1
|
Qamar W, Gulia S, Athar M, Ahmad R, Imam MT, Chandra P, Singh BP, Haque R, Hassan MI, Rahman S. An insight into impact of nanomaterials toxicity on human health. PeerJ 2024; 12:e17807. [PMID: 39364370 PMCID: PMC11448750 DOI: 10.7717/peerj.17807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/03/2024] [Indexed: 10/05/2024] Open
Abstract
In recent years, advances in nanotechnology have significantly influenced electronics manufacturing, industrial processes, and medical research. Various industries have seen a surge in the use of nanomaterials. However, several researchers have raised the alarm about the toxicological nature of nanomaterials, which appear to be quite different from their crude forms. This altered nature can be attributed to their unique physicochemical profile. They can adversely affect human health and the environment. Nanomaterials that have been released into the environment tend to accumulate over time and can cause a significant impact on the ecosystem and organisms with adverse health effects. Increased use of nanoparticles has led to increased human exposure in their daily lives, making them more vulnerable to nanoparticle toxicity. Because of their small size, nanomaterials can readily cross biological membranes and enter cells, tissues, and organs. Therefore, the effect of nanomaterials on the human environment is of particular concern. The toxicological effects of nanomaterials and their mechanisms of action are being researched worldwide. Technological advances also support monitoring new nanomaterials marketed for industrial and household purposes. It is a challenging area because of the exceptional physicochemical properties of nanomaterials. This updated review focuses on the diverse toxicological perspective of nanomaterials. We have discussed the use of different types of nanoparticles and their physiochemical properties responsible for toxicity, routes of exposure, bio-distribution, and mechanism of toxicity. The review also includes various in vivo and in vitro methods of assessing the toxicity of nanomaterials. Finally, this review will provide a detailed insight into nano material-induced toxicological response, which can be beneficial in designing safe and effective nanoparticles.
Collapse
Affiliation(s)
- Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shweta Gulia
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Mohammad Athar
- Department of Medical Genetics, Umm Al-Qura University, Makkah, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbandhu College, University of Delhi, New Delhi, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
2
|
Domenech J, Villacorta A, Ferrer JF, Llorens-Chiralt R, Marcos R, Hernández A, Catalán J. In vitro cell-transforming potential of secondary polyethylene terephthalate and polylactic acid nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134030. [PMID: 38493621 DOI: 10.1016/j.jhazmat.2024.134030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Continuous exposure to plastic pollutants may have serious consequences on human health. However, most toxicity assessments focus on non-environmentally relevant particles and rarely investigate long-term effects such as cancer induction. The present study assessed the carcinogenic potential of two secondary nanoplastics: polyethylene terephthalate (PET) particles generated from plastic bottles, and a biodegradable polylactic acid material, as respective examples of environmentally existing particles and new bioplastics. Pristine polystyrene nanoplastics were also included for comparison. A broad concentration range (6.25-200 μg/mL) of each nanoplastic was tested in both the initiation and promotion conditions of the regulatory assessment-accepted in vitro Bhas 42 cell transformation assay. Parallel cultures allowed confirmation of the efficient cellular internalisation of the three nanoplastics. Cell growth was enhanced by polystyrene in the initiation assay, and by PET in both conditions. Moreover, the number of transformed foci was significantly increased only by the highest PET concentration in the promotion assay, which also showed dose-dependency, indicating that nano PET can act as a non-genotoxic tumour promotor. Together, these findings support the carcinogenic risk assessment of nanoplastics and raise concerns regarding whether real-life co-exposure of PET nanoplastics and other environmental pollutants may result in synergistic transformation capacities.
Collapse
Affiliation(s)
- Josefa Domenech
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Aliro Villacorta
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | | | | | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
3
|
de Souza AM, Dantas MRDN, Secundo EL, Silva EDC, Silva PF, Moreira SMG, de Medeiros SRB. Are hydroxyapatite-based biomaterials free of genotoxicity? A systematic review. CHEMOSPHERE 2024; 352:141383. [PMID: 38360416 DOI: 10.1016/j.chemosphere.2024.141383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Hydroxyapatite (HA) is a biomaterial widely used in clinical applications and pharmaceuticals. The literature on HA-based materials studies is focused on chemical characterization and biocompatibility. Generally, biocompatibility is analyzed through adhesion, proliferation, and differentiation assays. Fewer studies are looking for genotoxic events. Thus, although HA-based biomaterials are widely used as biomedical devices, there is a lack of literature regarding their genotoxicity. This systematic review was carried out following the PRISMA statement. Specific search strategies were developed and performed in four electronic databases (PubMed, Science Direct, Scopus, and Web of Science). The search used "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND genotoxicity OR genotoxic OR DNA damage" and "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND mutagenicity OR mutagenic OR DNA damage" as keywords and articles published from 2000 to 2022, after removing duplicate studies and apply include and exclusion criteria, 53 articles were identified and submitted to a qualitative descriptive analysis. Most of the assays were in vitro and most of the studies did not show genotoxicity. In fact, a protective effect was observed for hydroxyapatites. Only 20 out of 71 tests performed were positive for genotoxicity. However, no point mutation-related mutagenicity was observed. As the genotoxicity of HA-based biomaterials observed was correlated with its nanostructured forms as needles or rods, it is important to follow their effect in chronic exposure to guarantee safe usage in humans.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Estefânia Lins Secundo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Elisângela da Costa Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Priscila Fernandes Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
4
|
Doak SH, Andreoli C, Burgum MJ, Chaudhry Q, Bleeker EAJ, Bossa C, Domenech J, Drobne D, Fessard V, Jeliazkova N, Longhin E, Rundén-Pran E, Stępnik M, El Yamani N, Catalán J, Dusinska M. Current status and future challenges of genotoxicity OECD Test Guidelines for nanomaterials: a workshop report. Mutagenesis 2023; 38:183-191. [PMID: 37234002 PMCID: PMC10448853 DOI: 10.1093/mutage/gead017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Genotoxicity testing for nanomaterials remains challenging as standard testing approaches require some adaptation, and further development of nano-specific OECD Test Guidelines (TGs) and Guidance Documents (GDs) are needed. However, the field of genotoxicology continues to progress and new approach methodologies (NAMs) are being developed that could provide relevant information on the range of mechanisms of genotoxic action that may be imparted by nanomaterials. There is a recognition of the need for implementation of new and/or adapted OECD TGs, new OECD GDs, and utilization of NAMs within a genotoxicity testing framework for nanomaterials. As such, the requirements to apply new experimental approaches and data for genotoxicity assessment of nanomaterials in a regulatory context is neither clear, nor used in practice. Thus, an international workshop with representatives from regulatory agencies, industry, government, and academic scientists was convened to discuss these issues. The expert discussion highlighted the current deficiencies that exist in standard testing approaches within exposure regimes, insufficient physicochemical characterization, lack of demonstration of cell or tissue uptake and internalization, and limitations in the coverage of genotoxic modes of action. Regarding the latter aspect, a consensus was reached on the importance of using NAMs to support the genotoxicity assessment of nanomaterials. Also highlighted was the need for close engagement between scientists and regulators to (i) provide clarity on the regulatory needs, (ii) improve the acceptance and use of NAM-generated data, and (iii) define how NAMs may be used as part of weight of evidence approaches for use in regulatory risk assessments.
Collapse
Affiliation(s)
- Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Singelton Park, Swansea, SA2 8PP Wales, United Kingdom
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michael J Burgum
- Institute of Life Science, Swansea University Medical School, Singelton Park, Swansea, SA2 8PP Wales, United Kingdom
| | - Qasim Chaudhry
- University of Chester, Parkgate Road, Chester, United Kingdom
| | - Eric A J Bleeker
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Cecilia Bossa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Josefa Domenech
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecan pot 111, 1000 Ljubljana, Slovenia
| | - Valérie Fessard
- ANSES French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10b rue Claude Bourgelat, Fougères 35306, France
| | | | - Eleonora Longhin
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | | | - Naouale El Yamani
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
- Department of Anatomy, Embryology, and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| |
Collapse
|
5
|
Sun N, Zhang X, Liang C, Liu H, Zhi Y, Fang J, Wang H, Yu Z, Jia X. Genotoxicity assessment of titanium dioxide nanoparticles using a standard battery of in vivo assays. Nanotoxicology 2023; 17:497-510. [PMID: 37840287 DOI: 10.1080/17435390.2023.2265467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
As one representative of nanometal oxides, titanium dioxide nanoparticles (TiO2-NPs) have been widely used, particularly in the food industry. The genotoxicity of TiO2-NPs has attracted great attention over the years. This study was undertaken to investigate the chromosome and DNA damage effects of TiO2-NPs (0, 50, 150, and 500 mg/kg BW) using rodent models. After a comprehensive characterization, we conducted a standard battery of in vivo genotoxicity tests, including the chromosomal aberration test (CA), micronucleus (MN) test, and the comet test. The results of all these tests were negative. There were no structural or numerical chromosomal abnormalities in mice bone marrow cells, no increase in the frequency of micronucleated polychromatic erythrocytes in mice bone marrow cells, and no elevation in % tail DNA in rat hepatocytes. This indicated that TiO2-NPs did not cause chromosomal damage or have a direct impact on DNA. These findings suggested that TiO2-NPs did not exhibit genotoxicity and provided valuable data for risk assessment purposes.
Collapse
Affiliation(s)
- Nana Sun
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaopeng Zhang
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Chunlai Liang
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Haibo Liu
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yuan Zhi
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jin Fang
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Huiling Wang
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhou Yu
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
6
|
Enzymatic Hydrolysis of Rutin: Evaluation of Kinetic Parameters and Anti-Proliferative, Mutagenic and Anti-Mutagenic Effects. Life (Basel) 2023; 13:life13020549. [PMID: 36836907 PMCID: PMC9967632 DOI: 10.3390/life13020549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The bioavailability of glucoside flavonoids is influenced by the nature of the sugar, glucosides being absorbed faster than rhamnoglucosides, for example. One strategy to enhance the bioavailability is enzymatic hydrolysis. In this study, some kinetic parameters of hesperidinase-mediated hydrolysis of rutin were evaluated using an UHPLC/QTOF-MSE analysis of the products of a bioconversion reaction. The resulting hydrolyzed rutins (after 4, 8 and 12 h of reaction) were submitted to anti-proliferative and Cytokinesis-Block Micronucleus (CBMN) assays in CHO-K1 cells. In the hesperidinase-mediated hydrolysis, the final concentration of quercetin-3-O-glucoside (Q3G) was directly proportional to the rutin concentration and inversely proportional to the reaction time. At an anti-proliferative concentration (2.5 μg/mL), hydrolyzed rutin derivatives did not show a mutagenic effect, except for the sample with a higher content of Q3G (after 4 h of the enzymatic hydrolysis of rutin). Moreover, the higher Q3G content in hydrolyzed rutin protected the CHO-K1 cells 92% of the time against methyl methanesulfonate-induced mutagenic damage. These results suggested that the anti-mutagenic effect of hydrolyzed rutin might be related to antioxidant and cell death induction. Presenting a good lipophilicity/hydrophilicity ratio, together with antioxidant and anti-mutagenic activities, the hesperidinase-mediated hydrolyzed rutin seemed to be a promisor raw material for the development of food supplements.
Collapse
|
7
|
Siivola KM, Burgum MJ, Suárez-Merino B, Clift MJD, Doak SH, Catalán J. Correction: a systematic quality evaluation and review of nanomaterial genotoxicity studies: a regulatory perspective. Part Fibre Toxicol 2022; 19:70. [PMID: 36575483 PMCID: PMC9795579 DOI: 10.1186/s12989-022-00509-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Kirsi M. Siivola
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Box 40, 00032 Työterveyslaitos, Helsinki, Finland
| | - Michael J. Burgum
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, SA2 8PP Singleton Park, Swansea, Wales, UK
| | | | - Martin J. D. Clift
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, SA2 8PP Singleton Park, Swansea, Wales, UK
| | - Shareen H. Doak
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, SA2 8PP Singleton Park, Swansea, Wales, UK
| | - Julia Catalán
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Box 40, 00032 Työterveyslaitos, Helsinki, Finland ,grid.11205.370000 0001 2152 8769Department of Anatomy Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|