1
|
Chakraborty R, Ray P, Barik S, Banik O, Mahapatra C, Banoth E, Kumar P. A Review on Microengineering of Epithelial Barriers for Biomedical and Pharmaceutical Research. ACS APPLIED BIO MATERIALS 2024; 7:8107-8125. [PMID: 39565389 DOI: 10.1021/acsabm.4c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Epithelial tissue forms a barrier around the human body and visceral organs, providing protection, permeation, sensation, and secretion. It is vital for our sustenance as it protects the tissue from harm and injury by restricting the entry of foreign bodies inside. Furthermore, it is a strong barrier to drugs, nutrients, and other essential deliverables. This layer also houses a large consortium of microbes, which thrive in tandem with human tissue, providing several health benefits. Moreover, the complex interplay of the microbiome with the barrier tissue is poorly understood. Therefore, replicating these barrier tissues on microdevices to generate physiological and pathophysiological models has been a huge interest for researchers over the last few decades. The artificially engineered reconstruction of these epithelial cellular barriers on microdevices could help underpin the host-microbe interaction, generating a physiological understanding of the tissue, tissue remodeling, receptor-based selective diffusion, drug testing, and others. In addition, these devices could reduce the burden of animal sacrifices for similar research and minimize the failure rate in drug discovery due to the use of primary human cells and others. This review discusses the nature of the epithelial barrier at different tissue sites, the recent developments in creating engineered barrier models, and their applications in pathophysiology, host-microbe interactions, drug discovery, and cytotoxicity. The review aims to provide know-how and knowledge behind engineered epithelial barrier tissue to bioengineers, biotechnologists, and scientists in allied fields.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Pragyan Ray
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Swagatika Barik
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Oindrila Banik
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology, Raipur-492010 Chhattisgarh, India
| | - Earu Banoth
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Prasoon Kumar
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
2
|
Hathcock SF, Mamana J, Keyzer TE, Vollmuth N, Shokri MR, Mauser HD, Correll RN, Lam DW, Kim BJ, Sin J. Transcriptomic analysis of coxsackievirus B3 infection in induced pluripotent stem cell-derived brain-like endothelial cells. J Virol 2024:e0182424. [PMID: 39670741 DOI: 10.1128/jvi.01824-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 12/14/2024] Open
Abstract
Viral aseptic meningitis is a neuroinflammatory condition that occurs when viruses gain access to the central nervous system (CNS) and induce inflammation. The blood-brain barrier (BBB) is comprised of brain endothelial cells (BECs) that stringently regulate the passage of molecules, toxins, and pathogens from the circulation into the CNS. Through their unique properties, such as complex tight junctions, reduced rates of endocytosis, expression of efflux transporters, and restricted expression of leukocyte adhesion molecules, the BBB is often able to limit pathogen entry into the brain; however, certain neurotropic pathogens, such as coxsackievirus B3 (CVB3) are able to infect the CNS. We have previously demonstrated that CVB3 can infect and disrupt induced pluripotent stem cell-derived brain-like endothelial cells (iBECs), but the host response to this infection remains unknown. Here, we investigate global host transcriptional changes during CVB3 infection of iBECs using RNA sequencing. We validated our data set by exploring pathways altered by CVB3 using quantitative real-time PCR (qPCR) and enzyme-linked immunosorbent assay of upregulated cytokines and interferon signaling molecules. IMPORTANCE Coxsackievirus B3 (CVB3) is a leading cause of viral aseptic meningitis that can produce severe disease in susceptible individuals. To gain access to the central nervous system, CVB3 must cross central nervous system barriers, such as the blood-brain barrier. Previously, we have shown that CVB3 infects a human stem cell-derived brain-like endothelial cell model. Here, we report the global transcriptome of stem cell-derived brain-like endothelial cells to CVB3 infection and provide proof-of-concept validation of the dataset using molecular biology techniques. These data could inform novel mechanisms of CVB3-mediated blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Sarah F Hathcock
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Julia Mamana
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Taryn E Keyzer
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Nadine Vollmuth
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Mohammad-Reza Shokri
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Henry D Mauser
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Robert N Correll
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Center for Convergent Biosciences and Medicine, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Daryl W Lam
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Brandon J Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Center for Convergent Biosciences and Medicine, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Jon Sin
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
3
|
Brandon KD, Frank WE, Stroka KM. Junctions at the crossroads: the impact of mechanical cues on endothelial cell-cell junction conformations and vascular permeability. Am J Physiol Cell Physiol 2024; 327:C1073-C1086. [PMID: 39129490 PMCID: PMC11481987 DOI: 10.1152/ajpcell.00605.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cells depend on precisely regulating barrier function within the vasculature to maintain physiological stability and facilitate essential substance transport. Endothelial cells achieve this through specialized adherens and tight junction protein complexes, which govern paracellular permeability across vascular beds. Adherens junctions, anchored by vascular endothelial (VE)-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin, claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins, reinforcing intercellular connections essential for barrier selectivity. Endothelial cell-cell junctions exhibit dynamic conformations during development, maturation, and remodeling, regulated by local biochemical and mechanical cues. These structural adaptations play pivotal roles in disease contexts such as chronic inflammation, where junctional remodeling contributes to increased vascular permeability observed in conditions from cancer to cardiovascular diseases. Conversely, the brain microvasculature's specialized junctional arrangements pose challenges for therapeutic drug delivery due to their unique molecular compositions and tight organization. This commentary explores the molecular mechanisms underlying endothelial cell-cell junction conformations and their implications for vascular permeability. By highlighting recent advances in quantifying junctional changes and understanding mechanotransduction pathways, we elucidate how physical forces from cellular contacts and hemodynamic flow influence junctional dynamics.
Collapse
Affiliation(s)
- Ken D Brandon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - William E Frank
- Department of Biology, University of Puerto Rico in Ponce, Ponce, Puerto Rico
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Yan Y, Cho AN. Human Brain In Vitro Model for Pathogen Infection-Related Neurodegeneration Study. Int J Mol Sci 2024; 25:6522. [PMID: 38928228 PMCID: PMC11204318 DOI: 10.3390/ijms25126522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advancements in stem cell biology and tissue engineering have revolutionized the field of neurodegeneration research by enabling the development of sophisticated in vitro human brain models. These models, including 2D monolayer cultures, 3D organoids, organ-on-chips, and bioengineered 3D tissue models, aim to recapitulate the cellular diversity, structural organization, and functional properties of the native human brain. This review highlights how these in vitro brain models have been used to investigate the effects of various pathogens, including viruses, bacteria, fungi, and parasites infection, particularly in the human brain cand their subsequent impacts on neurodegenerative diseases. Traditional studies have demonstrated the susceptibility of different 2D brain cell types to infection, elucidated the mechanisms underlying pathogen-induced neuroinflammation, and identified potential therapeutic targets. Therefore, current methodological improvement brought the technology of 3D models to overcome the challenges of 2D cells, such as the limited cellular diversity, incomplete microenvironment, and lack of morphological structures by highlighting the need for further technological advancements. This review underscored the significance of in vitro human brain cell from 2D monolayer to bioengineered 3D tissue model for elucidating the intricate dynamics for pathogen infection modeling. These in vitro human brain cell enabled researchers to unravel human specific mechanisms underlying various pathogen infections such as SARS-CoV-2 to alter blood-brain-barrier function and Toxoplasma gondii impacting neural cell morphology and its function. Ultimately, these in vitro human brain models hold promise as personalized platforms for development of drug compound, gene therapy, and vaccine. Overall, we discussed the recent progress in in vitro human brain models, their applications in studying pathogen infection-related neurodegeneration, and future directions.
Collapse
Affiliation(s)
- Yuwei Yan
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia;
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ann-Na Cho
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia;
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
5
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
6
|
Peters S, Mohort K, Claus H, Stigloher C, Schubert-Unkmeir A. Interaction of Neisseria meningitidis carrier and disease isolates of MenB cc32 and MenW cc22 with epithelial cells of the nasopharyngeal barrier. Front Cell Infect Microbiol 2024; 14:1389527. [PMID: 38756230 PMCID: PMC11096551 DOI: 10.3389/fcimb.2024.1389527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Neisseria meningitidis (Nm, the meningococcus) is considered an asymptomatic colonizer of the upper respiratory tract and a transient member of its microbiome. It is assumed that the spread of N. meningitidis into the bloodstream occurs via transcytosis of the nasopharyngeal epithelial barrier without destroying the barrier layer. Here, we used Calu-3 respiratory epithelial cells that were grown under air-liquid-interface conditions to induce formation of pseudostratified layers and mucus production. The number of bacterial localizations in the outer mucus, as well as cellular adhesion, invasion and transmigration of different carrier and disease N. meningitidis isolates belonging to MenB:cc32 and MenW:cc22 lineages was assessed. In addition, the effect on barrier integrity and cytokine release was determined. Our findings showed that all strains tested resided primarily in the outer mucus layer after 24 h of infection (>80%). Nonetheless, both MenB:cc32 and MenW:cc22 carrier and disease isolates reached the surface of the epithelial cells and overcame the barrier. Interestingly, we observed a significant difference in the number of bacteria transmigrating the epithelial cell barrier, with the representative disease isolates being more efficient to transmigrate compared to carrier isolates. This could be attributed to the capacity of the disease isolates to invade, however could not be assigned to expression of the outer membrane protein Opc. Moreover, we found that the representative meningococcal isolates tested in this study did not damage the epithelial barrier, as shown by TEER measurement, FITC-dextran permeability assays, and expression of cell-junction components.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Katherina Mohort
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
7
|
Abubaker M, Greaney A, Newport D, Mulvihill JJE. Characterization of primary human leptomeningeal cells in 2D culture. Heliyon 2024; 10:e26744. [PMID: 38434413 PMCID: PMC10906397 DOI: 10.1016/j.heliyon.2024.e26744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Maintaining the integrity of brain barriers is critical for a healthy central nervous system. While extensive research has focused on the blood-brain barrier (BBB) of the brain vasculature and blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus, the barriers formed by the meninges have not received as much attention. These membranes create a barrier between the brain and cerebrospinal fluid (CSF), as well as between CSF and blood. Recent studies have revealed that this barrier has been implicated in the development of neurological and immunological disorders. In order to gain a deeper comprehension of the functioning and significance of the meningeal barriers, sophisticated models of these barriers, need to be created. The aim of this paper is to investigate the characteristics of commercially available primary leptomeningeal cells (LMCs) that form the meningeal barriers, in a cultured environment, including their morphology, proteomics, and barrier properties, and to determine whether passaging of these cells affects their behaviour in comparison to their in vivo state. The results indicate that higher passage numbers significantly alter the morphology and protein localisation and expression of the LMCs. Furthermore, the primary cell culture co-stained for S100A6 and E-cadherin suggesting it is a co-culture of both pial and arachnoid cells. Additionally, cultured LMCs showed an increase in vimentin and cytokeratin expression and a lack of junctional proteins localisation on the cell membrane, which could suggest loss of epithelial properties due to culture, preventing barrier formation. This study shows that the LMCs may be a co-culture of pial and arachnoid cells, that the optimal LMC passage range is between passages two and five for experimentation and that the primary human LMCs form a weak barrier when in culture.
Collapse
Affiliation(s)
- Mannthalah Abubaker
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - Aisling Greaney
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - David Newport
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| |
Collapse
|
8
|
Vollmuth N, Sin J, Kim BJ. Host-microbe interactions at the blood-brain barrier through the lens of induced pluripotent stem cell-derived brain-like endothelial cells. mBio 2024; 15:e0286223. [PMID: 38193670 PMCID: PMC10865987 DOI: 10.1128/mbio.02862-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Microbe-induced meningoencephalitis/meningitis is a life-threatening infection of the central nervous system (CNS) that occurs when pathogens are able to cross the blood-brain barrier (BBB) and gain access to the CNS. The BBB consists of highly specialized brain endothelial cells that exhibit specific properties to allow tight regulation of CNS homeostasis and prevent pathogen crossing. However, during meningoencephalitis/meningitis, the BBB fails to protect the CNS. Modeling the BBB remains a challenge due to the specialized characteristics of these cells. In this review, we cover the induced pluripotent stem cell-derived, brain-like endothelial cell model during host-pathogen interaction, highlighting the strengths and recent work on various pathogens known to interact with the BBB. As stem cell technologies are becoming more prominent, the stem cell-derived, brain-like endothelial cell model has been able to reveal new insights in vitro, which remain challenging with other in vitro cell-based models consisting of primary human brain endothelial cells and immortalized human brain endothelial cell lines.
Collapse
Affiliation(s)
- Nadine Vollmuth
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Brandon J. Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
9
|
Fohmann I, Weinmann A, Schumacher F, Peters S, Prell A, Weigel C, Spiegel S, Kleuser B, Schubert-Unkmeir A. Sphingosine kinase 1/S1P receptor signaling axis is essential for cellular uptake of Neisseria meningitidis in brain endothelial cells. PLoS Pathog 2023; 19:e1011842. [PMID: 38033162 PMCID: PMC10715668 DOI: 10.1371/journal.ppat.1011842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/12/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Invasion of brain endothelial cells (BECs) is central to the pathogenicity of Neisseria meningitidis infection. Here, we established a key role for the bioactive sphingolipid sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) 2 in the uptake process. Quantitative sphingolipidome analyses of BECs infected with N. meningitidis revealed elevated S1P levels, which could be attributed to enhanced expression of the enzyme sphingosine kinase 1 and its activity. Increased activity was dependent on the interaction of meningococcal type IV pilus with the endothelial receptor CD147. Concurrently, infection led to increased expression of the S1PR2. Blocking S1PR2 signaling impaired epidermal growth factor receptor (EGFR) phosphorylation, which has been shown to be involved in cytoskeletal remodeling and bacterial endocytosis. Strikingly, targeting S1PR1 or S1PR3 also interfered with bacterial uptake. Collectively, our data support a critical role of the SphK/S1P/S1PR axis in the invasion of N. meningitidis into BECs, defining a potential target for adjuvant therapy.
Collapse
Affiliation(s)
- Ingo Fohmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alina Weinmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Simon Peters
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
10
|
Mamana J, Humber GM, Espinal ER, Seo S, Vollmuth N, Sin J, Kim BJ. Coxsackievirus B3 infects and disrupts human induced-pluripotent stem cell derived brain-like endothelial cells. Front Cell Infect Microbiol 2023; 13:1171275. [PMID: 37139492 PMCID: PMC10149843 DOI: 10.3389/fcimb.2023.1171275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is a significant human pathogen that is commonly found worldwide. CVB3 among other enteroviruses, are the leading causes of aseptic meningo-encephalitis which can be fatal especially in young children. How the virus gains access to the brain is poorly-understood, and the host-virus interactions that occur at the blood-brain barrier (BBB) is even less-characterized. The BBB is a highly specialized biological barrier consisting primarily of brain endothelial cells which possess unique barrier properties and facilitate the passage of nutrients into the brain while restricting access to toxins and pathogens including viruses. To determine the effects of CVB3 infection on the BBB, we utilized a model of human induced-pluripotent stem cell-derived brain-like endothelial cells (iBECs) to ascertain if CVB3 infection may alter barrier cell function and overall survival. In this study, we determined that these iBECs indeed are susceptible to CVB3 infection and release high titers of extracellular virus. We also determined that infected iBECs maintain high transendothelial electrical resistance (TEER) during early infection despite possessing high viral load. TEER progressively declines at later stages of infection. Interestingly, despite the high viral burden and TEER disruptions at later timepoints, infected iBEC monolayers remain intact, indicating a low degree of late-stage virally-mediated cell death, which may contribute to prolonged viral shedding. We had previously reported that CVB3 infections rely on the activation of transient receptor vanilloid potential 1 (TRPV1) and found that inhibiting TRPV1 activity with SB-366791 significantly limited CVB3 infection of HeLa cervical cancer cells. Similarly in this study, we observed that treating iBECs with SB-366791 significantly reduced CVB3 infection, which suggests that not only can this drug potentially limit viral entry into the brain, but also demonstrates that this infection model could be a valuable platform for testing antiviral treatments of neurotropic viruses. In all, our findings elucidate the unique effects of CVB3 infection on the BBB and shed light on potential mechanisms by which the virus can initiate infections in the brain.
Collapse
Affiliation(s)
- Julia Mamana
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Gabrielle M. Humber
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Eric R. Espinal
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Soojung Seo
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Nadine Vollmuth
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Jon Sin, ; Brandon J. Kim,
| | - Brandon J. Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, AL, United States
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Jon Sin, ; Brandon J. Kim,
| |
Collapse
|