1
|
Barbosa F, Rocha BA, Souza MCO, Bocato MZ, Azevedo LF, Adeyemi JA, Santana A, Campiglia AD. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:28-65. [PMID: 36617662 DOI: 10.1080/10937404.2022.2164390] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.
Collapse
Affiliation(s)
- Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno A Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília C O Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Z Bocato
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lara F Azevedo
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Anthony Santana
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
2
|
Fornalski KW, Adamowski Ł, Bugała E, Jarmakiewicz R, Kirejczyk M, Kopyciński J, Krasowska J, Kukulski P, Piotrowski Ł, Ponikowska J, Reszczyńska J, Słonecka I, Wysocki P, Dobrzyński L. Biophysical Modeling of the Ionizing Radiation Influence on Cells Using the Stochastic (Monte Carlo) and Deterministic (Analytical) Approaches. Dose Response 2022; 20:15593258221138506. [PMID: 36458282 PMCID: PMC9706082 DOI: 10.1177/15593258221138506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
This review article describes our simplified biophysical model for the response of a group of cells to ionizing radiation. The model, which is a product of 10 years of studies, acts as (a) a comprehensive stochastic approach based on the Monte Carlo simulation with a probability tree and (b) the thereof derived detailed deterministic models describing the selected biophysical and radiobiological phenomena in an analytical manner. Specifically, the presented model describes effects such as the risk of neoplastic transformation of cells relative to the absorbed radiation dose, the dynamics of tumor development, the priming dose effect (also called the Raper-Yonezawa effect) based on the introduced adaptive response approach, and the bystander effect. The model is also modifiable depending on users' potential needs.
Collapse
Affiliation(s)
- Krzysztof W. Fornalski
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
- National Centre for Nuclear
Research (NCBJ), Poland
| | | | - Ernest Bugała
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | | | | | - Jakub Kopyciński
- Center for Theoretical
Physics, Polish Academy of Sciences (CFT
PAN), Poland
| | | | - Piotr Kukulski
- Department of Mechanical, Aerospace
and Civil Engineering, University of Manchester (MACE
UoM), United Kingdom
| | | | - Julia Ponikowska
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | - Joanna Reszczyńska
- Mossakowski Medical Research
Institute,
Polish Academy
of Sciences (IMDiK PAN), Poland
| | - Iwona Słonecka
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | - Paweł Wysocki
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | | |
Collapse
|
3
|
Teklu G, Negash M, Asefaw T, Tesfay F, Gebremariam G, Teklehaimanot G, Wolde M, Tsegaye A. Effect of Gasoline Exposure on Hematological Parameters of Gas Station Workers in Mekelle City, Tigray Region, Northern Ethiopia. J Blood Med 2021; 12:839-847. [PMID: 34557051 PMCID: PMC8453173 DOI: 10.2147/jbm.s286743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background The adverse health effects of chronic gasoline exposure may be related to impairment of the hematopoietic system with bone marrow suppression, an increased risk of blood cell morphology abnormality and developing cancer. Objective To assess the effect of gasoline exposure on hematological parameters among gas station workers in Mekelle City, Tigray Region, Northern Ethiopia. Methods This cross-sectional study was carried out on 43 subjects (exposed group) and 77 subjects (unexposed group) with matched age and sex. Socio-demographic characteristics and duration of exposure data were collected using a structured questionnaire and an observation checklist. Sysmex XP-300 was used for hematological analysis and stained peripheral blood smear was examined for any abnormality. Data were entered and analyzed using SPSS version 23. Results Of exposed individuals, 28/43 (65.1%) and 49/77 (63.6%) of controls were males. The average exposure time was 5.19±4.38 years, with an average working hour of 11.74±1.89 hours/day. The mean RBC count (1012/L), HCT (%), HGB (g/dl) and platelets count (109/L) of the exposed group were significantly lower (4.88±0.573, 43.29±3.71, 15.04±1.33 and 248.95±58.19) compared with controls (5.35±0.533, 44.95±3.10, 15.59±1.26 and 292.45±62.17) at p<0.05, respectively. The MCH (pg) (30.48±2.06 vs 29.52±1.66) and MCHC (g/dl) (34.83±0.988 vs 34.32±0.927) were significantly higher in the exposed group compared with controls (p<0.05). HCT, RBC, HGB and platelet counts were significantly decreased with increased years of exposure (p<0.05). The peripheral blood film examination revealed basophilic stippling and macrocytosis in 9.3% of the exposed group. Conclusion Long-term exposure to gasoline at gas stations affected RBC parameters and platelet count. A significant negative correlation was noted between duration of exposure and HGB, HCT and platelet count, warranting implementation of protective measures at gas stations.
Collapse
Affiliation(s)
- Gebre Teklu
- Department of Medical Laboratory Science, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Mikias Negash
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsegay Asefaw
- Department of Medical Laboratory Science, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Feven Tesfay
- Department of Medical Laboratory Science, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Gebreslassie Gebremariam
- Department of Medical Laboratory Science, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | | | - Mistire Wolde
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aster Tsegaye
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Khisroon M, Khan A, Shah AA, Ullah I, Farooqi J, Ullah A. Scalp Hair Metal Analysis Concerning DNA Damage in Welders of Peshawar Khyber Pakhtunkhwa Pakistan. Biol Trace Elem Res 2021; 199:1649-1656. [PMID: 32676939 DOI: 10.1007/s12011-020-02281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Welding is used throughout the world in refineries, thermal power plants, chemical facilities, and pressurized containers, and the welders are exposed to toxic heavy metals, electromagnetic fields, polycyclic aromatic hydrocarbon, and ultraviolet radiations. In the present study, 59 welders and an equal number of control subjects were assessed for DNA damage in the lymphocytes using the comet assay. Heavy metals such as lead (Pb), iron (Fe), nickel (Ni), chromium (Cr), manganese (Mn), and cadmium (Cd) levels in the scalp hair of the subjects were evaluated by using atomic absorption spectroscopy (AAS). The results of the current study showed that DNA damage in the lymphocytes of welders (121.8 ± 10.7) was significantly higher as compared with controls (56.5 ± 17.6) (P < 0.001). Besides, the levels of Pb, Fe, Ni, Cr, Mn, and Cd were remarkably higher in the scalp hair of workers as compared with the control group (P < 0.001). Regression analysis showed a prominent association between the heavy metals and total comet score (TCS) in the exposed subjects. Age and duration of occupational exposure had significant effects (P < 0.05) on TCS values. Our results concluded that occupational exposure to welding fumes may cause DNA damage and can lead to important health hazards in the workers.
Collapse
Affiliation(s)
- Muhammad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Ashraf Ali Shah
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ihsan Ullah
- Poonch Medical College, Rawalakot, AJK, Pakistan
| | - Javeed Farooqi
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Abid Ullah
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| |
Collapse
|
5
|
Biomonitoring of DNA Damage in Photocopiers' Workers From Peshawar, Khyber Pakhtunkhwa, Pakistan. J Occup Environ Med 2020; 62:e527-e530. [PMID: 32890224 DOI: 10.1097/jom.0000000000001964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The study was performed to know about the extent of occupational DNA damage in photocopiers' workers. METHODS Blood samples were collected from 136 exposed group and 74 control group. Comet assay was performed to assess the DNA damage caused by emissions from photocopiers. RESULTS The results indicated that there was a significant increase (P < 0.05) in DNA damage in persons working in photocopiers (122.1 ± 60.7) than the controls (56.6 ± 17.2). Duration of occupational exposure had positive correlation (r = 0.793, P < 0.001) with DNA damage. Age had significant effects on the total comet score (TCS) of the exposed group as compared to the control group (P < 0.05). CONCLUSIONS In conclusion, these findings indicate significant genotoxicity in photocopiers' workers.
Collapse
|
6
|
Mathialagan RD, Abd Hamid Z, Ng QM, Rajab NF, Shuib S, Binti Abdul Razak SR. Bone Marrow Oxidative Stress and Acquired Lineage-Specific Genotoxicity in Hematopoietic Stem/Progenitor Cells Exposed to 1,4-Benzoquinone. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165865. [PMID: 32823552 PMCID: PMC7459782 DOI: 10.3390/ijerph17165865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) are susceptible to benzene-induced genotoxicity. However, little is known about the mechanism of DNA damage response affecting lineage-committed progenitors for myeloid, erythroid, and lymphoid. Here, we investigated the genotoxicity of a benzene metabolite, 1,4-benzoquinone (1,4-BQ), in HSPCs using oxidative stress and lineage-directed approaches. Mouse bone marrow cells (BMCs) were exposed to 1,4-BQ (1.25–12 μM) for 24 h, followed by oxidative stress and genotoxicity assessments. Then, the genotoxicity of 1,4-BQ in lineage-committed progenitors was evaluated using colony forming cell assay following 7–14 days of culture. 1,4-BQ exposure causes significant decreases (p < 0.05) in glutathione level and superoxide dismutase activity, along with significant increases (p < 0.05) in levels of malondialdehyde and protein carbonyls. 1,4-BQ exposure induces DNA damage in BMCs by significantly (p < 0.05) increased percentages of DNA in tail at 7 and 12 μM and tail moment at 12 μM. We found crucial differences in genotoxic susceptibility based on percentages of DNA in tail between lineage-committed progenitors. Myeloid and pre-B lymphoid progenitors appeared to acquire significant DNA damage as compared with the control starting from a low concentration of 1,4-BQ exposure (2.5 µM). In contrast, the erythroid progenitor showed significant damage as compared with the control starting at 5 µM 1,4-BQ. Meanwhile, a significant (p < 0.05) increase in tail moment was only notable at 7 µM and 12 µM 1,4-BQ exposure for all progenitors. Benzene could mediate hematological disorders by promoting bone marrow oxidative stress and lineage-specific genotoxicity targeting HSPCs.
Collapse
Affiliation(s)
- Ramya Dewi Mathialagan
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 53000, Malaysia; (R.D.M.); (Q.M.N.)
| | - Zariyantey Abd Hamid
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 53000, Malaysia; (R.D.M.); (Q.M.N.)
- Correspondence:
| | - Qing Min Ng
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 53000, Malaysia; (R.D.M.); (Q.M.N.)
| | - Nor Fadilah Rajab
- Biomedical Science Programme and Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 53000, Malaysia;
| | - Salwati Shuib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Siti Razila Binti Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Kepala Batas Bertam, Pulau Pinang 13200, Malaysia;
| |
Collapse
|
7
|
Khisroon M, Khan A, Ayub A, Ullah I, Farooqi J, Ullah A. DNA damage analysis concerning GSTM1 and GSTT1 gene polymorphism in gold jewellery workers from Peshawar Pakistan. Biomarkers 2020; 25:483-489. [PMID: 32615823 DOI: 10.1080/1354750x.2020.1791253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the genotoxic effects of gold jewellery fumes and its association with GSTM1 and GSTT1 genetic polymorphisms. MATERIALS AND METHODS We examined 94 subjects including 54 gold jewellery workers and 40 controls. The DNA damage was evaluated by alkaline comet assay and genotyping by PCR. RESULTS The mean total comet score (TCS) in gold jewellery workers was significantly higher as compared to the control subjects (128.0 ± 60.6 versus 47.7 ± 21.4; p = 0.0001). Duration of occupational exposure had positive correlation (r = 0.453, p < 0.01) with DNA damage. Age and tobacco use had significant effects on the TCS of the exposed group as compared to the control group (p < 0.05). The frequency of the GSTM1-null genotype in the exposed group was significant (p = 0.004) as compared to the control group. No significant association (p > 0.05) between the GSTM1 and GSTT1 genotypes and DNA damage was found. CONCLUSIONS Our results suggest that there is increased DNA damage in gold jewellery workers due to their occupational surroundings. Hence there is a strong need to educate the workers about the adverse health effects of potentially hazardous chemicals and highlight the importance of using protective measures.
Collapse
Affiliation(s)
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Asma Ayub
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Ihsan Ullah
- Department of Pharmacology, Poonch Medical College Rawalakot, Rawalakot, Pakistan
| | - Javeed Farooqi
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Abid Ullah
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
8
|
Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum Exp Toxicol 2019; 39:577-595. [PMID: 31884827 DOI: 10.1177/0960327119895570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.
Collapse
Affiliation(s)
- R Dewi
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Z Abdul Hamid
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - N F Rajab
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S Shuib
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Sr Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
9
|
Khan MI, Zahoor M, Khan A, Gulfam N, Khisroon M. Bioaccumulation of Heavy Metals and their Genotoxic Effect on Freshwater Mussel. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:52-58. [PMID: 30443659 DOI: 10.1007/s00128-018-2492-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Contamination of fresh water bodies like riverine system is utmost concerned environmental issue. This study was aimed to assess the concentration of heavy metals in River Kabul and their bioaccumulation by freshwater mussel. Comet assay was used to evaluate the genotoxic effect of heavy metals on hemocytes of freshwater mussel. The concentration of heavy metals in water was in the order of Zn > Pb > Ni > Cu > Mn > Fe > Cr > Cd, in sediments were Fe > Zn > Cr > Ni > Mn > Pb > Cu > Cd and in the soft tissues of freshwater mussel were in order of Fe > Zn > Mn > Pb > Cu > Cr > Ni > Cd. The hemocytes of mussels from polluted sites showed significantly higher (p < 0.05) DNA damage as compared to reference site. The study showed that pollutants from industries, municipal, domestic and agricultural sources cause heavy metals contamination in River Kabul.
Collapse
Affiliation(s)
| | - Muhammad Zahoor
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower, 18800, KPK, Pakistan.
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Naila Gulfam
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
Khisroon M, Khan A, Ullah U, Zaidi F, Ahmadullah. Bio-monitoring of DNA damage in matchstick industry workers from Peshawar Khyber Pakhtunkhwa, Pakistan. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2018; 24:126-133. [PMID: 30247095 DOI: 10.1080/10773525.2018.1523860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Safety protocols are usually neglected in most of the matchstick industries rendering the laborer prone to various occupational hazards. OBJECTIVE The present study highlights DNA damage among matchstick factory workers (n = 92) against a control group (n = 48) of healthy individuals. METHODS Genotoxicity was measured in peripheral blood lymphocytes of the test subjects using a Single Cell Gel Electrophoresis assay (SCGE/comet assay). RESULTS Our results substantiate a high Total Comet Score (TCS) for factory workers (74.5 ± 47.0) when compared to the control group (53.0 ± 25.0) (P ≤ 0.001). Age and duration of occupational exposure had no significant effect (P > 0.05) on TCS value. As for job function, the TCS value was greatest in sweepers (91.0 ± 56.1) and lowest in box-making operators (26.0 ± 25.0) indicating that waste disposal poses the higher risk of DNA damage. CONCLUSIONS Our study corroborates that matchstick chemicals can potentially damage the DNA of exposed subjects.
Collapse
Affiliation(s)
- Muhammad Khisroon
- a Department of Zoology , University of Peshawar , Khyber Pakhtunkhwa , Pakistan
| | - Ajmal Khan
- a Department of Zoology , University of Peshawar , Khyber Pakhtunkhwa , Pakistan
| | - Ubaid Ullah
- a Department of Zoology , University of Peshawar , Khyber Pakhtunkhwa , Pakistan
| | - Farrah Zaidi
- a Department of Zoology , University of Peshawar , Khyber Pakhtunkhwa , Pakistan
| | - Ahmadullah
- a Department of Zoology , University of Peshawar , Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|
11
|
SALEM E, EL-GARAWANI I, ALLAM H, EL-AAL BA, HEGAZY M. Genotoxic effects of occupational exposure to benzene in gasoline station workers. INDUSTRIAL HEALTH 2018; 56:132-140. [PMID: 29070767 PMCID: PMC5889931 DOI: 10.2486/indhealth.2017-0126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability.
Collapse
Affiliation(s)
- Eman SALEM
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt
| | | | - Heba ALLAM
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt
- *To whom correspondence should be addressed. E-mail:
| | - Bahiga Abd EL-AAL
- Community Health Nursing Department, Faculty of Nursing, Menoufia University, Egypt
| | - Mofrih HEGAZY
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|