1
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Ebrahimi F, Modaresi Movahedi A, Sabbaghian M, Poortahmasebi V. A State-of-the-Art Review on the Recent Advances in Exosomes in Oncogenic Virus. Health Sci Rep 2024; 7:e70196. [PMID: 39558933 PMCID: PMC11570872 DOI: 10.1002/hsr2.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background and Aims Oncogenic viruses are responsible for approximately 12% of human malignancies, influencing various cancer processes through intricate interactions with host cells. Exosomes (EXOs), nanometric-sized microvesicles involved in cell communication, have emerged as critical mediators in these interactions. This review aims to explore the mechanisms by which EXOs produced by cells infected with oncogenic viruses promote cancer growth, enhance viral transmissibility, and act as immunomodulators. Methods A comprehensive review was conducted, focusing on recent studies highlighting the mechanisms by which EXOs facilitate the oncogenic potential of viruses. The analysis included the characterization of exosomal content, such as microRNAs (miRNAs) and proteins, and their effects on tumor microenvironments and immune responses. A search was performed using databases including PubMed, ScienceDirect, and Google Scholar. MeSH keywords related to EXOs, oncogenic viruses, and cancer were used to retrieve relevant review, systematic, and research articles. Results Findings indicate that EXOs from oncogenic virus-infected cells carry viral components that facilitate infection and inflammation. These EXOs alter the tumor microenvironment, contributing to the development of virus-associated cancers. Additionally, the review highlights the growing interest among researchers regarding the implications of EXOs in cancer progression and their potential role in enhancing the oncogenicity of viruses. Conclusion The findings underscore the pivotal role of EXOs in mediating the oncogenic effects of viruses, suggesting that targeting exosomal pathways may provide new therapeutic avenues for managing virus-associated cancers. Further research is needed to fully elucidate the functional mechanisms of EXOs in viral oncogenesis.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Ali Modaresi Movahedi
- Department of Medical Parasitology and MycologyFaculty of Medical Sciences, Shahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Sabbaghian
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
3
|
Mohammad MA, Malik A, Thangada L, Polanía-Villanueva D, Zabaleta J, Majumder R. SARS-CoV-2 Vaccine Improved Hemostasis of a Patient with Protein S Deficiency: A Case Report. Int J Mol Sci 2024; 25:10717. [PMID: 39409046 PMCID: PMC11477061 DOI: 10.3390/ijms251910717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
A 16-year-old patient, while an infant, incurred right-sided hemiparesis and had difficulty breast feeding. She was later diagnosed with a neonatal stroke and her genetic testing showed a missense mutation in her PROS1 (Protein S) gene. Both her grandfather and father, but not her mother, had hereditary Protein S (PS) deficiency. The patient was not prescribed any mediation due to her young age but was frequently checked by her physician. The patient's plasma was first collected at the age of 13, and the isolated plasma from the patient and her father were analyzed by aPTT, thrombin generation, and enzyme-linked immunosorbent assays. These analyses showed low PS activity and clotting time associated with the missense mutation in the PROS1 gene. During the COVID-19 pandemic, the patient received her first Pfizer vaccination dose in 2021, followed by a booster dose in 2022. The plasma samples were collected 8 weeks post-immunization, after which her clotting parameters had improved for up to 6 months following vaccination. The patient's plasma showed a significant reduction in thrombin generation and an improved aPTT clotting time. Mass spectrometry analysis revealed that her antithrombin-III level was significantly higher post-vaccination, and both thrombin and FXII levels were significantly lowered compared with her father. To our knowledge, this is the first report to document that COVID-19 vaccination can lower the risk of thrombosis in a patient with inherited thrombophilia. Although the effect was observed on a single mutation, it would be interesting to investigate the effect of COVID-19 vaccinations on other thrombophilia.
Collapse
Affiliation(s)
- Mohammad A. Mohammad
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (M.A.M.); (A.M.); (L.T.); (J.Z.)
| | - Alaa Malik
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (M.A.M.); (A.M.); (L.T.); (J.Z.)
| | - Lekha Thangada
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (M.A.M.); (A.M.); (L.T.); (J.Z.)
| | - Diana Polanía-Villanueva
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (M.A.M.); (A.M.); (L.T.); (J.Z.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Rinku Majumder
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (M.A.M.); (A.M.); (L.T.); (J.Z.)
| |
Collapse
|
4
|
Liu Z, Petinrin OO, Chen N, Toseef M, Liu F, Zhu Z, Qi F, Wong KC. Identification and evaluation of candidate COVID-19 critical genes and medicinal drugs related to plasma cells. BMC Infect Dis 2024; 24:1099. [PMID: 39363208 PMCID: PMC11451256 DOI: 10.1186/s12879-024-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, represents one of the most significant global health crises in recent history. Despite extensive research into the immune mechanisms and therapeutic options for COVID-19, there remains a paucity of studies focusing on plasma cells. In this study, we utilized the DESeq2 package to identify differentially expressed genes (DEGs) between COVID-19 patients and controls using datasets GSE157103 and GSE152641. We employed the xCell algorithm to perform immune infiltration analyses, revealing notably elevated levels of plasma cells in COVID-19 patients compared to healthy individuals. Subsequently, we applied the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm to identify COVID-19 related plasma cell module genes. Further, positive cluster biomarker genes for plasma cells were extracted from single-cell RNA sequencing data (GSE171524), leading to the identification of 122 shared genes implicated in critical biological processes such as cell cycle regulation and viral infection pathways. We constructed a robust protein-protein interaction (PPI) network comprising 89 genes using Cytoscape, and identified 20 hub genes through cytoHubba. These genes were validated in external datasets (GSE152418 and GSE179627). Additionally, we identified three potential small molecules (GSK-1070916, BRD-K89997465, and idarubicin) that target key hub genes in the network, suggesting a novel therapeutic approach. These compounds were characterized by their ability to down-regulate AURKB, KIF11, and TOP2A effectively, as evidenced by their low free binding energies determined through computational analyses using cMAP and AutoDock. This study marks the first comprehensive exploration of plasma cells' role in COVID-19, offering new insights and potential therapeutic targets. It underscores the importance of a systematic approach to understanding and treating COVID-19, expanding the current body of knowledge and providing a foundation for future research.
Collapse
Affiliation(s)
- Zhe Liu
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fang Liu
- Rocgene (Beijing) Technology Co., Ltd, Beijing, Beijing, 102200, China
| | - Zhongxu Zhu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Furong Qi
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
5
|
Saadh MJ, Mahdi MS, Allela OQB, Alazzawi TS, Ubaid M, Rakhimov NM, Athab ZH, Ramaiah P, Chinnasamy L, Alsaikhan F, Farhood B. Critical role of miR-21/exosomal miR-21 in autophagy pathway. Pathol Res Pract 2024; 257:155275. [PMID: 38643552 DOI: 10.1016/j.prp.2024.155275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
Activation of autophagy, a process of cellular stress response, leads to the breakdown of proteins, organelles, and other parts of the cell in lysosomes, and can be linked to several ailments, such as cancer, neurological diseases, and rare hereditary syndromes. Thus, its regulation is very carefully monitored. Transcriptional and post-translational mechanisms domestically or in whole organisms utilized to control the autophagic activity, have been heavily researched. In modern times, microRNAs (miRNAs) are being considered to have a part in post-translational orchestration of the autophagic activity, with miR-21 as one of the best studied miRNAs, it is often more than expressed in cancer cells. This regulatory RNA is thought to play a major role in a plethora of processes and illnesses including growth, cancer, cardiovascular disease, and inflammation. Different studies have suggested that a few autophagy-oriented genes, such as PTEN, Rab11a, Atg12, SIPA1L2, and ATG5, are all targeted by miR-21, indicating its essential role in the regulation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Nodir M Rakhimov
- Department of Oncology, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Oncology, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia jSchool of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Wójcik M, Zmarzły N, Derkacz A, Kulpok-Bagiński T, Blek N, Grabarek BO. Gene expression profile of mitogen-activated kinases and microRNAs controlling their expression in HaCaT cell culture treated with lipopolysaccharide A and cyclosporine A. Cell Cycle 2024; 23:279-293. [PMID: 38445655 PMCID: PMC11057563 DOI: 10.1080/15384101.2024.2320508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
Studies indicate that mitogen-activated protein kinases (MAPKs) are activated and overexpressed in psoriatic lesions. The aim of the study was to assess changes in the expression pattern of genes encoding MAPKs and microRNA (miRNA) molecules potentially regulating their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes exposed to bacterial lipopolysaccharide A (LPS) and cyclosporine A (CsA). HaCaT cells were treated with 1 µg/mL LPS for 8 h, followed by treatment with 100 ng/mL cyclosporine A for 2, 8, or 24 h. Untreated cells served as controls. The molecular analysis consists of microarray, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay analyses. The statistical analysis of the obtained results was performed using Transcriptome Analysis Console and STATISTICA 13.5 PL with the statistical significance threshold of p < 0.05. Changes in the expression profile of six mRNAs: dual-specificity phosphatase 1 (DUSP1), dual-specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase kinase 2 (MAP2K2), mitogen-activated protein kinase kinase 7 (MAP2K7), mitogen-activated protein kinase kinase kinase 2 (MAP3K2) and mitogen-activated protein kinase 9 (MAPK9) in cell culture exposed to LPS or LPS and the drug compared to the control. We observed that under the LPS and cyclosporine treatment, the expression o/ miR-34a, miR-1275, miR-3188, and miR-382 changed significantly (p < 0.05). We demonstrated a potential relationship between DUSP1 and miR-34a; DUSP4 and miR-34a, miR-382, and miR-3188; MAPK9 and miR-1275, MAP2K7 and mir-200-5p; MAP3K2 and mir-200-5p, which may be the subject of further research in the context of psoriasis.
Collapse
Affiliation(s)
- Michał Wójcik
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Nikola Zmarzły
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Alicja Derkacz
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | | | - Natasza Blek
- Faculty of Medicine, Uczelnia Medyczna im. Marii Skłodowskiej-Curie, Warszawa, Poland
| | | |
Collapse
|
7
|
Paris D, Palomba L, Albertini MC, Tramice A, Motta L, Giammattei E, Ambrosino P, Maniscalco M, Motta A. The biomarkers' landscape of post-COVID-19 patients can suggest selective clinical interventions. Sci Rep 2023; 13:22496. [PMID: 38110483 PMCID: PMC10728085 DOI: 10.1038/s41598-023-49601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/10/2023] [Indexed: 12/20/2023] Open
Abstract
In COVID-19 clinical symptoms can persist even after negativization also in individuals who have had mild or moderate disease. We here investigated the biomarkers that define the post-COVID-19 clinical state analyzing the exhaled breath condensate (EBC) of 38 post COVID-19 patients and 38 sex and age-matched healthy controls via nuclear magnetic resonance (NMR)-based metabolomics. Predicted gene-modulated microRNAs (miRNAs) related to COVID-19 were quantified from EBC of 10 patients and 10 controls. Finally, clinical parameters from all post-COVID-19 patients were correlated with metabolomic data. Post-COVID-19 patients and controls showed different metabolic phenotype ("metabotype"). From the metabolites, by using enrichment analysis we identified miRNAs that resulted up-regulated (hsa-miR146a-5p) and down-regulated (hsa-miR-126-3p and hsa-miR-223-3p) in post-COVID-19. Taken together, our multiomics data indicate that post-COVID-19 patients before rehabilitation are characterized by persistent inflammation, dysregulation of liver, endovascular thrombotic and pulmonary processes, and physical impairment, which should be the primary clinical targets to contrast the post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, "Carlo Bo" University, 61029, Urbino, Italy
| | | | - Annabella Tramice
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy
| | - Lorenzo Motta
- Neuroradiology Unit, Ospedale Santa Maria Della Misericordia, 45100, Rovigo, Italy
- IRCCS Istituto Delle Scienze Neurologiche (Padiglione G), via Altura 3, 40139, Bologna, Italy
| | - Eleonora Giammattei
- Department of Biomolecular Sciences, "Carlo Bo" University, 61029, Urbino, Italy
| | - Pasquale Ambrosino
- Directorate of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037, Telese Terme (Benevento), Italy
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Unit of the Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037, Telese Terme (Benevento), Italy.
- Department of Clinical Medicine and Surgery, Section of Respiratory Disease, University of Naples Federico II, 80131, Naples, Italy.
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli (Naples), Italy.
| |
Collapse
|