1
|
Xie BL, Bie YL, Song BC, Liu MW, Yang L, Liu J, Shi DZ, Zhao FH. Zedoarondiol inhibits monocyte adhesion and expression of VCAM and ICAM in endothelial cells induced by oxidative stress. Nat Prod Res 2024:1-7. [PMID: 39381963 DOI: 10.1080/14786419.2024.2413430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Zedoarondiol, a newly discovered compound derived from the roots of zedoary turmeric, a traditional Chinese herb, has demonstrated potential in reducing inflammation of the vascular endothelium and safeguarding it from harm. Nonetheless, the precise mechanism underlying these effects remains to be elucidated. In this study, we established a model of HUVEC injury induced by hydrogen peroxide. We observed whether Zedoarondiol could reduce the adhesion and transendothelial migration (TEM) of inflammatory cells by inhibiting the expression of VCAM-1 and ICAM-1 in HUVECs. The research findings indicate that utilising Zedoarondiol resulted in a significant reduction in the adhesion rate of THP1 cells to HUVECs, leading to a more condensed cytoskeletal structure. Moreover, Zedoarondiol demonstrated a decrease in NF-κBβ-Ser536 phosphorylation levels in H2O2-stimulated human umbilical vein endothelial cells, resulting in a hindered capacity to bind to target genes like ICAM-1 and VCAM-1, This findings may provide a new pharmacological basis and scientific evidence for Zedoarondiol to slow the atherosclerosis progression by maintaining endothelial function.
Collapse
Affiliation(s)
- Bei-Li Xie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Long Bie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo-Ce Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming-Wang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jiangang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Fu-Hai Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
2
|
Han L, Zhao D, Li Y, Jin J, El-Kott AF, Al-Saeed FA, Eldib AM. Assessment of the Anti-Breast Cancer Effects of Urolithin with Molecular Docking Studies in the In Vitro Condition: Introducing a Novel Chemotherapeutic Drug. Mol Biotechnol 2024; 66:554-566. [PMID: 37280483 DOI: 10.1007/s12033-023-00766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
A lot of research has been done on using natural items as diabetes treatment. The molecular docking study was conducted to evaluate the inhibitory activities of urolithin A against α-amylase, α-glucosidase, and aldose reductase. The molecular docking calculations indicated the probable interactions and the characteristics of these contacts at an atomic level. The results of the docking calculations showed the docking score of urolithin A against α-amylase was -5.169 kcal/mol. This value for α-glucosidase and aldose reductase was -3.657 kcal/mol and -7.635 kcal/mol, respectively. In general, the outcomes of the docking calculations revealed that urolithin A can construct several hydrogen bonds and hydrophobic contacts with the assessed enzymes and reduces their activities considerably. The properties of urolithin against common human breast cancer cell lines, i.e., SkBr3, MDA-MB-231, MCF-7, Hs578T, Evsa-T, BT-549, AU565 and 600MPE were evaluated. The IC50 of the urolithin was 400, 443, 392, 418, 397, 530, 566 and 551 against SkBr3, MDA-MB-231, MCF-7, Hs578T, Evsa-T, BT-549, AU565 and 600MPE, respectively. After doing the clinical trial studies, the recent molecule may be used as an anti-breast cancer supplement in humans. IC50 values of urolithin A on α-amylase, α-glucosidase, and aldose reductase enzymes were obtained at 16.14, 1.06 and 98.73 µM, respectively.
Collapse
Affiliation(s)
- Lu Han
- Department of General Surgery, Sijing Hospital of Songjiang District Shanghai, Shanghai, 201601, China
| | - Danbo Zhao
- Department of Oncology, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - Ya Li
- Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi, 710061, China
| | - Jianwei Jin
- Department of Oncology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
| | - Ali M Eldib
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
- Alrayan Medical Colleges (AMC), Hejrah Street, P. O. Box 41411, Madinah, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Ullah S, Ahmad T, Ikram M, Rasheed HM, Khan MI, Khan T, Alsahli TG, Alzarea SI, Althobaiti M, Shah AJ. 7-Hydroxy Frullanolide Ameliorates Isoproterenol-Induced Myocardial Injury through Modification of iNOS and Nrf2 Genes. Biomedicines 2023; 11:2470. [PMID: 37760913 PMCID: PMC10526241 DOI: 10.3390/biomedicines11092470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Myocardial infarction (MI) is the principal cause of premature death. Protecting myocardium from ischemia is the main focus of intense research. 7-hydroxy frullanolide (7-HF) is a potent anti-inflammatory agent, showing its efficacy in different acute and chronic inflammatory disorders such as atherosclerosis, suggesting it can be a potential cardioprotective agent. For the induction of MI, Sprague-Dawley rats (n = 5) were administered isoproterenol (ISO) 85 mg/kg s.c at 24 h intervals for two days. The potential cardioprotective effect of 7-HF and its mechanisms were explored by in vivo and in vitro methods. 7-HF significantly prevented the extent of myocardial injury by decreasing the infarct size, preserving the histology of myocardial tissue, and reducing the release of cardiac biomarkers. Further, 7-HF increased the mRNA expression of cardioprotective gene Nrf2 and reduced the mRNA expression of iNOS. 7-HF also improved cardiac function by decreasing the cardiac workload through its negative chronotropic and negative ionotropic effect, as well as by reducing peripheral vascular resistance due to the inhibition of voltage-dependent calcium channels and the release of calcium from intracellular calcium stores. In conclusion, 7-HF showed cardioprotective effects in the MI model, which might be due to modulating the expression of iNOS and Nrf2 genes as well as improving cardiac functions.
Collapse
Affiliation(s)
- Saif Ullah
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (S.U.); (M.I.); (T.K.)
| | - Taseer Ahmad
- Department of Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan;
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Muhammad Ikram
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (S.U.); (M.I.); (T.K.)
| | | | | | - Taous Khan
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (S.U.); (M.I.); (T.K.)
| | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (T.G.A.); (S.I.A.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (T.G.A.); (S.I.A.)
| | - Musaad Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Abdul Jabbar Shah
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (S.U.); (M.I.); (T.K.)
| |
Collapse
|
4
|
CHENG X, ZHAO C, JIN Z, HU J, ZHANG Z, ZHANG C. Natural products: potential therapeutic agents for atherosclerosis. Chin J Nat Med 2022; 20:830-845. [DOI: 10.1016/s1875-5364(22)60219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/24/2022]
|
5
|
Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules 2022; 27:molecules27031142. [PMID: 35164406 PMCID: PMC8839508 DOI: 10.3390/molecules27031142] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 01/21/2023] Open
Abstract
Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family, are one of the major groups of secondary metabolites found in plants. Researchers from distinct research fields, including pharmacology, medicine, and agriculture, are interested in their biological potential. With new SL discovered in the last years, new biological activities have been tested, different action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure–activity relationships described. The review identifies the main sesquiterpene lactones with interconnections between immune responses and anti-inflammatory actions, within different cellular models as well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure–activity relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiterpene lactone extraction methodologies are presented, with the perspective of biological activity enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.
Collapse
|
6
|
Chimplee S, Roytrakul S, Sukrong S, Srisawat T, Graidist P, Kanokwiroon K. Anticancer Effects and Molecular Action of 7-α-Hydroxyfrullanolide in G2/M-Phase Arrest and Apoptosis in Triple Negative Breast Cancer Cells. Molecules 2022; 27:407. [PMID: 35056723 PMCID: PMC8779136 DOI: 10.3390/molecules27020407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and β-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7-9 expression and downregulation of Bcl-2 and full-length caspase-7-9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Theera Srisawat
- Faculty of Science and Industrial Technology, Surat Thani Campus, Prince of Songkla University, Surat Thani 84000, Thailand;
- Faculty of Innovative Agriculture and Fisheries, Surat Thani Campus, Prince of Songkla University, Surat Thani 84000, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| |
Collapse
|
7
|
Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P, Sharma A, Ahmad A, Bhardwaj R, Ahmad P. Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153361. [PMID: 33485605 PMCID: PMC7532351 DOI: 10.1016/j.phymed.2020.153361] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 09/30/2020] [Indexed: 05/19/2023]
Abstract
Current scenario depicts that world has been clenched by COVID-19 pandemic. Inevitably, public health and safety measures could be undertaken in order to dwindle the infection threat and mortality. Moreover, to overcome the global menace and drawing out world from moribund stage, there is an exigency for social distancing and quarantines. Since December, 2019, coronavirus, SARS-CoV-2 (COVID-19) have came into existence and up till now world is still in the state of shock.At this point of time, COVID-19 has entered perilous phase, creating havoc among individuals, and this has been directly implied due to enhanced globalisation and ability of the virus to acclimatize at all conditions. The unabated transmission is due to lack of drugs, vaccines and therapeutics against this viral outbreak. But research is still underway to formulate the vaccines or drugs by this means, as scientific communities are continuously working to unravel the pharmacologically active compounds that might offer a new insight for curbing infections and pandemics. Therefore, the topical COVID-19 situation highlights an immediate need for effective therapeutics against SARS-CoV-2. Towards this effort, the present review discusses the vital concepts related to COVID-19, in terms of its origin, transmission, clinical aspects and diagnosis. However, here, we have formulated the novel concept hitherto, ancient means of traditional medicines or herbal plants to beat this pandemic.
Collapse
Affiliation(s)
- Kanika Khanna
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Sukhmeen Kaur Kohli
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ravdeep Kaur
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Abhay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine
| | - Vinay Bhardwaj
- Department of Bio-organic and Biological Chemistry, Kharkiv National Medical University, Kharkiv 61000, Ukraine
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Anket Sharma
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Renu Bhardwaj
- Plant Stress Biology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
8
|
Pathak S, Gokhroo A, Kumar Dubey A, Majumdar S, Gupta S, Almeida A, Mahajan GB, Kate A, Mishra P, Sharma R, Kumar S, Vishwakarma R, Balakrishnan A, Atreya H, Nandi D. 7-Hydroxy Frullanolide, a sesquiterpene lactone, increases intracellular calcium amounts, lowers CD4 + T cell and macrophage responses, and ameliorates DSS-induced colitis. Int Immunopharmacol 2021; 97:107655. [PMID: 33901737 DOI: 10.1016/j.intimp.2021.107655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/19/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Sesquiterpene lactones are a class of anti-inflammatory molecules obtained from plants belonging to the Asteraceae family. In this study, the effects of 7-hydroxy frullanolide (7HF), a sesquiterpene lactone, in inhibiting CD4+ T cell and peritoneal macrophage responses were investigated. 7HF, in a dose dependent manner, lowers CD69 upregulation, IL2 production and CD4+ T cell cycling upon activation with the combination of anti-CD3 and anti-CD28. Further mechanistic studies demonstrated that 7HF, at early time points, increases intracellular Ca2+ amounts, over and above the levels induced upon activation. The functional relevance of 7HF-induced Ca2+ increase was confirmed using sub-optimal amounts of BAPTA, an intracellular Ca2+ chelator, which lowers lactate and rescues CD4+ T cell cycling. In addition, 7HF lowers T cell cycling with the combination of PMA and Ionomycin. However, 7HF increases CD4+ T cell cycling with sub-optimal activating signals: only PMA or anti-CD3. Furthermore, LPS-induced nitrite and IL6 production by peritoneal macrophages is inhibited by 7HF in a Ca2+-dependent manner. Studies with Ca2+ channel inhibitors, Ruthenium Red and 2-Aminoethoxydiphenyl borate, lowers the inhibitory effects of 7HF on CD4+ T cell and macrophage responses. In silico studies demonstrated that 7HF binds to Ca2+ channels, TRPV1, IP3R and SERCA, which is mechanistically important. Finally, intraperitoneal administration of 7HF lowers serum inflammatory cytokines, IFNγ and IL6, and reduces the effects of DSS-induced colitis with respect to colon length and colon damage. Overall, this study sheds mechanistic light on the anti-inflammatory potential of 7HF, a natural plant compound, in lowering immune responses.
Collapse
Affiliation(s)
- Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Abhijeet Gokhroo
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ashim Kumar Dubey
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Souradeep Gupta
- NMR Research Facility, Indian Institute of Science, Bangalore 560012, India
| | - Asha Almeida
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Girish B Mahajan
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Abhijeet Kate
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Prabhu Mishra
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Rajiv Sharma
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Sanjay Kumar
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Ram Vishwakarma
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Arun Balakrishnan
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Hanudatta Atreya
- NMR Research Facility, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
9
|
Kosari M, Noureddini M, Khamechi SP, Najafi A, Ghaderi A, Sehat M, Banafshe HR. The effect of propolis plus Hyoscyamus niger L. methanolic extract on clinical symptoms in patients with acute respiratory syndrome suspected to COVID-19: A clinical trial. Phytother Res 2021; 35:4000-4006. [PMID: 33860587 PMCID: PMC8251320 DOI: 10.1002/ptr.7116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/27/2021] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
The outbreak of Coronavirus disease 2019 (COVID‐19) has caused a global health crisis. Nevertheless, no antiviral treatment has yet been proven effective for treating COVID‐19 and symptomatic supportive cares have been the most common treatment. Therefore, the present study was designed to evaluate the effects of propolis and Hyoscyamus niger L. extract in patients with COVID‐19. This randomized clinical trial was conducted on 50 cases referred to Akhavan and Sepehri Clinics, Kashan university of medical sciences, Iran. Subjects were divided into two groups (intervention and placebo). This syrup (containing 1.6 mg of methanolic extract along with 450 mg of propolis per 10 mL) was administered three times a day to each patient for 6 days. The clinical symptoms of COVID‐19 such as: dry cough, shortness of breath, sore throat, chest pain, fever, dizziness, headache, abdominal pain, and diarrhea were reduced with propolis plus Hyoscyamus niger L. extract than the placebo group. However, the administration of syrup was not effective in the control of nausea and vomiting. In conclusion, syrup containing propolis and Hyoscyamus niger L. extract had beneficial effects in ameliorating the signs and symptoms of COVID‐19 disease, in comparison with placebo groups.
Collapse
Affiliation(s)
- Morteza Kosari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Noureddini
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Peyman Khamechi
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Evidence Based Integrative Medicine Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Najafi
- Department of Internal Medicine, School of Medicine, Kashan University of Medical sciences, Kashan, Iran
| | - Amir Ghaderi
- Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran.,Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojtaba Sehat
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran.,Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Ali SG, Ansari MA, Alzohairy MA, Almatroudi A, Alomary MN, Alghamdi S, Rehman S, Khan HM. Natural Products and Nutrients against Different Viral Diseases: Prospects in Prevention and Treatment of SARS-CoV-2. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:169. [PMID: 33673004 PMCID: PMC7917779 DOI: 10.3390/medicina57020169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic and is posing a serious challenge to mankind. As per the current scenario, there is an urgent need for antiviral that could act as a protective and therapeutic against SARS-CoV-2. Previous studies have shown that SARS-CoV-2 is much similar to the SARS-CoV bat that occurred in 2002-03. Since it is a zoonotic virus, the exact source is still unknown, but it is believed bats may be the primary reservoir of SARS-CoV-2 through which it has been transferred to humans. In this review, we have tried to summarize some of the approaches that could be effective against SARS-CoV-2. Firstly, plants or plant-based products have been effective against different viral diseases, and secondly, plants or plant-based natural products have the minimum adverse effect. We have also highlighted a few vitamins and minerals that could be beneficial against SARS-CoV-2.
Collapse
Affiliation(s)
- Syed Ghazanfar Ali
- Viral Research Diagnostic Laboratory, Department of Microbiology, Jawaharlal Nehru Medical College A.M.U., Aligarh U.P.202002, India;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.A.); (S.R.)
| | - Mohammad A. Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (M.A.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (M.A.A.); (A.A.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah21955, Saudi Arabia;
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.A.); (S.R.)
| | - Haris M. Khan
- Viral Research Diagnostic Laboratory, Department of Microbiology, Jawaharlal Nehru Medical College A.M.U., Aligarh U.P.202002, India;
| |
Collapse
|
11
|
Sharma N, Muthamilarasan M, Prasad A, Prasad M. Genomics approaches to synthesize plant-based biomolecules for therapeutic applications to combat SARS-CoV-2. Genomics 2020; 112:4322-4331. [PMID: 32717321 PMCID: PMC7381398 DOI: 10.1016/j.ygeno.2020.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is devastative to the humankind for which neither vaccines nor precise therapeutic molecules for treatment are identified. The search for new drugs and repurposing of existing drugs are being performed; however, at the same time, research on plants to identify novel therapeutic compounds or testing the existing ones is progressing at a slower phase. In this context, genomics and biotechnology offer various tools and strategies to manipulate plants for producing those complex biopharmaceutical products. This review enumerates the scope for research on plant-based molecules for their potential application in treating SARS-CoV-2 infection. Strategies to edit gene and genome, overexpression and silencing approaches, and molecular breeding for producing target biomolecules in the plant system are discussed in detail. Altogether, the present review provides a roadmap for expediting research on using plants as a novel source of active biomolecules having therapeutic applications.
Collapse
Affiliation(s)
- Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
12
|
Kumar V, Singh SB, Singh S. COVID-19: Environment concern and impact of Indian medicinal system. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104144. [PMID: 33520648 PMCID: PMC7836929 DOI: 10.1016/j.jece.2020.104144] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 05/02/2023]
Abstract
The COVID-19 outbreak has came in existence in late December 2019 at Wuhan, China. It is declared as an epidemic by WHO. The rationale of this study is to provide the details regarding prevention, environment concern, social economic consequences, and medicines for COVID-19. Social distancing, screening, lockdown, use of mask and application of sanitizer or soap at regular time interval is the best prevention against COVID-19. The "oral-feces" transmission of COVID-19 is threat to environment. Improper disposal of medical/biomedical and human waste may harm the total environment. Nitrifying-enriched activated sludge i.e. NAS approach can play important role to clean the environment compartments like sludge and waste. COVID-19 has shown impact on social and economic life, but there is no alternate until the drug discovery. In medicine or treatment of COVID-19 point of views, an integrated approach between modern and traditional medicine system may ensure an early prevention of further viral spread. Based on the symptoms of COVID-19, list of herbs and drugs of Indian Medicine System has been searched and reported. To develop the potential drug against COVID-19, the detailed experimentation and clinical trials to be performed for future prospective.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Chemistry, Regional Ayurveda Research Institute for Drug Development, Madhya Pradesh, 474009, India
| | - Shyam Babu Singh
- Department of Ayurveda, Regional Ayurveda Research Institute for Drug Development, Madhya Pradesh, 474009, India
| | - Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144002, India
- Punjab Biotechnology Incubators, Mohali, Punjab, 160059, India
- Regional Advanced Water Testing Laboratory, Mohali, Punjab, 160059, India
| |
Collapse
|
13
|
Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K, Rahman PKSM, Cho SG, Kumar NS, Subramaniam MD. COVID-19: A promising cure for the global panic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138277. [PMID: 32278175 PMCID: PMC7128376 DOI: 10.1016/j.scitotenv.2020.138277] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 04/13/2023]
Abstract
The novel Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, which is the causative agent of a potentially fatal disease that is of great global public health concern. The outbreak of COVID-19 is wreaking havoc worldwide due to inadequate risk assessment regarding the urgency of the situation. The COVID-19 pandemic has entered a dangerous new phase. When compared with SARS and MERS, COVID-19 has spread more rapidly, due to increased globalization and adaptation of the virus in every environment. Slowing the spread of the COVID-19 cases will significantly reduce the strain on the healthcare system of the country by limiting the number of people who are severely sick by COVID-19 and need hospital care. Hence, the recent outburst of COVID-19 highlights an urgent need for therapeutics targeting SARS-CoV-2. Here, we have discussed the structure of virus; varying symptoms among COVID-19, SARS, MERS and common flu; the probable mechanism behind the infection and its immune response. Further, the current treatment options, drugs available, ongoing trials and recent diagnostics for COVID-19 have been discussed. We suggest traditional Indian medicinal plants as possible novel therapeutic approaches, exclusively targeting SARS-CoV-2 and its pathways.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - Kaavya Jayaramayya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | | - Bupesh Giridharan
- Virology Laboratory, Central Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath University, (BIHER), Chromepet, Chennai 600044, Tamil Nadu, India; Department of Forest Science, Central University of Nagaland, Lumami, Zunhebeto, India
| | | | - Anila Venugopal
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Harsha Ganesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kamarajan Rajagopalan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Pattanathu K S M Rahman
- Deploy Lead - Centre for Enzyme Innovation, Office No: 6.06, King Henry Building School of Biological Science, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl 796 004, Mizoram, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600 006, India
| |
Collapse
|
14
|
Mury P, Chirico EN, Mura M, Millon A, Canet-Soulas E, Pialoux V. Oxidative Stress and Inflammation, Key Targets of Atherosclerotic Plaque Progression and Vulnerability: Potential Impact of Physical Activity. Sports Med 2019; 48:2725-2741. [PMID: 30302720 DOI: 10.1007/s40279-018-0996-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a complex cardiovascular disease, is a leading cause of mortality and morbidity worldwide. Oxidative stress and inflammation are both involved in the development of atherosclerotic plaque as they increase the biological processes associated with this pathology, such as endothelial dysfunction and macrophage recruitment and adhesion. Atherosclerotic plaque rupture leading to major ischemic events is the result of vulnerable plaque progression, which is a result of the detrimental effect of oxidative stress and inflammation on risk factors for atherosclerotic plaque rupture, such as intraplaque hemorrhage, neovascularization, and fibrous cap thickness. Thus, both are key targets for primary and secondary interventions. It is well recognized that chronic physical activity attenuates oxidative stress in healthy subjects via the improvement of antioxidant enzyme capacities and inflammation via the enhancement of anti-inflammatory molecules. Moreover, it was recently shown that chronic physical activity could decrease oxidative stress and inflammation in atherosclerotic patients. The aim of this review is to summarize the role of oxidative stress and inflammation in atherosclerosis and the results of therapeutic interventions targeting them in both preclinical and clinical studies. The effects of chronic physical activity on these two key processes are then reviewed in vulnerable atherosclerotic plaques in both coronary and carotid arteries.
Collapse
Affiliation(s)
- Pauline Mury
- Team Vascular Biology and Red Blood Cell, Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Faculté de Médecine Lyon Est, 8 Avenue Rockefeller, 69008, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Erica N Chirico
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Mathilde Mura
- Team Vascular Biology and Red Blood Cell, Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Faculté de Médecine Lyon Est, 8 Avenue Rockefeller, 69008, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Antoine Millon
- University of Lyon, University Claude Bernard Lyon 1, CarMeN Laboratory, INSERM U1060, Bron, France.,Department of Vascular Surgery, Edouard Herriot Hospital, Lyon, France
| | - Emmanuelle Canet-Soulas
- University of Lyon, University Claude Bernard Lyon 1, CarMeN Laboratory, INSERM U1060, Bron, France
| | - Vincent Pialoux
- Team Vascular Biology and Red Blood Cell, Interuniversity Laboratory of Human Movement Biology, University Claude Bernard Lyon 1, University of Lyon, Faculté de Médecine Lyon Est, 8 Avenue Rockefeller, 69008, Lyon, France. .,Laboratory of Excellence GR-Ex, Paris, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
15
|
Upadhyay KD, Dodia NM, Khunt RC, Chaniara RS, Shah AK. Evaluation and in vivo efficacy study of pyrano[3,2‐c]quinoline analogues as TNF‐α inhibitors. Chem Biol Drug Des 2019; 94:1647-1655. [DOI: 10.1111/cbdd.13566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | | | - Anamik K. Shah
- National Facility for Drug Discovery (NFDD) Saurashtra University Rajkot India
| |
Collapse
|
16
|
Srivastava N, Cefalu AB, Averna M, Srivastava RAK. Lack of Correlation of Plasma HDL With Fecal Cholesterol and Plasma Cholesterol Efflux Capacity Suggests Importance of HDL Functionality in Attenuation of Atherosclerosis. Front Physiol 2018; 9:1222. [PMID: 30271349 PMCID: PMC6142045 DOI: 10.3389/fphys.2018.01222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
A number of clinical findings suggested HDL-raising as a plausible approach to treat residual risk of CVD. However, lack of CVD risk reduction by elevated HDL cholesterol (HDL-C) through cholesterol ester transfer protein (CETP) inhibition and enhanced risk reduction in apolipoprotein A-I Milano (apoAI-M) individuals with low HDL-C shifted the focus from HDL-C level to HDL function. In the present study, we investigated correlations between HDL-C, HDL function, fecal cholesterol excretion, and ex vivo plasma cholesterol efflux capacity (CEC) in animal models using two HDL modulators, LXR and PPAR-α agonists. In C57Bl mice, LXR agonist, T1317, raised HDL-C by 30%, while PPAR-α agonist, fenofibrate, reduced HDL-C by 30%, but fecal cholesterol showed twofold increase in both cases. CEC showed a 30–40% increase. Combination of LXR and PPAR-α agonists showed no changes in HDL-C, but, interestingly, fecal cholesterol increased by 4.5-fold, and CEC by 40%, suggesting existence of additional pathway for fecal cholesterol excretion. Regression analysis showed a lack of correlation between HDL-C and fecal cholesterol and CEC, while fecal cholesterol showed significant correlation with CEC, a measure of HDL function. ABCA1 and G1, the two important players in RCT showed greater induction with LXR agonist than PPAR-α agonist. HDL-C increased by 40 and 80% in LXR and PPAR-α treated apoA-I transgenic mice, respectively, with 80% increase in fecal cholesterol. A fivefold increase in fecal cholesterol with no correlation with either plasma HDL-C or CEC following co-treatment with LXR and PPAR-α agonists suggested existence of an HDL-independent pathway for body cholesterol elimination. In hyperlipidemic diabetic ob/ob mice also combination of LXR and PPAR-α agonists showed marked increases in fecal cholesterol content (10–20-fold), while HDL-C rise was only 40%, further suggesting HDL-independent elimination of body cholesterol in mice treated with combination of LXR and PPAR-α agonists. Atherosclerosis attenuation by LXR and PPAR-α agonists in LDLr-deficient mice was associated with increased fecal cholesterol, but not HDL-C. However, fecal cholesterol counts showed inverse correlation with aortic cholesteryl ester content. These data suggest: (a) lack of correlation between HDL-C and fecal or aortic cholesterol content; (b) HDL function (CEC) correlated with fecal cholesterol content; (c) association of reduced aortic lipids in LDLr−/− mice with increased fecal cholesterol, but not with HDL-C, and (d) existence of an HDL-independent pathway for fecal cholesterol excretion following co-treatment with LXR and PPAR-α agonists.
Collapse
Affiliation(s)
- Neelam Srivastava
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Angelo B Cefalu
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Maurizio Averna
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | | |
Collapse
|
17
|
Srivastava RAK, Cornicelli JA, Markham B, Bisgaier CL. Gemcabene, a First-in-Class Hypolipidemic Small Molecule in Clinical Development, Attenuates Osteoarthritis and Pain in Animal Models of Arthritis and Pain. Front Pharmacol 2018; 9:471. [PMID: 29867478 PMCID: PMC5958179 DOI: 10.3389/fphar.2018.00471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023] Open
Abstract
Our clinical studies have demonstrated that gemcabene, a small molecule in late-stage clinical development, lowers pro-inflammatory acute-phase protein, C-reactive protein (CRP). This observation was further confirmed in a cell-based study showing inhibition of cytokine-induced CRP production. Based on these observations, in the present study, we tested the hypothesis that gemcabene may possess anti-inflammatory activities in animal models of inflammatory disease. Efficacy of gemcabene was investigated in rat models of carrageenan-induced thermal hyperalgesia (CITH), monosodium iodoacetate (MIA)-induced osteoarthritis (OA), and IL-6/IL-6sR-induced inflammation. We also evaluated efficacy of gemcabene in collagen antibody-induced joint swelling and arthritis in BALB/c mice. In CITH rat model, gemcabene administration attenuated paw withdrawal latency (60% at 30 mg/kg/d and 97% at 100 mg/kg/d) and showed improvement in joint swelling (-50% at 30 mg/kg/d) in MIA model of OA. These findings were further corroborated by IL-6/IL-6sR knee injection model in rat, showing 63 and 71% reduction in hind paw weight distribution at 10 and 30 mg/kg/d doses, respectively. In mouse model of monoclonal antibody-induced arthritis, a dose-dependent attenuation of joint swelling was observed. These results demonstrate that the anti-inflammatory activity of gemcabene previously observed in cell-based and in clinical studies also occurred in animal models of inflammation-induced arthritis and hyperalgesia. Thus, in addition to hypolipidemic efficacy, the anti-inflammatory activity of gemcabene may have additional benefits to patients with elevated vascular inflammation.
Collapse
|
18
|
Ghosh GC, Bhadra R, Ghosh RK, Banerjee K, Gupta A. RVX 208: A novel BET protein inhibitor, role as an inducer of apo A-I/HDL and beyond. Cardiovasc Ther 2018; 35. [PMID: 28423226 DOI: 10.1111/1755-5922.12265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/17/2016] [Accepted: 04/13/2017] [Indexed: 12/28/2022] Open
Abstract
Low-density cholesterol (LDL) has been the prime target of currently available lipid-lowering therapies although current research is expanding the focus beyond LDL lowering and has included high-density cholesterol (HDL) also as the target. Bromo and extra-terminal (BET) proteins are implicated in the regulation of transcription of several regulatory genes and regulation of proinflammatory pathways. As atherosclerosis is an inflammatory pathway and studies showed that BET inhibition has a role in inhibiting inflammation, the concept of BET inhibition came in the field of atherosclerosis. RVX 208 is a novel, orally active, BET protein inhibitor and the only BET inhibitor currently available in the field of atherosclerosis. RVX 208 acts primarily by increasing apo A-I (apolipoprotein A-I) and HDL levels. RVX 208 has a novel action of increasing larger, more cardio-protective HDL particles. Post hoc analysis of Phase II trials also showed that RVX 208 reduced major adverse cardiovascular events (MACE) in treated patients, over and above that of apo A-I/HDL increasing action. This MACE reducing actions of RVX 208 were largely due to its novel anti-inflammatory actions. Currently, a phase III trial, BETonMACE, is recruiting patients to look for the effects of RVX 208 in patients with increased risk of atherosclerotic cardiovascular disease. So BET inhibitors act in multiple ways to inhibit and modulate atherosclerosis and would be an emerging and potential option in the management of multifactorial disease like coronary artery disease by inhibiting a single substrate. But we need long-term phase III trial data's to look for effects on real-world patients.
Collapse
Affiliation(s)
- Gopal C Ghosh
- Department of Cardiology, Christian Medical College, Vellore, India
| | - Rajarshi Bhadra
- Department of Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | - Raktim K Ghosh
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | | | - Anjan Gupta
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Srivastava RAK, Cornicelli JA, Markham B, Bisgaier CL. Gemcabene, a first-in-class lipid-lowering agent in late-stage development, down-regulates acute-phase C-reactive protein via C/EBP-δ-mediated transcriptional mechanism. Mol Cell Biochem 2018; 449:167-183. [PMID: 29644527 PMCID: PMC6223808 DOI: 10.1007/s11010-018-3353-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/07/2018] [Indexed: 12/11/2022]
Abstract
Inflammation plays a key role in setting the stage leading to atherosclerosis progression, and high-sensitivity C-reactive protein (CRP) has been recognized as a predictor of cardiovascular risk. As a monotherapy and in combination with statins, gemcabene markedly reduced CRP in humans. Present investigation was undertaken to understand the mechanism of CRP reduction. In human hepatoma cells, gemcabene inhibited IL-6 plus IL-1β-induced CRP production in a concentration-dependent manner, reaching 70% inhibition at 2 mM. In TNF-α-stimulated primary human coronary artery endothelial cells, both CRP and IL-6 productions were reduced by 70% at 2 mM gemcabene concentration. To investigate the mechanism of gemcabene-mediated reduction of CRP, transfection studies were performed with human CRP regulatory sequences in luciferase/β-gal system that showed 25-fold increase in IL-6- and IL-6 plus IL-1β-stimulated CRP transcription. Luciferase activity was reduced by 50% by gemcabene, suggesting transcriptional down-regulation of CRP. Site-directed mutagenesis of human CRP promoter revealed that the overlapping downstream C/EBP and NF-κB binding sites are important for gemcabene-mediated CRP transcription. Gel shift assays identified the transcription factor that binds to the downstream CRP promoter as C/EBP-δ. In conclusion, gemcabene decreases CRP by C/EBP-δ and NF-κB-mediated transcriptional mechanism and suppresses IL-6 and IL-1β-induced CRP production.
Collapse
|