silencing of RAD51 impaired SARS-CoV-2 propagation. Viral RNA colocalized with RAD51 in the cytoplasm of SARS-CoV-2-infected cells, suggesting that both viral RNA and RAD51 may form a replication complex. We, therefore, evaluated RAD51 inhibitors as possible therapeutic agents against SARS-CoV-2. Indeed, RAD51 inhibitors exerted antiviral activities against not only Wuhan but also variants of SARS-CoV-2. Molecular docking model shows that RAD51 inhibitors impede SARS-CoV-2 propagation by interfering with dimerization of RAD51. These data suggest that RAD51 may represent a novel host-based drug target for coronavirus disease 2019 treatment.
Collapse
Affiliation(s)
- Thuy X. Pham
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Trang T. X. Huynh
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Jiwon Choi
- College of Pharmacy, Dongduk Women’s University, Seoul, South Korea
| | - Jae-Bong Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Seok-Chan Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Soon B. Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Ilsong Institute of Life Science, Hallym University, Seoul, South Korea
| |
Collapse
|
9
|
Bou JV, Taguwa S, Matsuura Y. Trick-or-Trap: Extracellular Vesicles and Viral Transmission. Vaccines (Basel) 2023; 11:1532. [PMID: 37896936 PMCID: PMC10611016 DOI: 10.3390/vaccines11101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid membrane-enclosed particles produced by most cells, playing important roles in various biological processes. They have been shown to be involved in antiviral mechanisms such as transporting antiviral molecules, transmitting viral resistance, and participating in antigen presentation. While viral transmission was traditionally thought to occur through independent viral particles, the process of viral infection is complex, with multiple barriers and challenges that viruses must overcome for successful infection. As a result, viruses exploit the intercellular communication pathways of EVs to facilitate cluster transmission, increasing their chances of infecting target cells. Viral vesicle transmission offers two significant advantages. Firstly, it enables the collective transmission of viral genomes, increasing the chances of infection and promoting interactions between viruses in subsequent generations. Secondly, the use of vesicles as vehicles for viral transmission provides protection to viral particles against environmental factors, while also expanding the cell tropism allowing viruses to reach cells in a receptor-independent manner. Understanding the role of EVs in viral transmission is crucial for comprehending virus evolution and developing innovative antiviral strategies, therapeutic interventions, and vaccine approaches.
Collapse
Affiliation(s)
- Juan-Vicente Bou
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Khong E, Oh J, Jimenez JM, Liu R, Dunham S, Monsibais A, Rhoads A, Ghatbale P, Garcia A, Cobián Güemes AG, Blanc AN, Chiu M, Kuo P, Proost M, Kline A, Aslam S, Schooley RT, Whiteson K, Fraley SI, Pride DT. A simple solid media assay for detection of synergy between bacteriophages and antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554535. [PMID: 37662290 PMCID: PMC10473724 DOI: 10.1101/2023.08.23.554535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The emergence of antibiotic resistant bacteria (ARB) has necessitated the development of alternative therapies to deal with this global threat. Bacteriophages (viruses that target bacteria) that kill ARB are one such alternative. While phages have been used clinically for decades with inconsistent results, a number of recent advances in phage selection, propagation and purification have enabled a reevaluation of their utility in contemporary clinical medicine. In most phage therapy cases, phages are administered in combination with antibiotics to ensure that patients receive the standard-of-care treatment. Some phages may work cooperatively with antibiotics to eradicate ARB, as often determined using non-standardized broth assays. We sought to develop a solid media-based assay to assess cooperativity between antibiotics and phages to offer a standardized platform for such testing. We modeled the interactions that occur between antibiotics and phages on solid medium to measure additive, antagonistic, and synergistic interactions. We then tested the method using different bacterial isolates, and identified a number of isolates where synergistic interactions were identified. These interactions were not dependent on the specific organism, phage family, or antibiotic used. A priori susceptibility to the antibiotic or the specific phage were not requirements to observe synergistic interactions. Our data also confirm the potential for the restoration of vancomycin to treat Vancomycin Resistant Enterococcus (VRE) when used in combination with phages. Solid media assays for the detection of cooperative interactions between antibiotics and phages can be an accessible technique adopted by clinical laboratories to evaluate antibiotic and phage choices in phage therapy.
Collapse
|
11
|
Nava G, Casiraghi L, Carzaniga T, Zanchetta G, Chiari M, Damin F, Bollati V, Signorini L, Delbue S, Bellini T, Buscaglia M. Digital Detection of Single Virus Particles by Multi-Spot, Label-Free Imaging Biosensor on Anti-Reflective Glass. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300947. [PMID: 37060208 DOI: 10.1002/smll.202300947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Rapid detection of whole virus particles in biological or environmental samples represents an unmet need for the containment of infectious diseases. Here, an optical device enabling the enumeration of single virion particles binding on antibody or aptamers immobilized on a surface with anti-reflective coating is described. In this regime, nanoparticles adhering to the sensor surface provide localized contributions to the reflected field that become detectable because of their mixing with the interfering waves in the reflection direction. Thus, these settings are exploited to realize a scan-free, label-free, micro-array-type digital assay on a disposable cartridge, in which the virion counting takes place in wide field-of-view imaging. With this approach we could quantify, by enumeration, different variants of SARS-CoV-2 virions interacting with antibodies and aptamers immobilized on different spots. For all tested variants, the aptamers showed larger affinity but lower specificity relative to the antibodies. It is found that the combination of different probes on the same surface enables increasing specificity of detection and dynamic range.
Collapse
Affiliation(s)
- Giovanni Nava
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Luca Casiraghi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Thomas Carzaniga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), via Mario Bianco 11, Milano, 20131, Italy
| | - Francesco Damin
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), via Mario Bianco 11, Milano, 20131, Italy
| | - Valentina Bollati
- Dipartimento di Scienze Cliniche e di Comunitá, Universitá degli Studi di Milano, via S. Barnaba 8, Milano, 20122, Italy
| | - Lucia Signorini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universitá degli Studi di Milano, via Pascal 36, Milano, 20133, Italy
| | - Serena Delbue
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universitá degli Studi di Milano, via Pascal 36, Milano, 20133, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Marco Buscaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| |
Collapse
|
12
|
Lee HS, Gye HJ, Nishizawa T. In vitro infection efficiency of nervous necrosis virus alters depending on amount of viral particles adsorbed onto cells. Sci Rep 2023; 13:12305. [PMID: 37516763 PMCID: PMC10387107 DOI: 10.1038/s41598-023-39426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Nervous necrosis virus (NNV) in the family Nodaviridae is one of the simplest spherical RNA viruses and is pathogenic to many fish species. We investigated the effect of purified NNV on striped snakehead cells (SSN-1) in terms of adsorption ratio and infection efficiency using the 96-well titration system. The proportion of cytopathic effect (CPE)-positive wells among total number of wells inoculated with the virus (CPE appearance ratio) reduced by 17% each time the NNV infectivity dose was halved (y = 55.7x + 50.6). Thus, subtle differences in NNV infectivity could be accurately detected using this system. Experiments performed to observe alteration of CPE appearance ratio with changing viral doses and adsorption times showed that NNV particles introduced into microplate wells as suspensions in ≤ 100 µl inoculum were adsorbed almost completely onto cells seeded on the wells within 4 days of incubation. Density profile analysis of NNV coat proteins revealed that the NNV suspension at 1 50% tissue culture infectious dose (TCID50) contained 60 particles. Infection efficiency/NNV peaked at 20 particles (1.20%/particle) and then declined gradually with increasing NNV doses. Therefore, in vitro infection efficiency of NNV may alter depending on the quantity of viral particles adsorbed onto cells.
Collapse
Affiliation(s)
- Han Sol Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Hyun Jung Gye
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, 22383, Republic of Korea
| | - Toyohiko Nishizawa
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
13
|
Kukushkin V, Ambartsumyan O, Subekin A, Astrakhantseva A, Gushchin V, Nikonova A, Dorofeeva A, Zverev V, Keshek A, Meshcheryakova N, Zaborova O, Gambaryan A, Zavyalova E. Multiplex Lithographic SERS Aptasensor for Detection of Several Respiratory Viruses in One Pot. Int J Mol Sci 2023; 24:ijms24098081. [PMID: 37175786 PMCID: PMC10178974 DOI: 10.3390/ijms24098081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Rapid and reliable techniques for virus identification are required in light of recurring epidemics and pandemics throughout the world. Several techniques have been distributed for testing the flow of patients. Polymerase chain reaction with reverse transcription is a reliable and sensitive, though not rapid, tool. The antibody-based strip is a rapid, though not reliable, and sensitive tool. A set of alternative tools is being developed to meet all the needs of the customer. Surface-enhanced Raman spectroscopy (SERS) provides the possibility of single molecule detection taking several minutes. Here, a multiplex lithographic SERS aptasensor was developed aiming at the detection of several respiratory viruses in one pot within 17 min. The four labeled aptamers were anchored onto the metal surface of four SERS zones; the caught viruses affect the SERS signals of the labels, providing changes in the analytical signals. The sensor was able to decode mixes of SARS-CoV-2 (severe acute respiratory syndrome coronavirus two), influenza A virus, respiratory syncytial virus, and adenovirus within a single experiment through a one-stage recognition process.
Collapse
Affiliation(s)
- Vladimir Kukushkin
- Osipyan Institute of Solid State Physics, Russian Academy of Science, 142432 Chernogolovka, Russia
| | | | - Alexei Subekin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Anna Astrakhantseva
- Osipyan Institute of Solid State Physics, Russian Academy of Science, 142432 Chernogolovka, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vladimir Gushchin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, 123098 Moscow, Russia
| | - Alexandra Nikonova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | | | - Vitaly Zverev
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Anna Keshek
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moscow, Russia
| | | | - Olga Zaborova
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moscow, Russia
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for Research, Development of Immune and Biological Products RAS, 108819 Moscow, Russia
| | - Elena Zavyalova
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
14
|
Xu Y, Yang YR, Shi Q, Ward AB, Huang K, Chen X, Wang W, Yang Y. An Infectious Virus-like Particle Built on a Programmable Icosahedral DNA Framework. Angew Chem Int Ed Engl 2023; 62:e202214731. [PMID: 36377708 DOI: 10.1002/anie.202214731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/16/2022]
Abstract
Viral genomes can be compressed into a near-spherical nanochamber to form infectious particles. In order to mimic the virus morphology and packaging behavior, we invented a programmable icosahedral DNA nanoframe with enhanced rigidity and encapsulated the phiX174 bacteriophage genome. The packaging efficiency could be modulated through specific anchoring strands adjustment, and the trapped phage genome remained accessible for enzymatic operations. Moreover, the packed complex could infect Escherichia coli (E. coli) cells through bacterial uptake to produce plaques. This rigid icosahedral DNA architecture demonstrated a versatile platform to develop virus mimetic particles for convenient functional nucleic acid entrapment, manipulation and delivery.
Collapse
Affiliation(s)
- Yunyun Xu
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| | - Yuhe R Yang
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P.R. China.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Qian Shi
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kui Huang
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| | - Xiao Chen
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| | - Wei Wang
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| | - Yang Yang
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| |
Collapse
|
15
|
Kukushkin V, Kristavchuk O, Andreev E, Meshcheryakova N, Zaborova O, Gambaryan A, Nechaev A, Zavyalova E. Aptamer-coated track-etched membranes with a nanostructured silver layer for single virus detection in biological fluids. Front Bioeng Biotechnol 2023; 10:1076749. [PMID: 36704305 PMCID: PMC9871243 DOI: 10.3389/fbioe.2022.1076749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Aptasensors based on surface-enhanced Raman spectroscopy (SERS) are of high interest due to the superior specificity and low limit of detection. It is possible to produce stable and cheap SERS-active substrates and portable equipment meeting the requirements of point-of-care devices. Here we combine the membrane filtration and SERS-active substrate in the one pot. This approach allows efficient adsorption of the viruses from the solution onto aptamer-covered silver nanoparticles. Specific determination of the viruses was provided by the aptamer to influenza A virus labeled with the Raman-active label. The SERS-signal from the label was decreased with a descending concentration of the target virus. Even several virus particles in the sample provided an increase in SERS-spectra intensity, requiring only a few minutes for the interaction between the aptamer and the virus. The limit of detection of the aptasensor was as low as 10 viral particles per mL (VP/mL) of influenza A virus or 2 VP/mL per probe. This value overcomes the limit of detection of PCR techniques (∼103 VP/mL). The proposed biosensor is very convenient for point-of-care applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, Moscow, Russia
| | | | - Elena Zavyalova
- Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elena Zavyalova,
| |
Collapse
|
16
|
Bocharova OV, Fisher A, Pandit NP, Molesworth K, Mychko O, Scott AJ, Makarava N, Ritzel R, Baskakov IV. Aβ plaques do not protect against HSV-1 infection in a mouse model of familial Alzheimer's disease, and HSV-1 does not induce Aβ pathology in a model of late onset Alzheimer's disease. Brain Pathol 2022; 33:e13116. [PMID: 36064300 PMCID: PMC9836376 DOI: 10.1111/bpa.13116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023] Open
Abstract
The possibility that the etiology of late onset Alzheimer's disease is linked to viral infections of the CNS has been actively debated in recent years. According to the antiviral protection hypothesis, viral pathogens trigger aggregation of Aβ peptides that are produced as a defense mechanism in response to infection to entrap and neutralize pathogens. To test the causative relationship between viral infection and Aβ aggregation, the current study examined whether Aβ plaques protect the mouse brain against Herpes Simplex Virus 1 (HSV-1) infection introduced via a physiological route and whether HSV-1 infection triggers formation of Aβ plaques in a mouse model of late-onset AD that does not develop Aβ pathology spontaneously. In aged 5XFAD mice infected via eye scarification, high density of Aβ aggregates did not improve survival time or rate when compared with wild type controls. In 5XFADs, viral replication sites were found in brain areas with a high density of extracellular Aβ deposits, however, no association between HSV-1 and Aβ aggregates could be found. To test whether HSV-1 triggers Aβ aggregation in a mouse model that lacks spontaneous Aβ pathology, 13-month-old hAβ/APOE4/Trem2*R47H mice were infected with HSV-1 via eye scarification with the McKrae HSV-1 strain, intracranial inoculation with McKrae, intracranial inoculation after priming with LPS for 6 weeks, or intracranial inoculation with high doses of McKrae or 17syn + strains that represent different degrees of neurovirulence. No signs of Aβ aggregation were found in any of the experimental groups. Instead, extensive infiltration of peripheral leukocytes was observed during the acute stage of HSV-1 infection, and phagocytic activity of myeloid cells was identified as the primary defense mechanism against HSV-1. The current results argue against a direct causative relationship between HSV-1 infection and Aβ pathology.
Collapse
Affiliation(s)
- Olga V. Bocharova
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Aidan Fisher
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Narayan P. Pandit
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Kara Molesworth
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Olga Mychko
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Alison J. Scott
- Department of Microbial PathogenesisUniversity of Maryland School of DentistryBaltimoreMarylandUSA
| | - Natallia Makarava
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Rodney Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR)University of Maryland School of MedicineBaltimoreMarylandUSA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
17
|
Hakki S, Zhou J, Jonnerby J, Singanayagam A, Barnett JL, Madon KJ, Koycheva A, Kelly C, Houston H, Nevin S, Fenn J, Kundu R, Crone MA, Pillay TD, Ahmad S, Derqui-Fernandez N, Conibear E, Freemont PS, Taylor GP, Ferguson N, Zambon M, Barclay WS, Dunning J, Lalvani A, Badhan A, Varro R, Luca C, Quinn V, Cutajar J, Nichols N, Russell J, Grey H, Ketkar A, Miserocchi G, Tejpal C, Catchpole H, Nixon K, Di Biase B, Hopewell T, Narean JS, Samuel J, Timcang K, McDermott E, Bremang S, Hammett S, Evetts S, Kondratiuk A. Onset and window of SARS-CoV-2 infectiousness and temporal correlation with symptom onset: a prospective, longitudinal, community cohort study. THE LANCET RESPIRATORY MEDICINE 2022; 10:1061-1073. [PMID: 35988572 PMCID: PMC9388060 DOI: 10.1016/s2213-2600(22)00226-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 12/05/2022]
Abstract
Background Knowledge of the window of SARS-CoV-2 infectiousness is crucial in developing policies to curb transmission. Mathematical modelling based on scarce empirical evidence and key assumptions has driven isolation and testing policy, but real-world data are needed. We aimed to characterise infectiousness across the full course of infection in a real-world community setting. Methods The Assessment of Transmission and Contagiousness of COVID-19 in Contacts (ATACCC) study was a UK prospective, longitudinal, community cohort of contacts of newly diagnosed, PCR-confirmed SARS-CoV-2 index cases. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. The primary objective was to define the window of SARS-CoV-2 infectiousness and its temporal correlation with symptom onset. We quantified viral RNA load by RT-PCR and infectious viral shedding by enumerating cultivable virus daily across the course of infection. Participants completed a daily diary to track the emergence of symptoms. Outcomes were assessed with empirical data and a phenomenological Bayesian hierarchical model. Findings Between Sept 13, 2020, and March 31, 2021, we enrolled 393 contacts from 327 households (the SARS-CoV-2 pre-alpha and alpha variant waves); and between May 24, 2021, and Oct 28, 2021, we enrolled 345 contacts from 215 households (the delta variant wave). 173 of these 738 contacts were PCR positive for more than one timepoint, 57 of which were at the start of infection and comprised the final study population. The onset and end of infectious viral shedding were captured in 42 cases and the median duration of infectiousness was 5 (IQR 3–7) days. Although 24 (63%) of 38 cases had PCR-detectable virus before symptom onset, only seven (20%) of 35 shed infectious virus presymptomatically. Symptom onset was a median of 3 days before both peak viral RNA and peak infectious viral load (viral RNA IQR 3–5 days, n=38; plaque-forming units IQR 3–6 days, n=35). Notably, 22 (65%) of 34 cases and eight (24%) of 34 cases continued to shed infectious virus 5 days and 7 days post-symptom onset, respectively (survival probabilities 67% and 35%). Correlation of lateral flow device (LFD) results with infectious viral shedding was poor during the viral growth phase (sensitivity 67% [95% CI 59–75]), but high during the decline phase (92% [86–96]). Infectious virus kinetic modelling suggested that the initial rate of viral replication determines the course of infection and infectiousness. Interpretation Less than a quarter of COVID-19 cases shed infectious virus before symptom onset; under a crude 5-day self-isolation period from symptom onset, two-thirds of cases released into the community would still be infectious, but with reduced infectious viral shedding. Our findings support a role for LFDs to safely accelerate deisolation but not for early diagnosis, unless used daily. These high-resolution, community-based data provide evidence to inform infection control guidance. Funding National Institute for Health and Care Research.
Collapse
|
18
|
Zhdanov G, Nyhrikova E, Meshcheryakova N, Kristavchuk O, Akhmetova A, Andreev E, Rudakova E, Gambaryan A, Yaminsky I, Aralov A, Kukushkin V, Zavyalova E. A Combination of Membrane Filtration and Raman-Active DNA Ligand Greatly Enhances Sensitivity of SERS-Based Aptasensors for Influenza A Virus. Front Chem 2022; 10:937180. [PMID: 35844641 PMCID: PMC9279936 DOI: 10.3389/fchem.2022.937180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/20/2023] Open
Abstract
Biosensors combining the ultrahigh sensitivity of surface-enhanced Raman scattering (SERS) and the specificity of nucleic acid aptamers have recently drawn attention in the detection of respiratory viruses. The most sensitive SERS-based aptasensors allow determining as low as 104 virus particles per mL that is 100-fold lower than any antibody-based lateral flow tests but 10-100-times higher than a routine polymerase chain reaction with reversed transcription (RT-PCR). Sensitivity of RT-PCR has not been achieved in SERS-based aptasensors despite the usage of sophisticated SERS-active substrates. Here, we proposed a novel design of a SERS-based aptasensor with the limit of detection of just 103 particles per ml of the influenza A virus that approaches closely to RT-PCR sensitivity. The sensor utilizes silver nanoparticles with the simplest preparation instead of sophisticated SERS-active surfaces. The analytical signal is provided by a unique Raman-active dye that competes with the virus for the binding to the G-quadruplex core of the aptamer. The aptasensor functions even with aliquots of the biological fluids due to separation of the off-target molecules by pre-filtration through a polymeric membrane. The aptasensor detects influenza viruses in the range of 1·103-5·1010 virus particles per ml.
Collapse
Affiliation(s)
- Gleb Zhdanov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Assel Akhmetova
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Elena Rudakova
- Institute of Physiologically Active Compounds of Russian Academy of Science, Chernogolovka, Russia
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, Moscow, Russia
| | - Igor Yaminsky
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
- Physical Department, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Kukushkin
- Institute of Solid State Physics, Russian Academy of Science, Chernogolovka, Russia
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
19
|
Sobolik JS, Sajewski ET, Jaykus LA, Cooper DK, Lopman BA, Kraay ANM, Ryan PB, Guest JL, Webb-Girard A, Leon JS. Decontamination of SARS-CoV-2 from cold-chain food packaging provides no marginal benefit in risk reduction to food workers. Food Control 2022; 136:108845. [PMID: 35075333 PMCID: PMC8770992 DOI: 10.1016/j.foodcont.2022.108845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/20/2023]
Abstract
Countries continue to debate the need for decontamination of cold-chain food packaging to reduce possible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fomite transmission among frontline workers. While laboratory-based studies demonstrate persistence of SARS-CoV-2 on surfaces, the likelihood of fomite-mediated transmission under real-life conditions is uncertain. Using a quantitative microbial risk assessment model of a frozen food packaging facility, we simulated 1) SARS-CoV-2 fomite-mediated infection risks following worker exposure to contaminated plastic packaging; and 2) reductions in these risks from masking, handwashing, and vaccination. In a frozen food facility without interventions, SARS-CoV-2 infection risk to a susceptible worker from contact with contaminated packaging was 1.5 × 10-3 per 1h-period (5th - 95th percentile: 9.2 × 10-6, 1.2 × 10-2). Standard food industry infection control interventions, handwashing and masking, reduced risk (99.4%) to 8.5 × 10-6 risk per 1h-period (5th - 95th percentile: 2.8 × 10-8, 6.6 × 10-5). Vaccination of the susceptible worker (two doses Pfizer/Moderna, vaccine effectiveness: 86-99%) with handwashing and masking reduced risk to 5.2 × 10-7 risk per 1h-period (5th - 95th percentile: 1.8 × 10-9, 5.4 × 10-6). Simulating increased transmissibility of current and future variants (Delta, Omicron), (2-, 10-fold viral shedding) among a fully vaccinated workforce, handwashing and masking continued to mitigate risk (1.4 × 10-6 - 8.8 × 10-6 risk per 1h-period). Additional decontamination of frozen food plastic packaging reduced infection risks to 1.2 × 10-8 risk per 1h-period (5th - 95th percentile: 1.9 × 10-11, 9.5 × 10-8). Given that standard infection control interventions reduced risks well below 1 × 10-4 (World Health Organization water quality risk thresholds), additional packaging decontamination suggest no marginal benefit in risk reduction. Consequences of this decontamination may include increased chemical exposures to workers, food quality and hazard risks to consumers, and unnecessary added costs to governments and the global food industry.
Collapse
Affiliation(s)
- Julia S Sobolik
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | | | - Lee-Ann Jaykus
- Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - D Kane Cooper
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Ben A Lopman
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Alicia N M Kraay
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - P Barry Ryan
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jodie L Guest
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Amy Webb-Girard
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Juan S Leon
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
20
|
Rapid high-throughput compatible label-free virus particle quantification method based on time-resolved luminescence. Anal Bioanal Chem 2022; 414:4509-4518. [PMID: 35581427 PMCID: PMC9113738 DOI: 10.1007/s00216-022-04104-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Viruses play a major role in modern society and create risks from global pandemics and bioterrorism to challenges in agriculture. Virus infectivity assays and genome copy number determination methods are often used to obtain information on virus preparations used in diagnostics and vaccine development. However, these methods do not provide information on virus particle count. Current methods to measure the number of viral particles are often cumbersome and require highly purified virus preparations and expensive instrumentation. To tackle these problems, we developed a simple and cost-effective time-resolved luminescence-based method for virus particle quantification. This mix-and-measure technique is based on the recognition of the virus particles by an external Eu3+-peptide probe, providing results on virus count in minutes. The method enables the detection of non-enveloped and enveloped viruses, having over tenfold higher detectability for enveloped, dynamic range from 5E6 to 3E10 vp/mL, than non-enveloped viruses. Multiple non-enveloped and enveloped viruses were used to demonstrate the functionality and robustness of the Protein-Probe method.
Collapse
|
21
|
Do TND, Claes S, Schols D, Neyts J, Jochmans D. SARS-CoV-2 Virion Infectivity and Cytokine Production in Primary Human Airway Epithelial Cells. Viruses 2022; 14:951. [PMID: 35632693 PMCID: PMC9144593 DOI: 10.3390/v14050951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
The emergence of new SARS-CoV-2 variants and the replacement of preceding isolates have been observed through B.1.1.7, B.1.351, B.1.617.2, and B.1.1.529 lineages (corresponding to alpha, beta, delta, and omicron variants of concern (VoC), respectively). However, there is still a lack of biological evidence to which extent those VoC differ from the ancestral lineages. By exploiting human airway epithelial cell (HAEC) cultures, which closely resemble the human airway architecture and physiology, we report distinctive SARS-CoV-2 tropism in different respiratory tissues. In general, SARS-CoV-2 VoC predominantly infect and replicate in HAEC better than the progenitor USA-WA1 isolate or the BavPat1 isolate, which contains the D614G mutation, even though there is little to no difference between variants regarding their infectivity (i.e., virion-per-vRNA copy ratio). We also observe differential tissue-specific innate immunity activation between the upper and lower respiratory tissues in the presence of the virus. Our study provides better comprehension of the behavior of the different VoC in this physiologically relevant ex vivo model.
Collapse
Affiliation(s)
| | | | | | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (T.N.D.D.); (S.C.); (D.S.)
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (T.N.D.D.); (S.C.); (D.S.)
| |
Collapse
|
22
|
Lee WI, Subramanian A, Mueller S, Levon K, Nam CY, Rafailovich MH. Potentiometric Biosensors Based on Molecular-Imprinted Self-Assembled Monolayer Films for Rapid Detection of Influenza A Virus and SARS-CoV-2 Spike Protein. ACS APPLIED NANO MATERIALS 2022; 5:5045-5055. [PMID: 35465271 PMCID: PMC9016774 DOI: 10.1021/acsanm.2c00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 05/05/2023]
Abstract
Rapid, yet accurate and sensitive testing has been shown to be critical in the control of spreading pandemic diseases such as COVID-19. Current methods which are highly sensitive and can differentiate different strains are slow and cannot be conveniently applied at the point of care. Rapid tests, meanwhile, require a high titer and are not sufficiently sensitive to discriminate between strains. Here, we report a rapid and facile potentiometric detection method based on nanoscale, three-dimensional molecular imprints of analytes on a self-assembled monolayer (SAM), which can deliver analyte-specific detection of both whole virions and isolated proteins in microliter amounts of bodily fluids within minutes. The detection substrate with nanoscale inverse surface patterns of analytes formed by a SAM identifies a target analyte by recognizing its surface nano- and molecular structures, which can be monitored by temporal measurement of the change in substrate open-circuit potential. The sensor unambiguously detected and differentiated H1N1 and H3N2 influenza A virions as well as the spike proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle-East respiratory syndrome (MERS) coronavirus in human saliva with limits of detection reaching 200 PFU/mL and 100 pg/mL for the viral particles and spike proteins, respectively. The demonstrated speed and specificity of detection, combined with a low required sample volume, high sensitivity, ease of potentiometric measurement, and simple sample collection and preparation, suggest that the technique can be used as a highly effective point-of-care diagnostic platform for a fast, accurate, and specific detection of various viral pathogens and their variants.
Collapse
Affiliation(s)
- Won-Il Lee
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Ashwanth Subramanian
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | | | - Kalle Levon
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Chang-Yong Nam
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Miriam H. Rafailovich
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| |
Collapse
|
23
|
Bhat T, Cao A, Yin J. Virus-like Particles: Measures and Biological Functions. Viruses 2022; 14:383. [PMID: 35215979 PMCID: PMC8877645 DOI: 10.3390/v14020383] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Virus-like particles resemble infectious virus particles in size, shape, and molecular composition; however, they fail to productively infect host cells. Historically, the presence of virus-like particles has been inferred from total particle counts by microscopy, and infectious particle counts or plaque-forming-units (PFUs) by plaque assay; the resulting ratio of particles-to-PFUs is often greater than one, easily 10 or 100, indicating that most particles are non-infectious. Despite their inability to hijack cells for their reproduction, virus-like particles and the defective genomes they carry can exhibit a broad range of behaviors: interference with normal virus growth during co-infections, cell killing, and activation or inhibition of innate immune signaling. In addition, some virus-like particles become productive as their multiplicities of infection increase, a sign of cooperation between particles. Here, we review established and emerging methods to count virus-like particles and characterize their biological functions. We take a critical look at evidence for defective interfering virus genomes in natural and clinical isolates, and we review their potential as antiviral therapeutics. In short, we highlight an urgent need to better understand how virus-like genomes and particles interact with intact functional viruses during co-infection of their hosts, and their impacts on the transmission, severity, and persistence of virus-associated diseases.
Collapse
Affiliation(s)
| | | | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA; (T.B.); (A.C.)
| |
Collapse
|
24
|
Despres HW, Mills MG, Shirley DJ, Schmidt MM, Huang ML, Roychoudhury P, Jerome KR, Greninger AL, Bruce EA. Measuring infectious SARS-CoV-2 in clinical samples reveals a higher viral titer:RNA ratio for Delta and Epsilon vs. Alpha variants. Proc Natl Acad Sci U S A 2022; 119:e2116518119. [PMID: 35058348 PMCID: PMC8812544 DOI: 10.1073/pnas.2116518119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between levels of viral RNA and infectious virus for individual variants is unknown. We measured infectious viral titer (using a microfocus-forming assay) and total and subgenomic viral RNA levels (using RT-PCR) in a set of 162 clinical samples containing SARS-CoV-2 Alpha, Delta, and Epsilon variants that were collected in identical swab kits from outpatient test sites and processed soon after collection. We observed a high degree of variation in the relationship between viral titers and RNA levels. Despite this, the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (5.9- and 3.0-fold increase; P < 0.0001, P = 0.014, respectively) or subgenomic E RNA (14.3- and 6.9-fold increase; P < 0.0001, P = 0.004, respectively). In addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity for Delta may further explain increased spread, suggesting a need for increased measures to prevent viral transmission.
Collapse
Affiliation(s)
- Hannah W Despres
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405
| | - Margaret G Mills
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98105
| | - David J Shirley
- Data Science Department, Faraday, Inc., Burlington, VT 05405
| | - Madaline M Schmidt
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405
| | - Meei-Li Huang
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98105
| | - Pavitra Roychoudhury
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98105
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Keith R Jerome
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98105
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98105
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Emily A Bruce
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405;
| |
Collapse
|
25
|
Despres HW, Mills MG, Shirley DJ, Schmidt MM, Huang ML, Jerome KR, Greninger AL, Bruce EA. Quantitative measurement of infectious virus in SARS-CoV-2 Alpha, Delta and Epsilon variants reveals higher infectivity (viral titer:RNA ratio) in clinical samples containing the Delta and Epsilon variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.09.07.21263229. [PMID: 34580674 PMCID: PMC8475961 DOI: 10.1101/2021.09.07.21263229] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Novel SARS-CoV-2 Variants of Concern (VoC) pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between viral RNA and infectious virus for individual variants is unknown. METHODS We measured infectious viral titer (using a micro-focus forming assay) as well as total and subgenomic viral RNA levels (using RT-PCR) in a set of 165 clinical samples containing SARS-CoV-2 Alpha, Delta and Epsilon variants that were processed within two days of collection from the patient. RESULTS We observed a high degree of variation in the relationship between viral titers and RNA levels. Despite the variability we observed for individual samples the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (6 and 4 times as much, p=0.0002 and 0.009 respectively) or subgenomic E RNA (11 and 7 times as much, p<0.0001 and 0.006 respectively). CONCLUSION In addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may also be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity of the Delta variant may further explain increased spread and suggests a need for increased measures to prevent viral transmission. SIGNIFICANCE STATEMENT Current and future SARS-CoV-2 variants threaten our ability to control the COVID-19 pandemic. Variants with increased transmission, higher viral loads, or greater immune evasion are of particular concern. Viral loads are currently measured by the amount of viral RNA in a clinical sample rather than the amount of infectious virus. We measured both RNA and infectious virus levels directly in a set of 165 clinical specimens from Alpha, Epsilon or Delta variants. Our data shows that Delta is more infectious compared to Alpha, with ∼ six times as much infectious virus for the same amount of RNA. This increase in infectivity suggests increased measures (vaccination, masking, distancing, ventilation) are needed to control Delta compared to Alpha.
Collapse
Affiliation(s)
- Hannah W. Despres
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Margaret G. Mills
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - David J. Shirley
- Faraday, Inc. Data Science Department. Burlington VT, 05405, USA
| | - Madaline M. Schmidt
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Meei-Li Huang
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Keith R. Jerome
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
| | - Emily A. Bruce
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| |
Collapse
|
26
|
Stegmann KM, Dickmanns A, Gerber S, Nikolova V, Klemke L, Manzini V, Schlösser D, Bierwirth C, Freund J, Sitte M, Lugert R, Salinas G, Meister TL, Pfaender S, Görlich D, Wollnik B, Groß U, Dobbelstein M. The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models. Virus Res 2021; 302:198469. [PMID: 34090962 PMCID: PMC8180352 DOI: 10.1016/j.virusres.2021.198469] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
The search for successful therapies of infections with the coronavirus SARS-CoV-2 is ongoing. We tested inhibition of host cell nucleotide synthesis as a promising strategy to decrease the replication of SARS-CoV-2-RNA, thus diminishing the formation of virus progeny. Methotrexate (MTX) is an established drug for cancer therapy and to induce immunosuppression. The drug inhibits dihydrofolate reductase and other enzymes required for the synthesis of nucleotides. Strikingly, the replication of SARS-CoV-2 was inhibited by MTX in therapeutic concentrations around 1 µM, leading to more than 1000-fold reductions in virus progeny in Vero C1008 (Vero E6) and ~100-fold reductions in Calu-3 cells. Virus replication was more sensitive to equivalent concentrations of MTX than of the established antiviral agent remdesivir. MTX strongly diminished the synthesis of viral structural proteins and the amount of released virus RNA. Virus replication and protein synthesis were rescued by folinic acid (leucovorin) and also by inosine, indicating that purine depletion is the principal mechanism that allows MTX to reduce virus RNA synthesis. The combination of MTX with remdesivir led to synergistic impairment of virus replication, even at 100 nM MTX. The use of MTX in treating SARS-CoV-2 infections still awaits further evaluation regarding toxicity and efficacy in infected organisms, rather than cultured cells. Within the frame of these caveats, however, our results raise the perspective of a two-fold benefit from repurposing MTX for treating COVID-19. Firstly, its previously known ability to reduce aberrant inflammatory responses might dampen respiratory distress. In addition, its direct antiviral activity described here would limit the dissemination of the virus.
Collapse
Affiliation(s)
- Kim M Stegmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Sabrina Gerber
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Vella Nikolova
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Luisa Klemke
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Valentina Manzini
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Denise Schlösser
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Cathrin Bierwirth
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Julia Freund
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Raimond Lugert
- Institute of Medical Microbiology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Toni Luise Meister
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Dirk Görlich
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.
| |
Collapse
|
27
|
Sobolik JS, Sajewski ET, Jaykus LA, Cooper DK, Lopman BA, Kraay ANM, Ryan PB, Guest JL, Webb-Girard A, Leon JS. Low risk of SARS-CoV-2 transmission via fomite, even in cold-chain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.08.23.21262477. [PMID: 34462753 PMCID: PMC8404890 DOI: 10.1101/2021.08.23.21262477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Countries continue to debate the need for decontamination of cold-chain food packaging to reduce possible SARS-CoV-2 fomite transmission among workers. While laboratory-based studies demonstrate persistence of SARS-CoV-2 on surfaces, the likelihood of fomite-mediated transmission under real-life conditions is uncertain. METHODS Using a quantitative risk assessment model, we simulated in a frozen food packaging facility 1) SARS-CoV-2 fomite-mediated infection risks following worker exposure to contaminated plastic packaging; and 2) reductions in these risks attributed to masking, handwashing, and vaccination. FINDINGS In a representative facility with no specific interventions, SARS-CoV-2 infection risk to a susceptible worker from contact with contaminated packaging was 2·8 × 10 -3 per 1h-period (95%CI: 6·9 × 10 -6 , 2·4 × 10 -2 ). Implementation of standard infection control measures, handwashing and masks (9·4 × 10 -6 risk per 1h-period, 95%CI: 2·3 × 10 -8 , 8·1 × 10 -5 ), substantially reduced risk (99·7%). Vaccination of the susceptible worker (two doses Pfizer/Moderna, vaccine effectiveness: 86-99%) combined with handwashing and masking reduced risk to less than 1·0 × 10 -6 . Simulating increased infectiousness/transmissibility of new variants (2-, 10-fold viral shedding) among a fully vaccinated workforce, handwashing and masks continued to mitigate risk (2·0 × 10 -6 -1·1 × 10 -5 risk per 1h-period). Decontamination of packaging in addition to these interventions reduced infection risks to below the 1·0 × 10 -6 risk threshold. INTERPRETATION Fomite-mediated SARS-CoV-2 infection risks were very low under cold-chain conditions. Handwashing and masking provide significant protection to workers, especially when paired with vaccination. FUNDING U.S. Department of Agriculture.
Collapse
Affiliation(s)
- Julia S. Sobolik
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | | | - Lee-Ann Jaykus
- Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA, 27695
| | - D. Kane Cooper
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - Ben A. Lopman
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - Alicia NM. Kraay
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - P. Barry Ryan
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - Jodie L. Guest
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - Amy Webb-Girard
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| | - Juan S. Leon
- Rollins School of Public Health, Emory University, Atlanta, GA, USA, 30322
| |
Collapse
|
28
|
A filamentous archaeal virus is enveloped inside the cell and released through pyramidal portals. Proc Natl Acad Sci U S A 2021; 118:2105540118. [PMID: 34341107 DOI: 10.1073/pnas.2105540118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The majority of viruses infecting hyperthermophilic archaea display unique virion architectures and are evolutionarily unrelated to viruses of bacteria and eukaryotes. The lack of relationships to other known viruses suggests that the mechanisms of virus-host interaction in Archaea are also likely to be distinct. To gain insights into archaeal virus-host interactions, we studied the life cycle of the enveloped, ∼2-μm-long Sulfolobus islandicus filamentous virus (SIFV), a member of the family Lipothrixviridae infecting a hyperthermophilic and acidophilic archaeon Saccharolobus islandicus LAL14/1. Using dual-axis electron tomography and convolutional neural network analysis, we characterize the life cycle of SIFV and show that the virions, which are nearly two times longer than the host cell diameter, are assembled in the cell cytoplasm, forming twisted virion bundles organized on a nonperfect hexagonal lattice. Remarkably, our results indicate that envelopment of the helical nucleocapsids takes place inside the cell rather than by budding as in the case of most other known enveloped viruses. The mature virions are released from the cell through large (up to 220 nm in diameter), six-sided pyramidal portals, which are built from multiple copies of a single 89-amino-acid-long viral protein gp43. The overexpression of this protein in Escherichia coli leads to pyramid formation in the bacterial membrane. Collectively, our results provide insights into the assembly and release of enveloped filamentous viruses and illuminate the evolution of virus-host interactions in Archaea.
Collapse
|