1
|
Siboto A, Ludidi A, Sibiya N, Khathi A, Ngubane P. Maternal prediabetes as a risk factor of preeclampsia and placental dysfunction in pregnant female Sprague-Dawley rats. J OBSTET GYNAECOL 2024; 44:2379498. [PMID: 39084241 DOI: 10.1080/01443615.2024.2379498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Prediabetes (PD) is associated with intermediate hyperglycaemia, dyslipidaemia, reduced nitric oxide (NO) bioavailability and moderate hypertension. All these factors are risk factor for preeclampsia (PE). However, the effects of the PD on placental function have not been shown. Accordingly, this study sought to investigate a possible link between maternal PD and the risk of developing PE. METHODS Pregnant female Sprague-Dawley rats (N = 18) were divided into normal, preeclamptic and prediabetic groups (n = 6 in each group) to study the effects of maternal PD on placenta function over the period of 19 days. Blood glucose and blood pressure were measured on gestational day (GND) 0, 9 and 18. Placental vascular endothelial growth factor (VEGF), placenta growth factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1) mRNA expression were measured terminally. Data were analysed using ANOVA followed by the Tukey-Kramer post hoc test. Values of p < .05 were used to indicate statistical significance. RESULTS Maternal PD and PE significantly increased blood glucose, decrease NO concentration and increase in MAP by comparison to the normal pregnant control group. Maternal PD significantly decreased VEGF, PlGF mRNA expression with a slight increase in sFlt-1 mRNA expression comparison to the normal pregnant control group. CONCLUSIONS Maternal PD is associated with placental dysfunction due to impaired glucose handling, endothelial dysfunction and an imbalance in angiogenic and antiangiogenic factors. Therefore, maternal PD is a risk factor of PE.
Collapse
Affiliation(s)
- Aneliswe Siboto
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Asiphaphola Ludidi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
2
|
Daloglu OO, Unal MC, Kemaloglu CA, Bolatturk OF, Ozyazgan I, Tanriverdi F, Coruh A, Kelestimur F. Evaluation of pituitary function and metabolic parameters in patients with traumatic maxillofacial fractures. J Endocrinol Invest 2024; 47:2477-2485. [PMID: 38503991 PMCID: PMC11392989 DOI: 10.1007/s40618-024-02349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE This study was designed to assess the pituitary functions of patients with traumatic maxillofacial fractures and compare the results with healthy controls. METHODS Thirty patients (mean age, 38.14 ± 14.15 years; twenty-six male, four female) with a traumatic maxillofacial fracture at least 12 months ago (mean 27.5 ± 6.5 months) and thirty healthy controls (mean age, 42.77 ± 11.36 years; twenty-five male, five female) were included. None of the patients were unconscious following head trauma, and none required hospitalization in intensive care. Basal pituitary hormone levels of the patients were evaluated. All patients and controls had a glucagon stimulation test and an ACTH stimulation test to evaluate the hypothalamic-pituitary-adrenal axis and the GH-IGF-1 axis. RESULTS Five of thirty patients (16.6%) had isolated growth hormone (GH) deficiency based on a glucagon stimulation test (GST). The mean peak GH level after GST in patients with hypopituitarism (0.54 ng/ml) was significantly lower than those without hypopituitarism (7.01 ng/ml) and healthy controls (11.70 ng/ml) (P < 0.001). No anterior pituitary hormone deficiency was found in the patients, except for GH. CONCLUSION Our study is the first to evaluate the presence of hypopituitarism in patients with traumatic maxillofacial fractures. Preliminary findings suggest that hypopituitarism and GH deficiency pose significant risks to these patients, particularly during the chronic phase of their trauma. However, these findings need to be validated in larger scale prospective studies with more patients.
Collapse
Affiliation(s)
- O O Daloglu
- Department of Endocrinology and Metabolism, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey.
| | - M C Unal
- Department of Endocrinology and Metabolism, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - C A Kemaloglu
- Department of Plastic Surgery and Reconstruction, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - O F Bolatturk
- Department of Neurology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - I Ozyazgan
- Department of Plastic Surgery and Reconstruction, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - F Tanriverdi
- Endocrinology Clinic, Memorial Kayseri Hospital, Kayseri, Turkey
| | - A Coruh
- Department of Plastic Surgery and Reconstruction, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - F Kelestimur
- Department of Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
3
|
Atsarina DM, Widyastiti NS, Muniroh M, Susilaningsih N, Maharani N. Combination of Metformin and Epigallocatechin-3-Gallate Lowers Cortisol, 11β-Hydroxysteroid Dehydrogenase Type 1, and Blood Glucose Levels in Sprague Dawley Rats with Obesity and Diabetes. J Obes Metab Syndr 2024; 33:261-269. [PMID: 39098053 PMCID: PMC11443325 DOI: 10.7570/jomes23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background The combined effects of metformin and epigallocatechin-3-gallate (EGCG) on cortisol, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), and blood glucose levels have not been investigated. This study evaluated the effectiveness of combining EGCG with metformin in regulating those levels in a rat model of diet-induced diabetes and obesity. Methods Thirty diabetic and obese rats on a high-fat diet were treated daily for 28 days with EGCG (100 mg/kg of body weight/day), metformin (200 mg/kg of body weight/day), or both. Control groups comprised lean rats, untreated obese diabetic rats, and metformin-only-treated rats. Blood samples were collected to measure cortisol and fasting blood glucose (FBG) levels and liver tissue samples were examined for 11β-HSD1 levels. Results Rats receiving combination therapy had significantly reduced cortisol levels (from 36.70±15.13 to 31.25±7.10 ng/mL) compared with the untreated obese diabetic rats but not the rats receiving monotherapy. Rats receiving combination therapy and EGCG monotherapy had significantly lower 11β-HSD1 levels compared with the untreated obese diabetic rats (92.68±10.82 and 93.74±18.11 ng/L vs. 120.66±14.00 ng/L). Combination therapy and metformin monotherapy significantly reduced FBG levels (440.83±133.30 to 140.50±7.36 mg/dL and 480.67±86.32 to 214.17±102.78 mg/dL, respectively) by approximately 68.1% and 55.4% compared with rats receiving EGCG monotherapy and untreated obese diabetic rats. Conclusion Combining EGCG with metformin exhibited synergistic effects compared with monotherapy for managing diabetes, leading to improved outcomes in reduction of baseline cortisol levels along with reduction in 11β-HSD1 and blood glucose levels.
Collapse
Affiliation(s)
- Diana Mazaya Atsarina
- Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Nyoman Suci Widyastiti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Neni Susilaningsih
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| | - Nani Maharani
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Diponegoro (Diponegoro University), Semarang, Indonesia
| |
Collapse
|
4
|
Zhang Y, Luo C, Huang P, Chen L, Ma Y, Ding H. Effects of chronic exposure to a high fat diet, nutritive or non-nutritive sweeteners on hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes of male Sprague-Dawley rats. Eur J Nutr 2024; 63:2209-2220. [PMID: 38743096 DOI: 10.1007/s00394-024-03427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Diet-related factors are of great significance in the regulation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonad (HPG) axes. In this study, we aimed to investigate the effects of chronic exposure to a high fat diet (HFD), fructose or sucralose on the endocrine functions. METHODS Male, Sprague-Dawley rats received a normal chow diet, HFD, 10% fructose or 0.02% sucralose for 10 weeks. Behavioral changes were assessed by open field (OFT) and elevated plus-maze (EPM) tests at week 8. H&E staining was used to observe pathological changes in adrenal cortex, testis and perirenal adipose tissue. Serum hormone concentrations were quantified via enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of genes along the HPA and HPG axes were determined using real-time PCR. RESULTS All types of dietary interventions increased body weight and disturbed metabolic homeostasis, with anxiogenic phenotype in behavioral tests and damage to cell morphology of adrenal cortex and testis being observed. Along the HPA axis, significantly increased corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) concentrations were observed in the HFD or 0.02% sucralose group. For HPG axis, gonadotropin-releasing hormone (GnRH) and estradiol (E2) concentrations were significantly increased in all dietary intervention groups, while decreased concentrations of follicle-stimulating hormone (FSH) and testosterone (T) were also detected. Moreover, transcriptional profiles of genes involved in the synthesis of hormones and corresponding hormone receptors were significantly altered. CONCLUSION Long-term consumption of HFD, fructose or sucralose manifested deleterious effects on endocrine system and resulted in the dysregulation of HPA and HPG axes.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Chunyun Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Lu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
5
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. A Review of Fetal Development in Pregnancies with Maternal Type 2 Diabetes Mellitus (T2DM)-Associated Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation: Possible Links to Pregestational Prediabetes. Biomedicines 2024; 12:1372. [PMID: 38927579 PMCID: PMC11201628 DOI: 10.3390/biomedicines12061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Research has identified fetal risk factors for adult diseases, forming the basis for the Developmental Origins of Health and Disease (DOHaD) hypothesis. DOHaD suggests that maternal insults during pregnancy cause structural and functional changes in fetal organs, increasing the risk of chronic diseases like type 2 diabetes mellitus (T2DM) in adulthood. It is proposed that altered maternal physiology, such as increased glucocorticoid (GC) levels associated with a dysregulated hypothalamic-pituitary-adrenal (HPA) axis in maternal stress and T2DM during pregnancy, exposes the fetus to excess GC. Prenatal glucocorticoid exposure reduces fetal growth and programs the fetal HPA axis, permanently altering its activity into adulthood. This programmed HPA axis is linked to increased risks of hypertension, cardiovascular diseases, and mental disorders in adulthood. With the global rise in T2DM, particularly among young adults of reproductive age, it is crucial to prevent its onset. T2DM is often preceded by a prediabetic state, a condition that does not show any symptoms, causing many to unknowingly progress to T2DM. Studying prediabetes is essential, as it is a reversible stage that may help prevent T2DM-related pregnancy complications. The existing literature focuses on HPA axis dysregulation in T2DM pregnancies and its link to fetal programming. However, the effects of prediabetes on HPA axis function, specifically glucocorticoid in pregnancy and fetal outcomes, are not well understood. This review consolidates research on T2DM during pregnancy, its impact on fetal programming via the HPA axis, and possible links with pregestational prediabetes.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4001, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
6
|
Sibiya N, Kurylowicz A, Khathi A. Editorial: Prediabetes - early interventions and prevention in insulin resistance. Front Nutr 2024; 11:1434569. [PMID: 38887497 PMCID: PMC11181999 DOI: 10.3389/fnut.2024.1434569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Alina Kurylowicz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. Pregestational Prediabetes Induces Maternal Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation and Results in Adverse Foetal Outcomes. Int J Mol Sci 2024; 25:5431. [PMID: 38791468 PMCID: PMC11122116 DOI: 10.3390/ijms25105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4041, KwaZulu Natal, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
8
|
Al-Zoubi RM, Abu-Hijleh H, Zarour A, Zakaria ZZ, Yassin A, Al-Ansari AA, Al-Asmakh M, Bawadi H. Zebrafish Model in Illuminating the Complexities of Post-Traumatic Stress Disorders: A Unique Research Tool. Int J Mol Sci 2024; 25:4895. [PMID: 38732113 PMCID: PMC11084870 DOI: 10.3390/ijms25094895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 05/13/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychological condition that may develop in certain individuals following exposure to life-threatening or traumatic events. Distressing symptoms, including flashbacks, are characterized by disrupted stress responses, fear, anxiety, avoidance tendencies, and disturbances in sleep patterns. The enduring effects of PTSD can profoundly impact personal and familial relationships, as well as social, medical, and financial stability. The prevalence of PTSD varies among different populations and is influenced by the nature of the traumatic event. Recently, zebrafish have emerged as a valuable model organism in studying various conditions and disorders. Zebrafish display robust behavioral patterns that can be effectively quantified using advanced video-tracking tools. Due to their relatively simple nervous system compared to humans, zebrafish are particularly well suited for behavioral investigations. These unique characteristics make zebrafish an appealing model for exploring the underlying molecular and genetic mechanisms that govern behavior, thus offering a powerful comparative platform for gaining deeper insights into PTSD. This review article aims to provide updates on the pathophysiology of PTSD and the genetic responses associated with psychological stress. Additionally, it highlights the significance of zebrafish behavior as a valuable tool for comprehending PTSD better. By leveraging zebrafish as a model organism, researchers can potentially uncover novel therapeutic interventions for the treatment of PTSD and contribute to a more comprehensive understanding of this complex condition.
Collapse
Affiliation(s)
- Raed M. Al-Zoubi
- Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar
| | - Haya Abu-Hijleh
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
| | - Ahmad Zarour
- Department of Surgery, Acute Care Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Zain Z. Zakaria
- Vice President for Medical and Health Sciences Office, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Aksam Yassin
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
- Center of Medicine and Health Sciences, Dresden International University, 01069 Dresden, Germany
| | - Abdulla A. Al-Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
| | - Maha Al-Asmakh
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
| |
Collapse
|
9
|
Dlamini M, Khathi A. Investigating the Effects of Diet-Induced Prediabetes on Skeletal Muscle Strength in Male Sprague Dawley Rats. Int J Mol Sci 2024; 25:4076. [PMID: 38612885 PMCID: PMC11012655 DOI: 10.3390/ijms25074076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Type 2 diabetes mellitus, a condition preceded by prediabetes, is documented to compromise skeletal muscle health, consequently affecting skeletal muscle structure, strength, and glucose homeostasis. A disturbance in skeletal muscle functional capacity has been demonstrated to induce insulin resistance and hyperglycemia. However, the modifications in skeletal muscle function in the prediabetic state are not well elucidated. Hence, this study investigated the effects of diet-induced prediabetes on skeletal muscle strength in a prediabetic model. Male Sprague Dawley rats were randomly assigned to one of the two groups (n = 6 per group; six prediabetic (PD) and six non-pre-diabetic (NPD)). The PD group (n = 6) was induced with prediabetes for 20 weeks. The diet that was used to induce prediabetes consisted of fats (30% Kcal/g), proteins (15% Kcal/g), and carbohydrates (55% Kcal/g). In addition to the diet, the experimental animals (n = 6) were supplied with drinking water that was supplemented with 15% fructose. The control group (n = 6) was allowed access to normal rat chow, consisting of 35% carbohydrates, 30% protein, 15% fats, and 20% other components, as well as ordinary tap water. At the end of week 20, the experimental animals were diagnosed with prediabetes using the American Diabetes Association (ADA) prediabetes impaired fasting blood glucose criteria (5.6-6.9 mmol/L). Upon prediabetes diagnosis, the animals were subjected to a four-limb grip strength test to assess skeletal muscle strength at week 20. After the grip strength test was conducted, the animals were euthanized for blood and tissue collection to analyze glycated hemoglobin (HbA1c), plasma insulin, and insulin resistance using the homeostatic model of insulin resistance (HOMA-IR) index and malondialdehyde (MDA) concentration. Correlation analysis was performed to examine the associations of skeletal muscle strength with HOMA-IR, plasma glucose, HbA1c, and MDA concentration. The results demonstrated increased HbA1c, FBG, insulin, HOMA-IR, and MDA concentrations in the PD group compared to the NPD group. Grip strength was reduced in the PD group compared to the NPD group. Grip strength was negatively correlated with HbA1c, plasma glucose, HOMA-IR, and MDA concentration in the PD group. These observations suggest that diet-induced prediabetes compromises muscle function, which may contribute to increased levels of sedentary behavior during prediabetes progression, and this may contribute to the development of hyperglycemia in T2DM.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine, Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| |
Collapse
|
10
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
11
|
Zhang Y, Liu M, Zhou C, Ye Z, Zhang Y, Yang S, He P, Gan X, Qin X. Social isolation, loneliness, and the risk of incident type 2 diabetes mellitus by glycemic status. DIABETES & METABOLISM 2024; 50:101517. [PMID: 38253174 DOI: 10.1016/j.diabet.2024.101517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
AIM The modifying effect of prediabetic status on the association of social isolation and loneliness with the risk of type 2 diabetes mellitus (T2DM) remains uncertain. We aimed to explore whether prediabetic status modifies the association of social isolation and loneliness with incident T2DM. METHODS 358,951 participants with random blood glucose < 11.1 mmol/l, hemoglobin A1c < 6.5 % and without diagnosis of diabetes from the UK Biobank were included. Prediabetes was defined by hemoglobin A1c level at 5.7-6.4 %. Social isolation and loneliness were assessed using self-reported questionnaires. The study outcome was incident T2DM. RESULTS During a median follow-up of 12.5 years, 13,213 (3.7 %) incident T2DM cases were documented. Social isolation and loneliness in subjects with normoglycemia (adjusted HR [95 %CI]: social isolation: 1.14 [1.07;1.23]; loneliness: 1.33 [1.20;1.47]) were more strongly associated with increased risk of T2DM than in those with prediabetes (adjusted HR [95 %CI]: social isolation: 0.97 [0.91;1.03]; loneliness: 1.04 [0.95;1.13]) (Both P for interaction < 0.001). Among individuals with prediabetes, alcoholic consumption (30.9 %), household income (23.3 %), healthy sleep (17.1 %), loneliness (14.9 %), and physical activity (12.6 %) mediated most of the variance in the association between social isolation and incident T2DM, while body mass index (17.9 %) and healthy sleep (17.6 %) mediated most of the variance in the association between loneliness and incident T2DM. CONCLUSION Social isolation and loneliness were independently associated with a higher risk of T2DM among individuals without prediabetes. Among those with prediabetes, the association of social isolation and loneliness with incident T2DM were mainly mediated by some socioeconomic and lifestyle factors.
Collapse
Affiliation(s)
- Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xiaoqin Gan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| |
Collapse
|
12
|
Mosili P, Mkhize BC, Sibiya NH, Ngubane PS, Khathi A. Review of the direct and indirect effects of hyperglycemia on the HPA axis in T2DM and the co-occurrence of depression. BMJ Open Diabetes Res Care 2024; 12:e003218. [PMID: 38413177 PMCID: PMC10900365 DOI: 10.1136/bmjdrc-2022-003218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 02/29/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by persistent hyperglycemia which is further associated with hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Several studies have shown that HPA axis hyperactivity is heightened in the chronic hyperglycemic state with severe hyperglycemic events more likely to result in a depressive disorder. The HPA axis is also regulated by the immune system. Upon stress, under homeostatic conditions, the immune system is activated via the sympatho-adrenal-medullary axis resulting in an immune response which secretes proinflammatory cytokines. These cytokines aid in the activation of the HPA axis during stress. However, in T2DM, where there is persistent hyperglycemia, the immune system is dysregulated resulting in the elevated concentrations of these cytokines. The HPA axis, already activated by the hyperglycemia, is further activated by the cytokines which all contribute to a diagnosis of depression in patients with T2DM. However, the onset of T2DM is often preceded by pre-diabetes, a reversible state of moderate hyperglycemia and insulin resistance. Complications often seen in T2DM have been reported to begin in the pre-diabetic state. While the current management strategies have been shown to ameliorate the moderate hyperglycemic state and decrease the risk of developing T2DM, research is necessary for clinical studies to profile these direct effects of moderate hyperglycemia in pre-diabetes on the HPA axis and the indirect effects moderate hyperglycemia may have on the HPA axis by investigating the components of the immune system that play a role in regulating this pathway.
Collapse
Affiliation(s)
- Palesa Mosili
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | - Bongeka Cassandra Mkhize
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | | | - Phikelelani Sethu Ngubane
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | - Andile Khathi
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
13
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
14
|
Gumede N, Khathi A. The role of fibrinolysis in the development of prediabetes-associated coronary heart disease: a focus on the plasminogen activator inhibitor -1 and its potential use as a predictive marker in diet-induced prediabetes. Front Nutr 2023; 10:1256427. [PMID: 38024366 PMCID: PMC10652797 DOI: 10.3389/fnut.2023.1256427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular diseases (CVD). However, the onset of T2DM is preceded by prediabetes, which is associated with sedentary lifestyles and consumption of high-calorie diets. Studies have shown that impaired glucose homeostasis creates an environment for developing T2DM-related complications. Using a high-fat-high-carbohydrate diet-induced prediabetes animal model, this study sought to assess the risk factors of coronary heart disease (CHD) in diet-induced prediabetes and identify biomarkers that can be used for early detection of prediabetes-associated CHD. Methods Male Sprague Dawley rats were randomly grouped into two groups and were kept on different diets for 20 weeks (n = 6 in each group). One group was fed standard rat chow to serve as a non-prediabetes (NPD) control, while the other group consumed a high-fat-high-carbohydrate diet to induce prediabetes (PD). Post induction, the homeostasis model assessment- insulin resistance (HOMA-IR) and glycated haemoglobin (HbA1c) was used to test for insulin resistance. Body weight, mean arterial pressure (MAP), resting heart rate (HR), inflammatory cytokines (C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6)), lipids (total cholesterol (TC), triglyceride (TG), lipoproteins (HDL, LDL, VLDL)), endothelial function (endothelial nitric oxide (eNOS), endothelin -1 (ET-1)), fibrinolysis (plasminogen activator inhibitor-1 (PAI-1)) were all measured to assess the risk of CHD. All data were expressed as means ± S.E.M. Statistical comparisons were performed with Graph Pad. Instat Software using Student's two-sided t-test. The Pearson correlation coefficient and linear regression were calculated to assess the association. The value of p < 0.05 was considered statistically significant. Results There was significant insulin resistance accompanied by significantly increased HbA1c and body weight in PD compared to NPD. Simultaneously, there was a significant increase in inflammatory cytokines in PD compared to NPD. This was accompanied by significantly increased TG and VLDL and endothelial dysfunction in PD. The association between HOMA-IR and PAI-1 was insignificantly positive in NPD, whereas a significantly strong positive association was observed in PD. Conclusion There is a positive correlation between insulin resistance and PAI-1 during prediabetes; therefore, suggesting that prediabetes increases the risk of developing vascular thrombosis. The current therefore study warrants further investigation on PAI-1 and other markers of fibrinolysis for the early detection of thrombosis and risk of CHD in prediabetes.
Collapse
Affiliation(s)
- Nompumelelo Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
15
|
Khathi A, Dagogo-Jack S. Editorial: Prediabetes and endocrine function. Front Endocrinol (Lausanne) 2023; 14:1268552. [PMID: 37664837 PMCID: PMC10471125 DOI: 10.3389/fendo.2023.1268552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Andile Khathi
- School of Laboratory Medicine and Medical Sciences, Discipline of Human Physiology, University of KwaZulu-Natal, Durban, South Africa
| | - Sam Dagogo-Jack
- Division of Endocrinology, Diabetes & Metabolism, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
16
|
Karami F, Jamaati H, Coleman-Fuller N, Zeini MS, Hayes AW, Gholami M, Salehirad M, Darabi M, Motaghinejad M. Is metformin neuroprotective against diabetes mellitus-induced neurodegeneration? An updated graphical review of molecular basis. Pharmacol Rep 2023; 75:511-543. [PMID: 37093496 DOI: 10.1007/s43440-023-00469-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 04/25/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disease that activates several molecular pathways involved in neurodegenerative disorders. Metformin, an anti-hyperglycemic drug used for treating DM, has the potential to exert a significant neuroprotective role against the detrimental effects of DM. This review discusses recent clinical and laboratory studies investigating the neuroprotective properties of metformin against DM-induced neurodegeneration and the roles of various molecular pathways, including mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, and its related cascades. A literature search was conducted from January 2000 to December 2022 using multiple databases including Web of Science, Wiley, Springer, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, Scopus, and the Cochrane Library to collect and evaluate peer-reviewed literature regarding the neuroprotective role of metformin against DM-induced neurodegenerative events. The literature search supports the conclusion that metformin is neuroprotective against DM-induced neuronal cell degeneration in both peripheral and central nervous systems, and this effect is likely mediated via modulation of oxidative stress, inflammation, and cell death pathways.
Collapse
Affiliation(s)
- Fatemeh Karami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Maryam Shokrian Zeini
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health and Institute for Integrative Toxicology, Michigan State University, East Lansing, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Darabi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Adverse Childhood Experience as a Risk Factor for Developing Type 2 Diabetes among the Jazan Population: A Cross-Sectional Study. CHILDREN 2023; 10:children10030499. [PMID: 36980057 PMCID: PMC10047776 DOI: 10.3390/children10030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Background: Adverse Childhood Experiences (ACEs), such as childhood abuse, neglect, and family dysfunction, prevent appropriate emotional, behavioral, and physical development. They are also a major public health issue, and have been debatably linked to chronic diseases, including type 2 diabetes mellitus (T2DM). T2DM is highly prevalent in Saudi Arabia, and various theories have been raised to explain the epidemiology of diabetes. However, few studies have discussed the relationship between ACEs and T2DM. Thus, we aimed to evaluate the association between ACEs and T2DM in Jazan Province, Saudi Arabia. Methods: This observational, cross-sectional study was conducted using a validated questionnaire distributed among patients with T2DM in a diabetes center. The t-test and Chi-Square test were used for comparison, and the p-value was set at <0.05 for significance. Results: A total of 579 participants were involved in this study, and 303 (52.33%) were female. Among the included participants, 45.25% were diagnosed with T2DM. About 28.71% of participants with diabetes experienced verbal abuse, 16.09% experienced physical abuse, and 30.91% reported that parents beat them. Additionally, 1.58% of participants with diabetes reported living with a family member who abused substances, 8.83% believed that no one would take them to the doctor even if essential, 12.62% of participants with diabetes felt that no one would protect them, and 23.03% reported that they felt no one in their family loved them. All reported ACEs were significantly associated with a high risk of T2DM (p < 0.05), and the more frequent the ACEs, the more the risk of T2DM (p = 0.0001). Conclusions: This study indicated that ACEs are significantly associated with the development of T2DM, and the risk increases with the frequency of ACEs, which aligns with other studies. Further national studies are required to understand how ACEs could contribute to T2DM, and preventive interventions in childhood must be considered to reduce the burden of T2DM.
Collapse
|
18
|
Khan SU, Jannat S, Shaukat H, Unab S, Tanzeela, Akram M, Khan Khattak MN, Soto MV, Khan MF, Ali A, Rizvi SSR. Stress Induced Cortisol Release Depresses The Secretion of Testosterone in Patients With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514221145841. [PMID: 36636127 PMCID: PMC9830570 DOI: 10.1177/11795514221145841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Background Both hormonal and genetic data reveal that the stress hormone cortisol and its regulating genes may affect the level of testosterone in humans. It is uncertain whether type 2 diabetes mellitus would manifest similarly. Furthermore, a genetic strategy to screen out the stress system genes that may contribute to testosterone decline in humans is less understood. Objectives In this study, we aimed to elucidate the link between stress and testosterone levels, both hormonally and genetically. Method This study comprised 37 individuals with type 2 diabetes mellitus and 50 healthy individuals. For the analysis of hormones and the targeted genes, we used the RIA system and bioinformatics expertise. Results The patients had significantly elevated cortisol and lower testosterone readings, according to data from hormonal analyses. The bioinformatics approach reveals that SHBG was intracellularly suppressed by 2 defined stress system genes: FKB5 and CYP17. TCF4/TCF8, ATRX, and AR in skeletal muscle were inversely related to stress system genes. Furthermore, all testosterone regulated genes were positively linked with SHBG in the current study. A strong relationship between GNAS and PKA with CYP17 and FKBP5 reveals that the Gαs-cAMP/PKA signaling pathway may be one of the regulatory pathways through which the suppression of testosterone system genes happens. In conclusion, this study demonstrated that beyond stress, the key stress system genes might affect cortisol levels, which in turn affect testosterone figures via the Gαs-cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Departments of Cell Biology Center for Research and Advanced Studies of the IPN, Mexico City, Mexico
- Departments of Biology Autonomous University of Madrid, Madrid, Spain
| | - Saba Jannat
- Department of Zoology, Women University Swabi, Swabi, Pakistan
| | - Hadia Shaukat
- Department of Zoology, Women University Swabi, Swabi, Pakistan
| | - Shiza Unab
- Department of Zoology, University of Mianwali, Mianwali, Pakistan
| | - Tanzeela
- Department of Zoology, Women University Swabi, Swabi, Pakistan
| | - Maleeha Akram
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | | | - Monica Vizcara Soto
- Departments of Cell Biology Center for Research and Advanced Studies of the IPN, Mexico City, Mexico
| | | | - Amir Ali
- Nanoscience and Nanotechnology Program, Center for Research and Advanced Studies of the IPN, Mexico City, Mexico
| | - Syed Shakeel Raza Rizvi
- Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
19
|
Wu T, Liu R, Zhang L, Rifky M, Sui W, Zhu Q, Zhang J, Yin J, Zhang M. Dietary intervention in depression - a review. Food Funct 2022; 13:12475-12486. [PMID: 36408608 DOI: 10.1039/d2fo02795j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depression is a mental illness that affects the normal lives of over 300 million people. Unfortunately, about 30% to 40% of patients do not adequately respond to pharmacotherapy and other therapies. This review focuses on exploring the relationship between dietary nutrition and depression, aiming to find safer and efficient ingredients to alleviate depression. Diet can affect depression in numerous ways. These pathways include the regulation of tryptophan metabolism, inflammation, hypothalamic-pituitary-adrenal (HPA) axis, microbe-gut-brain axis, brain-derived neurotrophic factor (BDNF) and epigenetics. Furthermore, probiotics, micronutrients, and other active substances exhibit significant antidepressant effects by regulating the above pathways. These provide insights for developing antidepressant foods.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ran Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ling Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Mohamed Rifky
- Eastern University of Sri Lanka, Chenkalady 999011, Sri Lanka
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiaojiao Zhang
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60100, Italy
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China. .,Tianjin Agricultural University, and China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
20
|
Deveci O, Karaca Z, Tanriverdi F, Deveci K, Hacioglu A, Unluhizarci K, Kelestimur F. Prediabetes and mild hepatosteatosis are associated with blunted cortisol response to glucagon but not to growth hormone. ANNALES D'ENDOCRINOLOGIE 2022; 84:254-259. [PMID: 36493869 DOI: 10.1016/j.ando.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although there is a close relationship between cortisol and growth hormone (GH) levels, glucose intolerance and hepatosteatosis, changes in GH and the hypothalamo-pituitary-adrenal (HPA) axis were not previously studied in prediabetes. The main purpose of the present study was to assess changes in GH and HPA axis and their relationship with hepatosteatosis in prediabetic patients. METHODS Forty prediabetic patients, with body-mass index (BMI) 25-35kg/m2, and 23 healthy individuals, with normal glucose tolerance and similar age and BMI, were included. The 75g oral glucose tolerance test and glucagon stimulation test (GST) were used. RESULTS No significant differences were detected between prediabetic patients and healthy individuals in terms of insulin-like growth factor-1 (IGF-1), insulin-like growth factor-binding protein-3 (IGFBP-3), IGF-1/IGFBP3 ratio or adrenocorticotropic hormone (ACTH). GH responses to GST did not differ between groups. On the other hand, peak cortisol and area under the curve (AUC) (cortisol) response on GST were significantly lower in prediabetic patients. Both peak GH and AUC (GH) response on GST correlated negatively with waist circumference and body weight. The degree of hepatosteatosis correlated negatively with peak cortisol, GH, AUC (cortisol) and AUC (GH) response on GST. CONCLUSION Cortisol response to GST is decreased in prediabetic patients, with relatively well conserved GH response. This suggests altered HPA axis responsiveness in prediabetes, as is known in diabetes. Thus, HPA axis changes in patients with diabetes probably start before the development of diabetes as such.
Collapse
Affiliation(s)
- Ozlem Deveci
- Erciyes University Medical School Department of Internal Medicine, Kayseri, Turkey
| | - Zuleyha Karaca
- Erciyes University Medical School Department of Endocrinology, Kayseri, Turkey.
| | - Fatih Tanriverdi
- Erciyes University Medical School Department of Endocrinology, Kayseri, Turkey
| | - Kamil Deveci
- Erciyes University Medical School Department of Internal Medicine, Kayseri, Turkey
| | - Aysa Hacioglu
- Erciyes University Medical School Department of Endocrinology, Kayseri, Turkey
| | - Kursad Unluhizarci
- Erciyes University Medical School Department of Endocrinology, Kayseri, Turkey
| | - Fahrettin Kelestimur
- Yeditepe University Medical School Department of Endocrinology, İstanbul, Turkey
| |
Collapse
|
21
|
Gumede N, Ngubane P, Khathi A. Assessing the risk factors for myocardial infarction in diet-induced prediabetes: myocardial tissue changes. BMC Cardiovasc Disord 2022; 22:350. [PMID: 35918636 PMCID: PMC9347129 DOI: 10.1186/s12872-022-02758-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hyperglycaemia is known to result in oxidative stress tissue injury and dysfunction. Interestingly, studies have reported hepatic and renal oxidative stress injury during prediabetes; however, any injury to the myocardium during prediabetes has not been investigated. Hence this study aims to assess changes in the myocardial tissue in an HFHC diet-induced model of prediabetes. Methods Male Sprague Dawley rats were randomly grouped into non-prediabetes and prediabetes (n = 6 in each group) and consumed a standard rat chow or fed a high-fat-high-carbohydrate diet respectively for a 20-week prediabetes induction period. Post induction, prediabetes was confirmed using the ADA criteria. Aldose reductase, NADH oxidase 1, superoxide dismutase, glutathione peroxide, cardiac troponins were analysed in cardiac tissue homogenate using specific ELISA kits. Lipid peroxidation was estimated by determining the concentration of malondialdehyde in the heart tissue homogenate according to the previously described protocol. Myocardial tissue sections were stained with H&E stain and analysed using Leica microsystem. All data were expressed as means ± SEM. Statistical comparisons were performed with Graph Pad instat Software using the Student's two-sided t-test. Pearson correlation coefficient was calculated to assess the association. Value of p < 0.05 was considered statistically significant. Results The prediabetes group showed a markedly high oxidative stress as indicated by significantly increased NADH oxidase 1 and malondialdehyde while superoxide dismutase and glutathione peroxide were decreased compared to non-prediabetes group. There was no statistical difference between cardiac troponin I and T in the non-prediabetes and prediabetes groups. Cardiac troponins had a weak positive association with glycated haemoglobin. Conclusion The findings of this study demonstrate that prediabetes is associated with myocardial injury through oxidative stress. Future studies are to investigate cardiac contractile function and include more cardiac biomarkers. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02758-8.
Collapse
Affiliation(s)
- Nompumelelo Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, X54001, South Africa. .,Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Room E2 401, Westville, South Africa.
| | - Phikelelani Ngubane
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, X54001, South Africa
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, X54001, South Africa
| |
Collapse
|
22
|
Naidoo K, Ngubane PS, Khathi A. Investigating the Effects of Diet-Induced Pre-Diabetes on the Functioning of Calcium-Regulating Organs in Male Sprague Dawley Rats: Effects on Selected Markers. Front Endocrinol (Lausanne) 2022; 13:914189. [PMID: 35898447 PMCID: PMC9309376 DOI: 10.3389/fendo.2022.914189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Derangements to the functioning of calcium-regulating organs have been associated with type 2 diabetes mellitus (T2DM), a condition preceded by pre-diabetes. Type 2 diabetes has shown to promote renal calcium wastage, intestinal calcium malabsorption and increased bone resorption. However, the changes to the functioning of calcium-regulating organs in pre-diabetes are not known. Subsequently, the effects of diet-induced pre-diabetes on the functioning of calcium-regulating organs in a rat model for pre-diabetes was investigated in this study. Male Sprague Dawley rats were separated into two groups (n=6, each group): non-pre-diabetic (NPD) group and a diet-induced pre-diabetic (DIPD) group for 20 weeks. After the experimental period, postprandial glucose and HOMA-IR were analysed in addition to plasma and urinary calcium concentrations. Gene expressions of intestinal vitamin D (VDR), intestinal calbindin-D9k, renal 1-alpha hydroxylase and renal transient receptor potential vanilloid 5 (TRPV5) expressions in addition to plasma osteocalcin and urinary deoxypyridinoline concentrations were analysed at week 20. The results demonstrated significantly increased concentrations of postprandial glucose, HOMA-IR and urinary calcium in addition to unchanged plasma calcium levels in the DIPD group by comparison to NPD. Renal TRPV5, renal 1-alpha hydroxylase, intestinal VDR and intestinal calbindin-D9k expressions were increased in the DIPD group by comparison to NPD. Furthermore, plasma osteocalcin levels were increased and urine deoxypyridinoline levels were decreased in the DIPD group by comparison to NPD. These observations may suggest that calcium-regulating organs compensate for the changes to calcium homeostasis by inducing increased renal calcium reabsorption, increased intestinal calcium absorption and decreased bone resorption followed by increased bone formation.
Collapse
|
23
|
Butler MJ, Deems NP, Muscat S, Butt CM, Belury MA, Barrientos RM. Dietary DHA prevents cognitive impairment and inflammatory gene expression in aged male rats fed a diet enriched with refined carbohydrates. Brain Behav Immun 2021; 98:198-209. [PMID: 34425209 PMCID: PMC8511052 DOI: 10.1016/j.bbi.2021.08.214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
The consumption of a processed foods diet (PD) enriched with refined carbohydrates, saturated fats, and lack of fiber has increased in recent decades and likely contributed to increased incidence of chronic disease and weight gain in humans. These diets have also been shown to negatively impact brain health and cognitive function in rodents, non-human primates, and humans, potentially through neuroimmune-related mechanisms. However, mechanisms by which PD impacts the aged brain are unknown. This gap in knowledge is critical, considering the aged brain has a heightened state of baseline inflammation, making it more susceptible to secondary challenges. Here, we showed that consumption of a PD, enriched with refined carbohydrate sources, for 28 days impaired hippocampal- and amygdalar-dependent memory function in aged (24 months), but not young (3 months) F344 × BN rats. These memory deficits were accompanied by increased expression of inflammatory genes, such as IL-1β, CD11b, MHC class II, CD86, NLRP3, and complement component 3, in the hippocampus and amygdala of aged rats. Importantly, we also showed that when the same PD is supplemented with the omega-3 polyunsaturated fatty acid DHA, these memory deficits and inflammatory gene expression changes were ameliorated in aged rats, thus providing the first evidence that DHA supplementation can protect against memory deficits and inflammatory gene expression in aged rats fed a processed foods diet. Lastly, we showed that while PD consumption increased weight gain in both young and aged rats, this effect was exaggerated in aged rats. Aging was also associated with significant alterations in hypothalamic gene expression, with no impact by DHA on weight gain or hypothalamic gene expression. Together, our data provide novel insights regarding diet-brain interactions by showing that PD consumption impairs cognitive function likely through a neuroimmune mechanism and that dietary DHA can ameliorate this phenomenon.
Collapse
Affiliation(s)
- Michael J Butler
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Stephanie Muscat
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | | | - Martha A Belury
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
The 'Jekyll and Hyde' of Gluconeogenesis: Early Life Adversity, Later Life Stress, and Metabolic Disturbances. Int J Mol Sci 2021; 22:ijms22073344. [PMID: 33805856 PMCID: PMC8037741 DOI: 10.3390/ijms22073344] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
The physiological response to a psychological stressor broadly impacts energy metabolism. Inversely, changes in energy availability affect the physiological response to the stressor in terms of hypothalamus, pituitary adrenal axis (HPA), and sympathetic nervous system activation. Glucocorticoids, the endpoint of the HPA axis, are critical checkpoints in endocrine control of energy homeostasis and have been linked to metabolic diseases including obesity, insulin resistance, and type 2 diabetes. Glucocorticoids, through the glucocorticoid receptor, activate transcription of genes associated with glucose and lipid regulatory pathways and thereby control both physiological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of glucocorticoid functions in energy metabolism and systemic metabolic dysfunction, particularly focusing on glucose and lipid metabolism. There are elements in the external environment that induce lifelong changes in the HPA axis stress response and glucocorticoid levels, and the most prominent are early life adversity, or exposure to traumatic stress. We hypothesise that when the HPA axis is so disturbed after early life adversity, it will fundamentally alter hepatic gluconeogenesis, inducing hyperglycaemia, and hence crystalise the significant lifelong risk of developing either the metabolic syndrome, or type 2 diabetes. This gives a “Jekyll and Hyde” role to gluconeogenesis, providing the necessary energy in situations of acute stress, but driving towards pathophysiological consequences when the HPA axis has been altered.
Collapse
|