1
|
Endotyping asthma related to three different work exposures. J Allergy Clin Immunol 2021; 148:1072-1080. [PMID: 34331994 DOI: 10.1016/j.jaci.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Work exposures play a significant role in adult-onset asthma, but mechanisms of work-related asthma are not fully elucidated. OBJECTIVE We aimed to reveal the molecular mechanisms of work-related asthma associated with flour (FA), isocyanate (IA) or welding fume (WA) exposures and identify potential biomarkers that distinguish these groups from each other. METHODS We used a combination of clinical tests, transcriptomic analysis and associated pathway analyses to investigate underlying disease mechanisms of the blood immune cells and the airway epithelium of 61 men. RESULTS Compared to the healthy controls, the WA patients had more differentially expressed genes than the FA and IA patients both in the airway epithelia and in the blood immune cells. In the airway epithelia, active inflammation was detected only in WA patients. In contrast, large number of differentially expressed genes were detected in all asthma groups in blood cells. Disease-related immune functions in blood cells were suppressed in all the asthma groups including leukocyte migration and inflammatory responses and decreased expression of upstream cytokines such as TNF and IFNγ. In transcriptome-phenotype correlations, hyperresponsiveness (R∼|0.6|) had the highest clinical relevance and associated with a set of exposure-group specific genes. Finally, biomarker subsets of only 5 genes specifically distinguished each of the asthma exposure group. CONCLUSIONS This study provides novel data on the molecular mechanisms underlying work-related asthma. We identified set of 5 promising biomarkers in asthma related to flour, isocyanate and welding exposure to be tested and clinically validated in future studies.
Collapse
|
2
|
Shahrokhi S, Zavar Reza J, Andishmand S, Momtaz SM, Zare Sakhvidi MJ. Genotoxic evaluation and plasma oxidative stress markers in copper smelters. TOXIN REV 2021. [DOI: 10.1080/15569543.2019.1570940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Samira Shahrokhi
- Occupational Health Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Occupational Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Zavar Reza
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Sode Andishmand
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mojtaba Momtaz
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Zare Sakhvidi
- Occupational Health Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Occupational Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Malekirad AA, Hassani S, Abdollahi M. Oxidative stress and copper smelter workers. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Samulin Erdem J, Arnoldussen YJ, Tajik S, Ellingsen DG, Zienolddiny S. Effects of mild steel welding fume particles on pulmonary epithelial inflammation and endothelial activation. Toxicol Ind Health 2020; 36:995-1001. [PMID: 33025859 PMCID: PMC7756071 DOI: 10.1177/0748233720962685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Welders have an increased risk for cardiovascular disease (CVD) following exposure to welding fumes. The underlying mechanisms are largely unknown; however, oxidative stress, systemic inflammation, and endothelial dysfunction have been suggested as contributing factors to particle-induced CVD. We investigated effects of mild steel welding fume (MSWF) on three target cell types: macrophages, pulmonary epithelial, and vascular endothelial cells. Cells were exposed to MSWF at nontoxic doses for 6 h/day, for five consecutive days. The expression of 40 genes involved in inflammation, fibrosis, and endothelial activation was analyzed. Moreover, changes in the reactive oxygen species production and migration capacity of cells were assessed. The expression of matrix metallopeptidase 1 (MMP1) was induced in both epithelial and endothelial cells following repeated exposure to MSWF. Although MMP1 is important in inflammatory responses in vivo, this effect was not concurrent with changes in the inflammatory status, cell proliferation, and migration capacities, nor did it induce oxidative stress in the cells. Thus, repeated exposure with low doses of MSWF was sufficient neither for inducing inflammatory stress in epithelial cells and macrophages nor for endothelial activation, and higher concentrations of MSWF or the nonparticle fraction of MSWF may be critical in causing the increased risk of CVD observed among welders.
Collapse
Affiliation(s)
| | | | - Sepideh Tajik
- National Institute of Occupational Health, Oslo, Norway
| | | | | |
Collapse
|
5
|
Kodali V, Shoeb M, Meighan TG, Eye T, Friend SA, Hubczak J, Kashon ML, Zeidler-Erdely PC, Antonini JM, Erdely A. Bioactivity of Circulatory Factors After Pulmonary Exposure to Mild or Stainless Steel Welding Fumes. Toxicol Sci 2020; 177:108-120. [PMID: 32514565 DOI: 10.1093/toxsci/kfaa084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies suggest that alterations in circulating factors are a driver of pulmonary-induced cardiovascular dysfunction. To evaluate, if circulating factors effect endothelial function after a pulmonary exposure to welding fumes, an exposure known to induce cardiovascular dysfunction, serum collected from Sprague Dawley rats 24 h after an intratracheal instillation exposure to 2 mg/rat of 2 compositionally distinct metal-rich welding fume particulates (manual metal arc welding using stainless steel electrodes [MMA-SS] or gas metal arc welding using mild steel electrodes [GMA-MS]) or saline was used to test molecular and functional effects of in vitro cultures of primary cardiac microvascular endothelial cells (PCMEs) or ex vivo organ cultures. The welding fumes elicited significant pulmonary injury and inflammation with only minor changes in measured serum antioxidant and cytokine levels. PCME cells were challenged for 4 h with serum collected from exposed rats, and 84 genes related to endothelial function were analyzed. Changes in relative mRNA patterns indicated that serum from rats exposed to MMA-SS, and not GMA-MS or PBS, could influence several functional aspects related to endothelial cells, including cell migration, angiogenesis, inflammation, and vascular function. The predictions were confirmed using a functional in vitro assay (scratch assay) as well as an ex vivo multicellular environment (aortic ring angiogenesis assay), validating the concept that endothelial cells can be used as an effective screening tool of exposed workers for determining bioactivity of altered circulatory factors. Overall, the results indicate that pulmonary MMA-SS fume exposure can cause altered endothelial function systemically via altered circulating factors.
Collapse
Affiliation(s)
- Vamsi Kodali
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Mohammad Shoeb
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Terence G Meighan
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Tracy Eye
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Sherri A Friend
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - John Hubczak
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Michael L Kashon
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | | | - James M Antonini
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| | - Aaron Erdely
- Health Effects Laboratory Division, NIOSH, Morgantown, West Virginia 26505-2888
| |
Collapse
|
6
|
Schubauer-Berigan MK, Dahm MM, Toennis CA, Sammons DL, Eye T, Kodali V, Zeidler-Erdely PC, Erdely A. Association of occupational exposures with ex vivo functional immune response in workers handling carbon nanotubes and nanofibers. Nanotoxicology 2020; 14:404-419. [PMID: 32031476 PMCID: PMC7121920 DOI: 10.1080/17435390.2020.1717007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/12/2019] [Accepted: 01/11/2020] [Indexed: 12/19/2022]
Abstract
The objective of this study was to evaluate the association between carbon nanotube and nanofiber (CNT/F) exposure and ex vivo responses of whole blood challenged with secondary stimulants, adjusting for potential confounders, in a cross-sectional study of 102 workers. Multi-day exposure was measured by CNT/F structure count (SC) and elemental carbon (EC) air concentrations. Demographic, lifestyle and other occupational covariate data were obtained via questionnaire. Whole blood collected from each participant was incubated for 18 hours with and without two microbial stimulants (lipopolysaccharide/LPS and staphylococcal enterotoxin type B/SEB) using TruCulture technology to evaluate immune cell activity. Following incubation, supernatants were preserved and analyzed for protein concentrations. The stimulant:null response ratio for each individual protein was analyzed using multiple linear regression, followed by principal component (PC) analysis to determine whether patterns of protein response were related to CNT/F exposure. Adjusting for confounders, CNT/F metrics (most strongly, the SC-based) were significantly (p < 0.05) inversely associated with stimulant:null ratios of several individual biomarkers: GM-CSF, IFN-γ, interleukin (IL)-2, IL-4, IL-5, IL-10, IL-17, and IL-23. CNT/F metrics were significantly inversely associated with PC1 (a weighted mean of most biomarkers, explaining 25% of the variance in the protein ratios) and PC2 (a biomarker contrast, explaining 14%). Among other occupational exposures, only solvent exposure was significant (inversely related to PC2). CNT/F exposure metrics were uniquely related to stimulant responses in challenged whole blood, illustrating reduced responsiveness to a secondary stimulus. This approach, if replicated in other exposed populations, may present a relatively sensitive method to evaluate human response to CNT/F or other occupational exposures.
Collapse
Affiliation(s)
- Mary K. Schubauer-Berigan
- National Institute for Occupational Safety and Health (NIOSH) Division of Field Studies and Engineering, Cincinnati, OH, USA
- Current address: International Agency for Research on Cancer, Evidence Synthesis and Classification Section; Lyon, France
| | - Matthew M. Dahm
- National Institute for Occupational Safety and Health (NIOSH) Division of Field Studies and Engineering, Cincinnati, OH, USA
| | | | | | - Tracy Eye
- NIOSH Health Effects Laboratory Division, Morgantown, WV, USA
| | - Vamsi Kodali
- NIOSH Health Effects Laboratory Division, Morgantown, WV, USA
| | | | - Aaron Erdely
- NIOSH Health Effects Laboratory Division, Morgantown, WV, USA
| |
Collapse
|
7
|
Berlinger B, Skogen U, Meijer C, Thomassen Y. Workplace exposure to particulate matter, bio-accessible, and non-soluble metal compounds during hot work processes. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:378-386. [PMID: 30985261 DOI: 10.1080/15459624.2019.1594841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
While exposure to air contaminants from metal arc welding at workplaces has been intensively investigated over the last five decades, other hot work processes, such as flame and plasma cutting, air carbon arc gouging, and surface grinding have not received as much attention. Exposures to particulate matter (PM) during selected hot work processes, such as metal active gas (MAG) and manual metal arc (MMA) welding, flame and plasma cutting, air carbon arc gouging, and surface grinding were measured. Respirable, inhalable, and "total" fractions of the PM were collected with different air samplers in the workers' breathing zone. Concentrations of PM, chromium (Cr), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), copper (Cu), and lead (Pb) were determined in the samples by using gravimetric analysis and plasma-based analytical atomic spectrometry techniques. Bio-accessibility of the elements was investigated by using a synthetic lung lining fluid (Hatch´s solution) for the leaching of soluble metal compounds in the collected samples. Short term (15-75 min) workplace air concentrations of PM, Cr, Fe, Mn, Ni and Cu in the workers´ breathing zone during hot work processes were found to be high compared to the current 8-hr time-weighted average (TWA) exposure limit values (ELVs) in use in many countries. The short-term median concentrations of PM during the different hot work processes varied between 6.0 and 88.7 mg m-3 and between 15.1 and 193 mg m-3 in the respirable and inhalable fractions, respectively. The highest median concentration of Fe (107 mg m-3) and Mn (28.7 mg m-3) was found in the inhalable fraction during plasma cutting and air carbon arc gouging, respectively. More than 40% of the inhalable PM generated during flame and plasma cutting, air carbon arc gouging and surface grinding was present in the respirable fraction. There was large variation in the bio-accessibility of the elements in PM collected during the different hot work processes.
Collapse
Affiliation(s)
- Balázs Berlinger
- a Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Ulf Skogen
- b Bedriftshelsen AS , Porsgrunn , Norway
| | | | - Yngvar Thomassen
- a Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| |
Collapse
|
8
|
Berlinger B, Weinbruch S, Ellingsen DG, Zibarev E, Chashchin V, Chashchin M, Thomassen Y. On the bio-accessibility of 14 elements in welding fumes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:497-505. [PMID: 30788473 DOI: 10.1039/c8em00425k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The bio-accessibility of 14 elements in welding fume particulate matter was investigated in 325 personal air samples collected during welding in two shipyards and one factory producing heavy machinery. The apparent solubility in a synthetic lung lining fluid (Hatch's solution) was used as proxy for the bio-accessibility. The Hatch solubility of the different elements was highly variable with a median < 1% for Al, Fe, Pb, Ti, between 4 and 6% for Co, Cr, Ni, V, W, between 13 and 27% for Cd, Cu, Mn, Zn, and 41% for Mo. For many elements, the solubility varied over a wide range of several tens of percent. The welding techniques used influenced the solubility of Co, Cr, Cu, Mn and V significantly. The plants investigated (i.e., the welded materials and used electrodes) had a significant influence on the solubility of Co, Cr, Cu, Mn, Mo, V and W. According to principal component analysis (PCA), the variation in solubility can be described by four components, which explain 69% of the variance. The first principal component mostly comprises elements that can predominantly occur as divalent cations, the second principal component elements often forming oxyanions. The principal components are independent of the absolute value of the Hatch solubility. The results of PCA indicate that the co-variation of Hatch solubility is mainly controlled by the most soluble compounds in contrast to the absolute value of apparent solubility, which is strongly influenced by the distribution of the elements between compounds with different equilibrium solubilities. The observed large variability and the significant differences between welding techniques and plants clearly show that the bio-accessibility cannot be obtained from the literature but has to be studied experimentally at each location of interest.
Collapse
Affiliation(s)
- Balázs Berlinger
- National Institute of Occupational Health, PO Box 5330 Majorstuen, N-0304 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
9
|
Effect of Age, High-Fat Diet, and Rat Strain on Serum Biomarkers and Telomere Length and Global DNA Methylation in Peripheral Blood Mononuclear Cells. Sci Rep 2019; 9:1996. [PMID: 30760804 PMCID: PMC6374545 DOI: 10.1038/s41598-018-38192-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
The objective of the current study was to determine if age, diet, and genetic disposition (animal strain) in an animal model had early effects on specific molecular markers in circulating peripheral blood mononuclear cells (PBMCs). Three strains [Sprague-Dawley (SD), Fischer 344 (F344), and Brown-Norway (BN)] of male rats were maintained on a high-fat (HF) or regular diet. Blood was collected at 4, 12, and 24 wk to assess chemistry and to recover PBMCs. Triglycerides and body weight gain increased at all time points in the HF diet group for each strain. Telomere length in PBMCs decreased in the HF diet group compared to the regular diet group up to 24 wk in all strains. Telomere length decreased in PBMCs at 24 wk compared to baseline in all strains, indicating an age-related effect. These findings highlight that diet and age cause changes in PBMCs recovered from different strains of rats. The next tier of studies will examine the contribution of an occupational exposure (e.g., welding fume inhalation) in combination with diet, age, and strain, to assess changes in the molecular responses of isolated PBMCs. In addition, studies involving lifestyle exposure (e.g., tobacco smoke) are in the planning stages and will assess the long-term effects of exposure in our animal model.
Collapse
|
10
|
Audureau É, Simon-Deckers A, Franco-Montoya ML, Annangi B, Kermanizadeh A, Boczkowski J, Lanone S. Substantial modification of the gene expression profile following exposure of macrophages to welding-related nanoparticles. Sci Rep 2018; 8:8554. [PMID: 29867105 PMCID: PMC5986907 DOI: 10.1038/s41598-018-26988-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/21/2018] [Indexed: 11/09/2022] Open
Abstract
Anthropic nanoparticles (NP) are increasingly produced and emitted, with accompanying concerns for human health. Currently there is no global understanding as to the exact mechanistics of NP toxicity, as the traditional nanotoxicological approaches only provide a restricted overview. To address this issue, we performed an in-depth transcriptomic analysis of human macrophages exposed to a panel of welding-related metal oxide NP that we previously identified in welders lungs (Fe2O3, Fe3O4, MnFe2O4 and CrOOH NP). Utilizing the specified analysis criteria (|fold change| ≥1.5, p ≤ 0.001), a total of 2164 genes were identified to be differentially expressed after THP-1 macrophage exposure to the different NP. Performing Gene Ontology enrichment analysis, for cellular content, biological processes and Swiss-Prot/Protein Information Resource keywords the data show for the first time a profound modification of gene differential expression in response to the different NP, among which MnFe2O4 NP were the most potent to induce THP-1 macrophage activation. The transcriptomic analysis utilized in the study, provides novel insights into mechanisms that could contribute to NP-induced adverse effects and support the need for widened approaches to supplement existing knowledge of the processes underlying NP toxicity which would have not been possible using traditional nanotoxicological studies.
Collapse
Affiliation(s)
- Étienne Audureau
- Université Paris Est-Créteil, DHU A-TVB, IRMB- EA 7376 CEpiA (Clinical Epidemiology And Ageing Unit), Créteil, F-94010, France.,AP-HP, Hôpital Henri-Mondor, Service de Santé Publique, Créteil, F-94010, France
| | | | | | | | - Ali Kermanizadeh
- INSERM, U955, Equipe 4, Créteil, F-94000, France.,University of Copenhagen, Department of Public Health, Copenhagen, Denmark
| | - Jorge Boczkowski
- INSERM, U955, Equipe 4, Créteil, F-94000, France.,Université Paris Est-Créteil, Faculté de Médecine, Créteil, F-94000, France.,DHU A-TVB, Service d'explorations fonctionnelles respiratoires, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, F-94000, France
| | - Sophie Lanone
- INSERM, U955, Equipe 4, Créteil, F-94000, France. .,Université Paris Est-Créteil, Faculté de Médecine, Créteil, F-94000, France.
| |
Collapse
|
11
|
Ali N, Ljunggren S, Karlsson HM, Wierzbicka A, Pagels J, Isaxon C, Gudmundsson A, Rissler J, Nielsen J, Lindh CH, Kåredal M. Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix. Clin Proteomics 2018; 15:20. [PMID: 29760600 PMCID: PMC5946400 DOI: 10.1186/s12014-018-9196-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epidemiological studies have shown that many welders experience respiratory symptoms. During the welding process a large number of airborne nanosized particles are generated, which might be inhaled and deposited in the respiratory tract. Knowledge of the underlying mechanisms behind observed symptoms is still partly lacking, although inflammation is suggested to play a central role. The aim of this study was to investigate the effects of welding fume particle exposure on the proteome expression level in welders suffering from respiratory symptoms, and changes in protein mediators in nasal lavage samples were analyzed. Such mediators will be helpful to clarify the pathomechanisms behind welding fume particle-induced effects. METHODS In an exposure chamber, 11 welders with work-related symptoms in the lower airways during the last month were exposed to mild-steel welding fume particles (1 mg/m3) and to filtered air, respectively, in a double-blind manner. Nasal lavage samples were collected before, immediately after, and the day after exposure. The proteins in the nasal lavage were analyzed with two different mass spectrometry approaches, label-free discovery shotgun LC-MS/MS and a targeted selected reaction monitoring LC-MS/MS analyzing 130 proteins and four in vivo peptide degradation products. RESULTS The analysis revealed 30 significantly changed proteins that were associated with two main pathways; activation of acute phase response signaling and activation of LXR/RXR, which is a nuclear receptor family involved in lipid signaling. Connective tissue proteins and proteins controlling the degradation of such tissues, including two different matrix metalloprotease proteins, MMP8 and MMP9, were among the significantly changed enzymes and were identified as important key players in the pathways. CONCLUSION Exposure to mild-steel welding fume particles causes measurable changes on the proteome level in nasal lavage matrix in exposed welders, although no clinical symptoms were manifested. The results suggested that the exposure causes an immediate effect on the proteome level involving acute phase proteins and mediators regulating lipid signaling. Proteases involved in maintaining the balance between the formation and degradation of extracellular matrix proteins are important key proteins in the induced effects.
Collapse
Affiliation(s)
- Neserin Ali
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Helen M. Karlsson
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Aneta Wierzbicka
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Joakim Pagels
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Christina Isaxon
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Anders Gudmundsson
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Jenny Rissler
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Jörn Nielsen
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Xu Y, Li H, Hedmer M, Hossain MB, Tinnerberg H, Broberg K, Albin M. Occupational exposure to particles and mitochondrial DNA - relevance for blood pressure. Environ Health 2017; 16:22. [PMID: 28274239 PMCID: PMC5343309 DOI: 10.1186/s12940-017-0234-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/03/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Particle exposure is a risk factor for cardiovascular diseases. Mitochondrial DNA (mtDNA) is a primary target for oxidative stress generated by particle exposure. We aimed to elucidate the effects of occupational exposure to particle-containing welding fumes on different biomarkers of mtDNA function, and in turn, explore if they modify the association between particle exposure and cardiovascular response, measured as blood pressure. METHODS We investigated 101 welders and 127 controls (all non-smoking males) from southern Sweden. Personal sampling of the welders' exposure to respirable dust was performed during work hours (average sampling time: 6.8 h; range: 2.4-8.6 h) and blood pressure was measured once for each subject. We measured relative mtDNA copy number by quantitative PCR and methylation of the mitochondrial regulatory region D-loop and the tRNA encoding gene MT-TF by bisulfite-pyrosequencing. We calculated the relative number of unmethylated D-loop and MT-TF as markers of mtDNA function to explore the modification of mtDNA on the association between particle exposure and blood pressure. General linear models were used for statistical analyses. RESULTS Welders had higher mtDNA copy number (β = 0.11, p = 0.003) and lower DNA methylation of D-loop (β = -1.4, p = 0.002) and MT-TF (β = -1.5, p = 0.004) than controls. Higher mtDNA copy number was weakly associated with higher personal respirable dust exposure among welders with exposure level above 0.7 mg/m3 (β = 0.037, p = 0.054). MtDNA function modified the effect of welding fumes on blood pressure: welders with low mtDNA function had higher blood pressure than controls, while no such difference was found in the group with high mtDNA function. CONCLUSION Increased mtDNA copy number and decreased D-loop and MT-TF methylation were associated with particle-containing welding fumes exposure, indicating exposure-related oxidative stress. The modification of mtDNA function on exposure-associated increase in blood pressure may represent a mitochondria-environment interaction.
Collapse
Affiliation(s)
- Yiyi Xu
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, 221 85 Lund, Sweden
| | - Huiqi Li
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, 221 85 Lund, Sweden
| | - Maria Hedmer
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, 221 85 Lund, Sweden
| | - Mohammad Bakhtiar Hossain
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, 221 85 Lund, Sweden
| | - Håkan Tinnerberg
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, 221 85 Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, 221 85 Lund, Sweden
- Unit of Metals & Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Laboratory Medicine, Lund University, 221 85 Lund, Sweden
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
13
|
Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci U S A 2017; 114:E1968-E1976. [PMID: 28223486 DOI: 10.1073/pnas.1616070114] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) causes indirect systemic inflammation through unknown pathways. MWCNTs translocate only minimally from the lungs into the systemic circulation, suggesting that extrapulmonary toxicity may be caused indirectly by lung-derived factors entering the circulation. To assess a role for MWCNT-induced circulating factors in driving neuroinflammatory outcomes, mice were acutely exposed to MWCNTs (10 or 40 µg/mouse) via oropharyngeal aspiration. At 4 h after MWCNT exposure, broad disruption of the blood-brain barrier (BBB) was observed across the capillary bed with the small molecule fluorescein, concomitant with reactive astrocytosis. However, pronounced BBB permeation was noted, with frank albumin leakage around larger vessels (>10 µm), overlain by a dose-dependent astroglial scar-like formation and recruitment of phagocytic microglia. As affirmed by elevated inflammatory marker transcription, MWCNT-induced BBB disruption and neuroinflammation were abrogated by pretreatment with the rho kinase inhibitor fasudil. Serum from MWCNT-exposed mice induced expression of adhesion molecules in primary murine cerebrovascular endothelial cells and, in a wound-healing in vitro assay, impaired cell motility and cytokinesis. Serum thrombospondin-1 level was significantly increased after MWCNT exposure, and mice lacking the endogenous receptor CD36 were protected from the neuroinflammatory and BBB permeability effects of MWCNTs. In conclusion, acute pulmonary exposure to MWCNTs causes neuroinflammatory responses that are dependent on the disruption of BBB integrity.
Collapse
|
14
|
Shoeb M, Kodali VK, Farris BY, Bishop LM, Meighan TG, Salmen R, Eye T, Friend S, Schwegler-Berry D, Roberts JR, Zeidler-Erdely PC, Erdely A, Antonini JM. Oxidative Stress, DNA Methylation, and Telomere Length Changes in Peripheral Blood Mononuclear Cells after Pulmonary Exposure to Metal-Rich Welding Nanoparticles. NANOIMPACT 2017; 5:61-69. [PMID: 30734006 PMCID: PMC6363128 DOI: 10.1016/j.impact.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Welding fume is a complex mixture of different potentially cytotoxic and genotoxic metals, such as chromium (Cr), manganese (Mn), nickel (Ni), and iron (Fe). Documented health effects have been observed in workers exposed to welding fume. The objective of the study was to use an animal model to identify potential biomarkers of epigenetic changes (e.g., changes in telomere length, DNA methylation) in isolated peripheral blood mononuclear cells (PBMCs) after exposure to different welding fumes. Male Sprague-Dawley rats were exposed by intratracheal instillation (ITI) of 2.0 mg/rat of gas metal arc-mild steel (GMA-MS) or manual metal arc-stainless steel (MMA-SS) welding fume. Vehicle controls received sterile saline by ITI. At 4 h, 14 h, 1 d, 3 d, 10 d, and 30 d, bronchoalveolar lavage (BAL) was performed to assess lung inflammation. Whole blood was collected, and PBMCs were isolated. Dihydroethidium (DHE) fluorescence and 4-hydroxylnonenal protein adduct (P-HNE) formation were measured in PBMCs to assess reactive oxygen species (ROS) production. DNA alterations in PBMCs were determined by evaluating changes in DNA methylation and telomere length. Metal composition of the two fumes was different: MMA-SS (41 % Fe, 29 % Cr, 17 % Mn, 3 % Ni) versus GMA-MS (85 % Fe, 14 % Mn). The more soluble and chemically complex MMA-SS sample induced a more persistent and greater inflammatory response compared to the other groups. Also, oxidative stress markers increased at 24 h in the PBMCs recovered from the MMA-SS group compared to other group. No significant differences were observed when comparing DNA methylation between the welding fume and control groups at any of the time points, whereas the MMA-SS sample significantly increased telomere length at 1 and 30 d after a single exposure compared to the other groups. These findings suggest that genotoxic metals in MMA-SS fume (e.g., Cr and Ni), that are absent in the GMA-MS fume, may enhance lung toxicity, as well as induce markers of oxidative stress and increase telomere length in PBMCs. Importantly, the measurement of telomere length in cells isolated from peripheral blood may serve as a potential biomarker of response in the assessment of toxicity associated with welding fumes.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Vamsi K Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Breanne Y Farris
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Lindsey M Bishop
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Terence G Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Rebecca Salmen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Tracy Eye
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Diane Schwegler-Berry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| |
Collapse
|
15
|
Graczyk H, Lewinski N, Zhao J, Sauvain JJ, Suarez G, Wild P, Danuser B, Riediker M. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study. Part Fibre Toxicol 2016; 13:31. [PMID: 27286820 PMCID: PMC4901438 DOI: 10.1186/s12989-016-0143-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/03/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders. METHODS Twenty non-smoking male welding apprentices were exposed to TIG welding fumes for 60 min under controlled, well-ventilated settings. Exhaled breathe condensate (EBC), blood and urine were collected before exposure, immediately after exposure, 1 h and 3 h post exposure. Volunteers participated in a control day to account for oxidative stress fluctuations due to circadian rhythm. Biological liquids were assessed for total reducing capacity, hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations at each time point. A linear mixed model was used to assess within day and between day differences. RESULTS Significant increases in the measured biomarkers were found at 3 h post exposure. At 3 h post exposure, we found a 24 % increase in plasma-H2O2 concentrations ([95%CI: 4 % to 46 %], p = 0.01); a 91 % increase in urinary-H2O2 ([2 % to 258 %], p = 0.04); a 14 % increase in plasma-8-OHdG ([0 % to 31 %], p = 0.049); and a 45 % increase in urinary-8-OHdG ([3 % to 105 %], p = 0.03). Doubling particle number concentration (PNC) exposure was associated with a 22 % increase of plasma-8-OHdG at 3 h post exposure (p = 0.01). CONCLUSION A 60-min exposure to TIG welding fume in a controlled, well-ventilated setting induced acute oxidative stress at 3 h post exposure in healthy, non-smoking apprentice welders not chronically exposed to welding fumes. As mass concentration of TIG welding fume particles is very low when compared to other types of welding, it is recommended that additional exposure metrics such as PNC are considered for occupational risk assessments. Our findings highlight the importance of increasing awareness of TIG welding fume toxicity, especially given the realities of welding workplaces that may lack ventilation; and beliefs among interviewed welders that TIG represents a cleaner and safer welding process.
Collapse
Affiliation(s)
- Halshka Graczyk
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Nastassja Lewinski
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jiayuan Zhao
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA, 02115, USA
| | - Jean-Jacques Sauvain
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Guillaume Suarez
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Pascal Wild
- Department of Scientific Management, National Institute for Research and Security, INRS, Vandoeuvre, 54500, France
| | - Brigitta Danuser
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Michael Riediker
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland. .,SAFENANO, IOM Singapore, Singapore, 048622, Singapore.
| |
Collapse
|
16
|
Marongiu A, Hasan O, Ali A, Bakhsh S, George B, Irfan N, Minelli C, Canova C, Schofield S, De Matteis S, Cullinan P. Are welders more at risk of respiratory infections? Findings from a cross-sectional survey and analysis of medical records in shipyard workers: the WELSHIP project. Thorax 2016; 71:601-6. [DOI: 10.1136/thoraxjnl-2015-207912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/04/2016] [Indexed: 11/04/2022]
|