1
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ordóñez-Rubiano EG, Rincón-Arias N, Espinosa S, Shelton WJ, Salazar AF, Cómbita A, Baldoncini M, Luzzi S, Payán-Gómez C, Gómez- Amarillo DF, Hakim F, Patiño-Gómez JG, Parra- Medina R. The potential of miRNA-based approaches in glioblastoma: An update in current advances and future perspectives. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100193. [PMID: 39055532 PMCID: PMC11268206 DOI: 10.1016/j.crphar.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant central nervous system tumor. The emerging field of epigenetics stands out as particularly promising. Notably, the discovery of micro RNAs (miRNAs) has paved the way for advancements in diagnosing, treating, and prognosticating patients with brain tumors. We aim to provide an overview of the emergence of miRNAs in GBM and their potential role in the multifaceted management of this disease. We discuss the current state of the art regarding miRNAs and GBM. We performed a narrative review using the MEDLINE/PUBMED database to retrieve peer-reviewed articles related to the use of miRNA approaches for the treatment of GBMs. MiRNAs are intrinsic non-coding RNA molecules that regulate gene expression mainly through post-transcriptional mechanisms. The deregulation of some of these molecules is related to the pathogenesis of GBM. The inclusion of molecular characterization for the diagnosis of brain tumors and the advent of less-invasive diagnostic methods such as liquid biopsies, highlights the potential of these molecules as biomarkers for guiding the management of brain tumors such as GBM. Importantly, there is a need for more studies to better examine the application of these novel molecules. The constantly changing characterization and approach to the diagnosis and management of brain tumors broaden the possibilities for the molecular inclusion of novel epigenetic molecules, such as miRNAs, for a better understanding of this disease.
Collapse
Affiliation(s)
- Edgar G. Ordóñez-Rubiano
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Nicolás Rincón-Arias
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | - Sebastian Espinosa
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | | | | | - Alba Cómbita
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Matías Baldoncini
- School of Medicine, Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, University of Buenos Aires, Buenos Aires, Argentina
- Department of Neurological Surgery, Hospital San Fernando, Buenos Aires, Argentina
| | - Sabino Luzzi
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | | | - Fernando Hakim
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Javier G. Patiño-Gómez
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | - Rafael Parra- Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia
- Research Institute, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| |
Collapse
|
3
|
Kolar EA, Shi X, Clay EM, Liu Y, Xia S, Zhang C, Le A, Watkins PA. Depleting glioblastoma cells of very long-chain acyl-CoA synthetase 3 (ACSVL3) produces metabolic alterations in non-lipid pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558236. [PMID: 37786718 PMCID: PMC10541593 DOI: 10.1101/2023.09.18.558236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Knockout (KO) of the fatty acid-activation enzyme very long-chain acyl-CoA synthetase 3 (ACSVL3; SLC27A3) in U87MG glioblastoma cells reduced their malignant growth properties both in vitro and in xenografts. These U87-KO glioma cells grew at a slower rate, became adherence-dependent, and were less invasive than parental U87 cells. U87-KO cells produced fewer, slower-growing subcutaneous and intracranial tumors when implanted in NOD-SCID mice. Thus, depleting U87MG cells of ACSVL3 restored these cells to a phenotype more like that of normal astrocytes. To understand the mechanisms underlying these beneficial changes, we investigated several possibilities, including the effects of ACSVL3 depletion on carbohydrate metabolism. Proteomic and metabolomic profiling indicated that ACSVL3 KO produced changes in glucose and energy metabolism. Even though protein levels of glucose transporters GLUT1 and GLUT3 were reduced by KO, cellular uptake of labeled 2-deoxyglucose was unaffected. Glucose oxidation to CO2 was reduced nearly 7-fold by ACSVL3 depletion, and the cellular glucose level was 25% higher in KO cells. Glycolytic enzymes were upregulated by KO, but metabolic intermediates were essentially unchanged. Surprisingly, lactate production and the levels of lactate dehydrogenase isozymes LDHA and LDHB were elevated by ACSVL3 KO. The activity of the pentose phosphate pathway was found to be lower in KO cells. Citric acid cycle enzymes, electron transport chain complexes, and ATP synthase protein levels were all reduced by ACSVL3 depletion. Mitochondria were elongated in KO cells, but had a more punctate morphology in U87 cells. The mitochondrial potential was unaffected by lack of ACSVL3. We conclude that the beneficial effects of ACSVL3 depletion in human glioblastoma cells may result in part from alterations in diverse metabolic processes that are not directly related to role(s) of this enzyme in fatty acid and/or lipid metabolism. (Supported by NIH 5R01NS062043 and KKI institutional funds.).
Collapse
Affiliation(s)
| | - Xiaohai Shi
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore MD 21205
| | - Emily M. Clay
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore MD 21205
| | - Yanqiu Liu
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore MD 21205
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Cissy Zhang
- Present affiliation: Gigantest, Inc., Baltimore, MD 21202
| | - Anne Le
- Present affiliation: Gigantest, Inc., Baltimore, MD 21202
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Paul A. Watkins
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
4
|
Zhang Q, Duan H, Yang W, Liu H, Tao X, Zhang Y. Circ_0005615 restrains the progression of multiple myeloma through modulating miR-331-3p and IGF1R regulatory cascade. J Orthop Surg Res 2023; 18:356. [PMID: 37173768 PMCID: PMC10176712 DOI: 10.1186/s13018-023-03832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Circular RNAs are implicated in modulating the progression of various malignant tumors. However, the function and underlying mechanisms of circ_0005615 in multiple myeloma (MM) remain unclear. METHODS The expression levels of circ_0005615, miR-331-3p and IGF1R were tested by quantitative real-time polymerase chain reaction or western blot assay. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine (EdU) assay were performed for cell proliferation detection. Cell apoptosis and cell cycle were measured by flow cytometry. The protein expressions of Bax and Bcl-2 were detected by western blot assay. Glucose consumption, lactate production and ATP/ADP ratios were estimated to disclose cell glycolysis. The interaction relationship among miR-331-3p and circ_0005615 or IGF1R was proved by dual-luciferase reporter assay. RESULTS The abundance of circ_0005615 and IGF1R was increased in MM patients and cells, while the expression of miR-331-3p was decreased. Circ_0005615 inhibition retarded the proliferation and cell cycle progression, while reinforced the apoptosis of MM cells. Molecularly, circ_0005615 could sponge miR-331-3p, and the repressive trends of circ_0005615 deficiency on MM progression could be alleviated by anti-miR-331-3p introduction. Additionally, IGF1R was validated to be targeted by miR-331-3p, and IGF1R overexpression mitigated the suppressive function of miR-331-3p on MM development. Furthermore, IGF1R was mediated by circ_0005615/miR-331-3p axis in MM cells. CONCLUSION Circ_0005615 downregulation blocked MM development by targeting miR-331-3p/IGF1R axis.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Hui Duan
- Center for Local Diseases and Chronic Diseases, Dongsheng District Center for Disease Control and Preventio, Ordos, 017000, Inner Mongolia, China
| | - Wupeng Yang
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Hao Liu
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Xiaoyang Tao
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Yan Zhang
- Department of Medical Imaging, Ordos Central Hospital, No. 23, Yijinhuoluoxi Street, Dongsheng District, Ordos, 017000, Inner Mongolia, China.
| |
Collapse
|
5
|
Safi A, Saberiyan M, Sanaei MJ, Adelian S, Davarani Asl F, Zeinaly M, Shamsi M, Ahmadi R. The role of noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol Biol Lett 2023; 28:37. [PMID: 37161350 PMCID: PMC10169341 DOI: 10.1186/s11658-023-00447-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Metabolic reprogramming is a well-known feature of cancer that allows malignant cells to alter metabolic reactions and nutrient uptake, thereby promoting tumor growth and spread. It has been discovered that noncoding RNAs (ncRNAs), including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), have a role in a variety of biological functions, control physiologic and developmental processes, and even influence disease. They have been recognized in numerous cancer types as tumor suppressors and oncogenic agents. The role of ncRNAs in the metabolic reprogramming of cancer cells has recently been noticed. We examine this subject, with an emphasis on the metabolism of glucose, lipids, and amino acids, and highlight the therapeutic use of targeting ncRNAs in cancer treatment.
Collapse
Affiliation(s)
- Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fateme Davarani Asl
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Mahdi Shamsi
- Department of Cell and Molecular Biology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh Region, Shahrekord, Iran.
| |
Collapse
|
6
|
Liu Y, Peng H, Shen Y, Da R, Tian A, Guo X. Downregulation of Long Noncoding RNA Myocardial Infarction Associated Transcript Suppresses Cell Proliferation, Migration, Invasion, and Glycolysis by Regulation of miR-488-3p/IGF1R Pathway in Colorectal Cancer. Cancer Biother Radiopharm 2022; 37:927-938. [PMID: 33085926 DOI: 10.1089/cbr.2020.3671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a significant public problem and the third cause of cancer-induced death all over the world. Long noncoding RNA (lncRNA) has been reported as a vital mediator in human cancer. However, the precise role of lncRNA myocardial infarction associated transcript (MIAT) in CRC is unclear. Materials and Methods: The abundance of MIAT, miR-488-3p, and the type 1 insulin-like growth factor receptor (IGF1R) was measured by real-time quantitative polymerase chain reaction assay. Western blot assay was carried out to assess the protein level in CRC samples or control group. The cell activity, abilities of migration and invasion, and glycolysis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT), transwell, and testing glucose consumption and lactate product, correspondingly. The target association between miR-488-3p, MIAT, or IGF1R was predicted and established by bioinformatics tools, dual-luciferase reporter, and RNA pull-down assays, correspondingly. The effects of MIAT silencing in vivo were analyzed by animal experiments. Results: LncRNA MIAT was upregulated in CRC sample and that was positively correlated with IGF1R expression. Loss-of-functional assay suggested that knockdown of MIAT impeded cell activity, migration, invasion, and glycolysis of CRC cells in vivo, along with xenograft growth in vivo. Moreover, silencing of IGF1R inhibited the progression of CRC. Therefore, overexpression of IGF1R could abolish silencing of MIAT-induced effects on CRC cells. Mechanistically, MIAT was a sponge for miR-488-3p, thereby regulating IGF1R expression in CRC. Conclusion: The present study confirmed that the "MIAT/miR-488-3p/IGF1R" pathway was involved in the development of CRC, which may be the target for developing therapeutic approaches for CRC.
Collapse
Affiliation(s)
- Yunhua Liu
- Department of Gastroenterology, the First People's Hospital of Tianmen, Hubei, China
| | - Huaiying Peng
- Department of Digestive Endoscopy Room, the First People's Hospital of Tianmen, Hubei, China
| | - Yongxiang Shen
- Department of Gastroenterology, the First People's Hospital of Tianmen, Hubei, China
| | - Rongfeng Da
- Department of Gastroenterology, the First People's Hospital of Tianmen, Hubei, China
| | - Aihua Tian
- Department of Gastroenterology, the First People's Hospital of Tianmen, Hubei, China
| | - Xiaomei Guo
- Department of Computerized Tomography and Magnetic Resonance Imaging Room, the First People's Hospital of Tianmen, Hubei, China
| |
Collapse
|
7
|
Mendonca A, Thandapani P, Nagarajan P, Venkatesh S, Sundaresan S. Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. J Biosci 2022. [DOI: 10.1007/s12038-022-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Morales-Martínez M, Vega MI. Role of MicroRNA-7 (MiR-7) in Cancer Physiopathology. Int J Mol Sci 2022; 23:ijms23169091. [PMID: 36012357 PMCID: PMC9408913 DOI: 10.3390/ijms23169091] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs are non-coding RNA sequences of approximately 22 nucleotides that interact with genes by inhibiting their translation through binding to their 3′ or 5′ UTR regions. Following their discovery, the role they play in the development of various pathologies, particularly cancer, has been studied. In this context, miR-7 is described as an important factor in the development of cancer because of its role as a tumor suppressor, regulating a large number of genes involved in the development and progression of cancer. Recent data support the function of miR-7 as a prognostic biomarker in cancer, and miR-7 has been proposed as a strategy in cancer therapy. In this work, the role of miR-7 in various types of cancer is reviewed, illustrating its regulation, direct targets, and effects, as well as its possible relationship to the clinical outcome of cancer patients.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Correspondence: or
| |
Collapse
|
9
|
Liao W, Du J, Wang Z, Feng Q, Liao M, Liu H, Yuan K, Zeng Y. The role and mechanism of noncoding RNAs in regulation of metabolic reprogramming in hepatocellular carcinoma. Int J Cancer 2022; 151:337-347. [PMID: 35460073 PMCID: PMC9325518 DOI: 10.1002/ijc.34040] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Metabolic reprogramming is considered to be an important hallmark of cancer. Emerging studies have demonstrated that noncoding RNAs (ncRNAs) are closely associated with metabolic reprogramming of HCC. NcRNAs can directly regulate the expressions or functions of metabolic enzymes or indirectly regulate the metabolism of HCC cells through some vital signaling pathways. Until now, the mechanisms of HCC development and progression remain largely unclear, and understanding the regulatory mechanism of ncRNAs on metabolic reprogramming of HCC may provide an important basis for breakthrough progress in the treatment of HCC. In this review, we summarize the ncRNAs involved in regulating metabolic reprogramming of HCC. Specifically, the regulatory roles of ncRNAs in glucose, lipid and amino acid metabolism are elaborated. In addition, we discuss the molecular mechanism of ncRNAs in regulation of metabolic reprogramming and possible therapeutic strategies that target the metabolism of cancer cells by modulating the expressions of specific ncRNAs.
Collapse
Affiliation(s)
- Wenwei Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinpeng Du
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhen Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qingbo Feng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingheng Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Huixian Liu
- Department of Postanesthesia Care Unit & Surgical Anesthesia Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
10
|
Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules 2022; 12:biom12020208. [PMID: 35204710 PMCID: PMC8961590 DOI: 10.3390/biom12020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance defines an impairment in the biologic response to insulin action in target tissues, primarily the liver, muscle, adipose tissue, and brain. Insulin resistance affects physiology in many ways, causing hyperglycemia, hypertension, dyslipidemia, visceral adiposity, hyperinsulinemia, elevated inflammatory markers, and endothelial dysfunction, and its persistence leads to the development metabolic disease, including diabetes, obesity, cardiovascular disease, or nonalcoholic fatty liver disease (NAFLD), as well as neurological disorders such as Alzheimer’s disease. In addition to classical transcriptional factors, posttranscriptional control of gene expression exerted by microRNAs and RNA-binding proteins constitutes a new level of regulation with important implications in metabolic homeostasis. In this review, we describe miRNAs and RBPs that control key genes involved in the insulin signaling pathway and related regulatory networks, and their impact on human metabolic diseases at the molecular level, as well as their potential use for diagnosis and future therapeutics.
Collapse
|
11
|
Spectrum of microRNAs and their target genes in cancer: intervention in diagnosis and therapy. Mol Biol Rep 2022; 49:6827-6846. [PMID: 35031927 DOI: 10.1007/s11033-021-07040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Till date, several groups have studied the mechanism of microRNA (miRNA) biogenesis, processing, stability, silencing, and their dysregulation in cancer. The miRNA coding genes recurrently go through abnormal amplification, deletion, transcription, and epigenetic regulation in cancer. Some miRNAs function as tumor promoters while few others are tumor suppressors based on the transcriptional regulation of target genes. A review of miRNAs and their target genes in a wide range of cancers is attempted in this article, which may help in the development of new diagnostic tools and intervention therapies. The contribution of miRNAs for drug sensitivity or resistance in cancer therapy and opportunities of miRNAs in cancer prognosis or diagnosis and therapy is also presented in detail.
Collapse
|
12
|
Bao X, Peng Y, Shen J, Yang L. Sevoflurane inhibits progression of glioma via regulating the HMMR antisense RNA 1/microRNA-7/cyclin dependent kinase 4 axis. Bioengineered 2021; 12:7893-7906. [PMID: 34719318 PMCID: PMC8806593 DOI: 10.1080/21655979.2021.1976712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/04/2022] Open
Abstract
Sevoflurane (Sev) is a volatile anesthetic that can inhibit tumor malignancy. Glioma is a main brain problem, but the mechanism of Sev in glioma progression is largely unclear. This study aims to explore a potential regulatory network of long noncoding RNA (lncRNA)/microRNA (miRNA)/mRNA associated with the function of Sev in glioma progression. LncRNA HMMR antisense RNA 1 (HMMR-AS1), miR-7 and cyclin-dependent kinase 4 (CDK4) abundances were examined via quantitative reverse transcription polymerase chain reaction and western blot. Cell viability, invasion, and colony formation ability were analyzed via cell counting kit-8, transwell analysis, and colony formation. The target association was analyzed via dual-luciferase reporter analysis and RNA pull-down. The in vivo function of Sev was investigated by xenograft model. HMMR-AS1 abundance was increased in glioma tissues and cells, and reduced via Sev. Sev constrained cell viability, invasion, and colony formation ability via decreasing HMMR-AS1 in glioma cells. miR-7 expression was decreased in glioma, and was targeted via HMMR-AS1. HMMR-AS1 silence restrained cell viability, invasion, and colony formation ability by up-regulating miR-7 in glioma cells. Sev increases miR-7 abundance via decreasing HMMR-AS1. CDK4 was targeted via miR-7, and highly expressed in glioma. miR-7 overexpression inhibited cell viability, invasion, and colony formation ability via reducing CDK4 in glioma cells. CDK4 expression was reduced by Sev via HMMR-AS1/miR-7 axis. Sev suppressed cell growth in glioma by regulating HMMR-AS1. Sev represses glioma cell progression by regulating HMMR-AS1/miR-7/CDK4 axis.
Collapse
Affiliation(s)
- Xi’an Bao
- Department of Anesthesiology, The Affiliated Nanchang Hospital of SUN YAT-SEN University, Nanchang, 330006, China
| | - Yibo Peng
- Department of Anesthesiology, Chinese Medicine Hospital of Yangxin County, Huangshi, China
| | - Jun Shen
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Longqiu Yang
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Liu X, Li J, Li X. miR-142-5p regulates the progression of diabetic retinopathy by targeting IGF1. Int J Immunopathol Pharmacol 2021; 34:2058738420909041. [PMID: 32116075 PMCID: PMC7052454 DOI: 10.1177/2058738420909041] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As one of leading causes of blindness, diabetic retinopathy (DR) is a progressive microvascular complication of diabetes mellitus (DM). Despite significant efforts have been devoted to investigate DR over the years, the molecular mechanisms still remained unclear. Emerging evidences demonstrated that microRNAs (miRNAs) were tightly associated with pathophysiological development of DR. Hence, this study was aimed to illustrate the role and molecular mechanisms of miR-412-5p in progression of DR. Streptozotocin (STZ) treatment in rats and human retinal endothelial cell (HREC) models were used to simulate DR conditions in vivo and in vitro. Hematoxylin-eosin (HE) staining was used to demonstrate the morphology of retinal tissues of rats. Qualitative real-time polymerase chain reaction (qRT-PCR) detected miR-142-5p and vascular endothelial growth factor (VEGF) expression levels. Cell counting kit-8 (CCK8) assay and immunofluorescence (IF) measured the cell proliferation rates. Western blot tested the expression status of IGF1/IGF1R-mediated signaling pathway. Dual-luciferase reporter assays demonstrated the molecular mechanism of miR-142-5p. miR-142-5p level was down-regulated in retinal tissues of DR rats and high glucose (HG)-treated HRECs. Insulin-like growth factor 1 (IGF1) was identified as a direct target of miR-142-5p. The reduced miR-142-5p level enhanced HRECs proliferation via activating IGF/IGF1R-mediated signaling pathway including p-PI3K, p-ERK, p-AKT, and VEGF activation, ultimately giving rise to cell proliferation. Either miR-142-5p overexpression or IGF1 knockdown alleviated the pathological effects on retinal tissues in DR rats. Collectively, miR-142-5p participated in DR development by targeting IGF1/p-IGF1R signaling pathway and VEGF generation. This miR-142-5p/IGF1/VEGF axis provided a novel therapeutic target for DR clinical treatment.
Collapse
Affiliation(s)
- Xiuming Liu
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jianchang Li
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiaofeng Li
- Department of Ophthalmology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
14
|
Korać P, Antica M, Matulić M. MiR-7 in Cancer Development. Biomedicines 2021; 9:325. [PMID: 33806891 PMCID: PMC8004586 DOI: 10.3390/biomedicines9030325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.
Collapse
Affiliation(s)
- Petra Korać
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Bosković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Maja Matulić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| |
Collapse
|
15
|
Tirrò E, Massimino M, Romano C, Martorana F, Pennisi MS, Stella S, Pavone G, Di Gregorio S, Puma A, Tomarchio C, Vitale SR, Manzella L, Vigneri P. Prognostic and Therapeutic Roles of the Insulin Growth Factor System in Glioblastoma. Front Oncol 2021; 10:612385. [PMID: 33604294 PMCID: PMC7885861 DOI: 10.3389/fonc.2020.612385] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain malignancy and is often resistant to conventional treatments due to its extensive cellular heterogeneity. Thus, the overall survival of GBM patients remains extremely poor. Insulin-like growth factor (IGF) signaling entails a complex system that is a key regulator of cell transformation, growth and cell-cycle progression. Hence, its deregulation is frequently involved in the development of several cancers, including brain malignancies. In GBM, differential expression of several IGF system components and alterations of this signaling axis are linked to significantly worse prognosis and reduced responsiveness to temozolomide, the most commonly used pharmacological agent for the treatment of the disease. In the present review we summarize the biological role of the IGF system in the pathogenesis of GBM and comprehensively discuss its clinical significance and contribution to the development of resistance to standard chemotherapy and experimental treatments.
Collapse
Affiliation(s)
- Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy.,Medical Oncology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Giuliana Pavone
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy.,Medical Oncology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy.,Medical Oncology, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| |
Collapse
|
16
|
Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. SCIENCE CHINA-LIFE SCIENCES 2020; 64:22-50. [PMID: 32930921 DOI: 10.1007/s11427-020-1700-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The central dogma of molecular biology states that the functions of RNA revolve around protein translation. Until the last decade, most researches were geared towards characterization of RNAs as intermediaries in protein translation, namely, messenger RNAs (mRNAs) as temporary copies of genetic information, ribosomal RNAs (rRNAs) as a main component of ribosome, or translators of codon sequence (tRNAs). The statistical reality, however, is that these processes account for less than 2% of the genome, and insufficiently explain the functionality of 98% of transcribed RNAs. Recent discoveries have unveiled thousands of unique non-coding RNAs (ncRNAs) and shifted the perception of them from being "junk" transcriptional products to "yet to be elucidated"-and potentially monumentally important-RNAs. Most ncRNAs are now known as key regulators in various networks in which they could lead to specific cellular responses and fates. In major cancers, ncRNAs have been identified as both oncogenic drivers and tumor suppressors, indicating a complex regulatory network among these ncRNAs. Herein, we provide a comprehensive review of the various ncRNAs and their functional roles in cancer, and the pre-clinical and clinical development of ncRNA-based therapeutics. A deeper understanding of ncRNAs could facilitate better design of personalized therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
17
|
He S, Yang J, Jiang S, Li Y, Han X. Circular RNA circ_0000517 regulates hepatocellular carcinoma development via miR-326/IGF1R axis. Cancer Cell Int 2020; 20:404. [PMID: 32863763 PMCID: PMC7448484 DOI: 10.1186/s12935-020-01496-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play vital roles in hepatocellular carcinoma development. However, the role and mechanism of circRNA hsa_circ_0000517 (circ_0000517) in hepatocellular carcinoma development were largely unknown. METHODS 45 paired tumor and adjacent nontumor samples were collected from hepatocellular carcinoma patients. The levels of circ_0000517, miR-326 and insulin-like growth factor type 1 receptor (IGF1R) were detected via quantitative reverse transcription polymerase chain reaction or western blot. Cell viability, colony ability, migration, invasion and glycolysis were assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, western blot, transwell assay, glucose consumption, lactate production or adenosine triphosphate (ATP) production. The target correlation between miR-326 and circ_0000517 or IGF1R was analyzed via dual-luciferase reporter analysis. The function of circ_0000517 in vivo was assessed via xenograft model. RESULTS circ_0000517 expression was elevated in hepatocellular carcinoma tissues and cell lines. circ_0000517 knockdown suppressed cell viability, colony formation, migration, invasion and glycolysis. miR-326 was sponged via circ_0000517 and miR-326 knockdown reversed the effect of circ_0000517 silence on hepatocellular carcinoma development. miR-326 overexpression inhibited hepatocellular carcinoma development through targeting IGF1R. circ_0000517 knockdown decreased IGF1R expression by modulating miR-326. circ_0000517 downregulation reduced xenograft tumor growth. CONCLUSION circ_0000517 knockdown repressed hepatocellular carcinoma development in vitro and in vivo by modulating miR-326 and IGF1R.
Collapse
Affiliation(s)
- Shuwei He
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Jianzeng Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Shitao Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Yuan Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Xingmin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000 Henan China
| |
Collapse
|
18
|
Han S, Zhang T, Kusumanchi P, Huda N, Jiang Y, Liangpunsakul S, Yang Z. Role of microRNA-7 in liver diseases: a comprehensive review of the mechanisms and therapeutic applications. J Investig Med 2020; 68:1208-1216. [PMID: 32843369 DOI: 10.1136/jim-2020-001420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA-7 (miR-7) is a small non-coding RNA, which plays critical roles in regulating gene expression of multiple key cellular processes. MiR-7 exhibits a tissue-specific pattern of expression, with abundant levels found in the brain, spleen, and pancreas. Although it is expressed at lower levels in other tissues, including the liver, miR-7 is involved in both the development of organs and biological functions of cells. In this review, we focus on the mechanisms by which miR-7 controls cell growth, proliferation, invasion, metastasis, metabolism, and inflammation. We also summarize the specific roles of miR-7 in liver diseases. MiR-7 is considered as a tumor suppressor miRNA in hepatocellular carcinoma and is involved in the pathogenesis of hepatic steatosis and hepatitis. Future studies to further define miR-7 functions and its mechanism in association with other types of liver diseases should be explored. An improved understanding from these studies will provide us a useful perspective leading to mechanism-based intervention by targeting miR-7 for the treatment of liver diseases.
Collapse
Affiliation(s)
- Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, Beijing, China
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA .,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
Han W, Shi J, Cao J, Dong B, Guan W. Emerging Roles and Therapeutic Interventions of Aerobic Glycolysis in Glioma. Onco Targets Ther 2020; 13:6937-6955. [PMID: 32764985 PMCID: PMC7371605 DOI: 10.2147/ott.s260376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most common type of intracranial malignant tumor, with a great recurrence rate due to its infiltrative growth, treatment resistance, intra- and intertumoral genetic heterogeneity. Recently, accumulating studies have illustrated that activated aerobic glycolysis participated in various cellular and clinical activities of glioma, thus influencing the efficacy of radiotherapy and chemotherapy. However, the glycolytic process is too complicated and ambiguous to serve as a novel therapy for glioma. In this review, we generalized the implication of key enzymes, glucose transporters (GLUTs), signalings and transcription factors in the glycolytic process of glioma. In addition, we summarized therapeutic interventions via the above aspects and discussed promising clinical applications for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|
20
|
Zhang Y, Zhang S, Yin J, Xu R. MiR-566 mediates cell migration and invasion in colon cancer cells by direct targeting of PSKH1. Cancer Cell Int 2019; 19:333. [PMID: 31866763 PMCID: PMC6907181 DOI: 10.1186/s12935-019-1053-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC), a common malignancy worldwide, and microRNAs (miRs) have been suggested to play roles in the disease. MiR-566 expression has been shown to be reduced in CRC, but its functions and mechanisms are still unclear. Methods Cell viability was assessed by using the CellTiter 96 AQueous One Solution Cell Proliferation kit. Cell proliferation was measured with MTT assay. Cell metastasis were measured by transwell assay. Luciferase reporter assays was used to confirm the target of MiR-566. PSKH1 expression was measured by RT-PCR and western blot. Results In the present study, we first observed that miR-566 was expressed in several CRC cell lines (SW480, SW620, LoVo, HT29 and Caco-2) at low levels compared to control colon epithelial cell lines (FHC). Further study showed that miR-566 overexpression suppressed cell survival and impeded cell proliferation, whereas inhibition of its expression enhanced cell survival and proliferation. Transwell assays showed that cell invasion and migration were reduced in cells overexpressing miR-566 and increased in those with inhibition of miR-566. Further analysis confirmed that PSKH1 is a target of miR-566. MiR-566 overexpression significantly inhibited PSKH1 expression and reintroduction of PSKH1 partially reversed the effects of miR-566 on CRC cell growth and metastasis in SW480 and Caco-2 cells. Conclusions Taken together, the data show that CRC cell growth and metastasis can be significantly suppressed by miR-566 through targeting PSKH1.
Collapse
Affiliation(s)
- Ying Zhang
- 1Endoscopy Center, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Changchun, 130033 Jilin China
| | - Siqi Zhang
- 2Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin China
| | - Jian Yin
- 3Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin China
| | - Ruisi Xu
- 1Endoscopy Center, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Changchun, 130033 Jilin China
| |
Collapse
|
21
|
Chen X, Zhang X, Sun S, Zhu M. MicroRNA‑432 inhibits the aggressiveness of glioblastoma multiforme by directly targeting IGF‑1R. Int J Mol Med 2019; 45:597-606. [PMID: 31894251 DOI: 10.3892/ijmm.2019.4429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/04/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNA‑432 (miR‑432) has been studied in multiple tumors, but the expression status, biological functions and the mechanism of action of miR‑432 in glioblastoma multiforme (GBM) are yet to be elucidated. In the present study, miR‑432 expression in GBM was determined and its clinical significance was evaluated among patients with GBM. The effects on the malignancy of GBM in vitro and in vivo were examined in detail and the interactions between miR‑432 and insulin‑like growth factor 1 receptor (IGF‑1R) mRNA were then explored. miR‑432 expression in GBM tissue samples and cell lines was measured by reverse transcription‑quantitative (RT‑q)PCR. GBM cell proliferation, apoptosis, migration and invasion in vitro and tumor growth in vivo were evaluated by a Cell Counting Kit‑8 assay, flow‑cytometric analysis, Transwell migration and invasion assays, and a tumor xenograft experiment, respectively. Bioinformatic analysis followed by a luciferase reporter assay, RT‑qPCR and western blotting was applied to demonstrate that IGF‑1R is a direct target gene of miR‑432 in GBM cells. It was found that miR‑432 is downregulated in GBM tumors and cell lines. miR‑432 under expression obviously correlated with the Karnofsky Performance Status score and shorter overall survival among patients with GBM. Exogenous miR‑432 expression significantly reduced proliferation and induced apoptosis of GBM cells. In addition, miR‑432 overexpression impaired the migratory and invasive abilities of GBM cells in vitro and decreased their tumor growth in vivo. Furthermore, IGF‑1R was validated as a direct target gene of miR‑432 in GBM cells. IGF‑1R knockdown imitated the tumor‑suppressive actions of miR‑432 overexpression in GBM cells. Rescue experiments proved IGF‑1R downregulation to be essential for the effects of miR‑432 on GBM cells. The results of the present study revealed a tumor‑suppressive role of the miR‑432‑IGF‑1R axis in GBM cells and this axis may have implications for GBM therapy.
Collapse
Affiliation(s)
- Xudong Chen
- Department of Neurosurgery, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Xufei Zhang
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shunjin Sun
- Department of Neurosurgery, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Meixiao Zhu
- Department of TCM Pharmacy, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
22
|
Li M, Pan M, You C, Dou J. The Therapeutic Potential of miR-7 in Cancers. Mini Rev Med Chem 2019; 19:1707-1716. [DOI: 10.2174/1389557519666190904141922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/15/2019] [Accepted: 05/25/2019] [Indexed: 01/13/2023]
Abstract
MiRNAs play an important role in cancers. As a potent tumor suppressor, miRNA-7(miR-7)
has been demonstrated to inhibit the diverse fundamental biological processes in multiple cancer types
including initiation, growth and metastasis by targeting a number of molecules and signaling pathways.
This current review summarizes and discusses the relationship between miR-7 and cancers and the
therapeutic potential of miR-7 in cancers. It may provide new integrative understanding for future
study on the role of miR-7 in cancers.
Collapse
Affiliation(s)
- Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Chengzhong You
- Department of General Surgery, Zhongda Hospital, Affiliated to Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
23
|
Li J, Xie Y, Zhang C, Wang J, Wu Y, Yang Y, Xie Y, Lv Z. A network-based analysis for mining the risk pathways in glioblastoma. Oncol Lett 2019; 18:2712-2717. [PMID: 31402957 PMCID: PMC6676740 DOI: 10.3892/ol.2019.10598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/13/2019] [Indexed: 11/05/2022] Open
Abstract
The most malignant type of brain tumour is glioblastoma multiforme (GBM). Patients with GBM often have a poor prognosis, as a result of incomplete or inaccurate diagnoses. Regulatory pathways have been demonstrated to serve important roles in complex human diseases. Therefore, deciphering these risk pathways may shed light on the molecular mechanisms underlying GBM progression. In the present study, differentially expressed genes and microRNAs (miRNAs) in a publicly available database were identified between normal and tumour samples. To determine the pathophysiology and molecular mechanisms underlying GBM, integrated network analysis was performed to mine GBM-specific risk pathways. Specifically, a GBM-specific regulatory network was constructed that integrated manually curated GBM-associated transcription and post-transcriptional data resources, including transcription factors and miRNAs. A total of 1,827 differentially expressed genes and 30 miRNAs were identified. The differentially expressed genes were significantly enriched in a number of immune response-associated functions. Based on the GBM-specific regulatory network, 15 risk regulatory pathways containing not only known regulators, but also potential novel targets that might be involved in tumourigenesis were identified. Network analysis provides a strategy for leveraging genomic data to identify potential oncogenic pathways and molecular targets for GBM.
Collapse
Affiliation(s)
- Jing Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yujie Xie
- Department of Rehabilitation Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chi Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jianxiong Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yong Wu
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuan Yang
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yang Xie
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhiyu Lv
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
24
|
Dynamic expression of 11 miRNAs in 83 consecutive primary and corresponding recurrent glioblastoma: correlation to treatment, time to recurrence, overall survival and MGMT methylation status. Radiol Oncol 2018; 52:422-432. [PMID: 30511935 PMCID: PMC6287177 DOI: 10.2478/raon-2018-0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common and the most malignant glioma subtype. Among numerous genetic alterations, miRNAs contribute to pathogenesis of GBM and it is suggested that also to GBM recurrence and resistance to therapy. Based on publications, we have selected 11 miRNAs and analyzed their expression in GBM. We hypothesized that selected miRNAs are differentially expressed and involved in primary as well as in recurrent GBM, that show significant expressional differences when different treatment options are in question, and that are related to certain patients and tumor characteristics. Patients and methods Paraffin embedded tissues, obtained from primary and corresponding recurrent tumor from 83 patients with primary GBM were used. Eleven miRNAs (miR-7, miR-9, miR-15b, miR-21, miR-26b, miR-124a, miR-199a, let-7a, let-7b, let-7d, and let-7f) were selected for qPCR expression analysis. For patients who received temozolamide (TMZ) as chemotherapeutic drug, O6-methylguanine-DNA methyltransferase (MGMT) methylation status was defined using the methyl-specific PCR. Results There was a significant change in expression of miR-7, miR-9, miR-21, miR-26b, mirR-124a, miR-199a and let-7f in recurrent tumor compared to the primary. In recurrent tumor, miR-15b, let-7d and let-7f significantly changed comparing both treatment options. We also observed difference in progression free survival between patients that received radiotherapy and patients that received radiotherapy and chemotherapy, and longer survival for patients who received chemotherapy after second surgery compared to not treated patients. miR-26b showed correlation to progression free survival and let-7f to overall survival. We did not find any expression difference between the tumors with and without methylated MGMT. Conclusions Our data suggest that analyzed miRNAs may not only contribute to pathogenesis of primary GBM, but also to tumor progression and its recurrence. Moreover, expression of certain miRNAs appears to be therapy-dependent and as such they might serve as additional biomarker for recurrence prediction and potentially predict a therapy-resistance.
Collapse
|
25
|
Li G, Huang M, Cai Y, Yang Y, Sun X, Ke Y. Circ-U2AF1 promotes human glioma via derepressing neuro-oncological ventral antigen 2 by sponging hsa-miR-7-5p. J Cell Physiol 2018; 234:9144-9155. [PMID: 30341906 DOI: 10.1002/jcp.27591] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
The prognosis for human glioma, a malignant tumor of the central nervous system, is poor due to its rapid growth, genetic heterogeneity, and inadequate understanding of its underlying molecular mechanisms. Circular RNAs composed of exonic sequences, represent an understudied form of noncoding RNAs (ncRNAs) that was discovered more than a decade ago, function as microRNA sponges. We aimed to assess the relationship between circ-U2AF1 (CircRNA ID: hsa_circ_0061868) and hsa-mir-7-5p and examine their effects on proliferation, apoptosis, and the metastatic phenotype of glioma cells regulated by neuro-oncological ventral antigen 2 (NOVA2). We found that the expression levels of circ-U2AF1 and NOVA2 were upregulated, while hsa-miR-7-5p was downregulated in human glioma tissues and glioma cell lines. Our data and bioinformatic analysis indicated the association of these molecules with glioma grade, a positive correlation between circ-U2AF1 and NOVA2 expression levels and a negative correlation of hsa-miR-7-5p with both circ-U2AF1 and NOVA2, respectively. In addition, silencing of circ-U2AF1 expression resulted in increased hsa-miR-7-5p expression and decreased NOVA2 expression both in vitro and in vivo. Luciferase assay confirmed hsa-miR-7-5p as a direct target of circ-U2AF1 and NOVA2 as a direct target of hsa-miR-7-5p. Functionally, silencing of circ-U2AF1 inhibits glioma development by repressing NOVA2 via upregulating hsa-miR-7-5p both in vitro and in vivo. Thus, we assumed that circ-U2AF1 promotes glioma malignancy via derepressing NOVA2 by sponging hsa-miR-7-5p. Taken together, we suggest that circ-U2AF1 can be a prognostic biomarker and the circ-U2AF1/hsa-miR-7-5p/NOVA2 regulatory pathway may be a novel therapeutic target for treating gliomas.
Collapse
Affiliation(s)
- Guoxiong Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China.,Department of Neurosurgery, People's Hospital of Shiyan, Shenzhen, China
| | - Min Huang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yuantao Yang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xinlin Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yiquan Ke
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
26
|
Minchenko OH, Tsymbal DO, Minchenko DO, Prylutska SV, Hnatiuk OS, Prylutskyy YI, Tsierkezos NG, Ritter U. Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes. Toxicol In Vitro 2018; 52:122-130. [PMID: 29906516 DOI: 10.1016/j.tiv.2018.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/02/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
The effect of single-walled carbon nanotubes (SWCNTs) on the expression of a subset of immune response, apoptosis and cell proliferation -associated genes was studied in normal human astrocytes (line NHA/TS). In the cells treated with SWCNTs (2, 10 and 50 ng/ml of medium for 24 h) we observed a strong dose-dependent down-regulation of the expression of a cell surface glycoproteins HLA-DRA (major histocompatibility complex, class II, DR alpha) and HLA-DRB1. At the same time, the expression of HLA-F (major histocompatibility complex, class I, F), LMNB1 (lamin B1), and HTRA1 (high temperature requirement A1) genes as well as the level of miR-190b and miR-7 was up-regulated in NHA/TS subjected to different concentrations of SWCNTs. After 24 h of treatment with SWCNTs we detected a dose-dependent suppression of PHLDA2 (pleckstrin homology-like domain, family A, member 2) gene expression in these cells. Obtained data show that SWCNTs may affect an immune response, in particular through suppression of HLA-DRA and HLA-DRB1 gene expressions and that miR-190b and miR-7 possibly participated in this suppression. Deregulation of lamin B1 expression indicates the possibility of alterations in genome stability following treatment of astrocytes with SWCNTs. Thus, more caution is needed in biomedical application of SWCNTs.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Str, Kyiv 01601, Ukraine.
| | - Dariia O Tsymbal
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Str, Kyiv 01601, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Str, Kyiv 01601, Ukraine; Department of Pediatrics, Bohomolets National Medical University, 13 Taras Shevchenko Blvd., Kyiv 01601, Ukraine
| | - Svitlana V Prylutska
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str, 01601 Kyiv, Ukraine
| | - Oksana S Hnatiuk
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Str, Kyiv 01601, Ukraine
| | - Yuriy I Prylutskyy
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str, 01601 Kyiv, Ukraine
| | - Nikos G Tsierkezos
- Technische Universität Ilmenau, Institut für Chemie und Biotechnik, 25 Weimarer Str., 98693 Ilmenau, Germany.
| | - Uwe Ritter
- Technische Universität Ilmenau, Institut für Chemie und Biotechnik, 25 Weimarer Str., 98693 Ilmenau, Germany
| |
Collapse
|
27
|
Liu D, Pan J, Zhao D, Liu F. MicroRNA-223 inhibits deposition of the extracellular matrix by airway smooth muscle cells through targeting IGF-1R in the PI3K/Akt pathway. Am J Transl Res 2018; 10:744-752. [PMID: 29636864 PMCID: PMC5883115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/22/2017] [Indexed: 06/08/2023]
Abstract
Asthma is a wide-spread disease that significantly impacts health throughout the world. A key aspect of the pathology of the disease is the remodeling of the airways by airway smooth muscle cells (ASMCs). MicroRNAs play an important role in post-transcriptional gene regulation and are involved in numerous biological functions, including those linked to asthma. A large number of microRNAs have been identified and investigated in various cell types to assess their function. In the present study, the role and potential mechanisms of miR-223 in ASMCs were investigated. Overexpression of miR-223 was found to induce a phenotypic switch in ASMCs that led to decreased expression of proteins involved in the extracellular matrix, such as α-SMA (ACTA2), and type I and III collagens. Inhibition of miR-223 caused the opposite result. However, unlike mast cells, neither overexpression nor inhibition of miR-223 affected cell viability or apoptosis in ASMCs. To further understand the effects of miR-223 on ASMCs, we applied bioinformatics analysis using predictive software, in combination with western blotting, to reveal that insulin-like growth factor-1 receptor (IGF-1R) was the functional target of miR-223 that leads to the phenotypic switch of ASMCs. Suppression of luciferase activity in a reporter containing the 3'-untranslated region (3'-UTR) of IGF-1R confirmed that this region is the target for the miRNA. Finally, we showed that miR-223 suppressed IGF-1R expression and decreased downstream phosphorylation of Akt (AKT1) in ASMCs. In conclusion, our data demonstrate that miR-223 exerts an inhibitory effect on the fibrotic phenotypes of ASMCs via the PI3K/Akt signaling pathway and IGF-1R is the likely functional target of the microRNA.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical UniversityNanjing, China
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Jing Pan
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical UniversityNanjing, China
| | - Deyu Zhao
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical UniversityNanjing, China
| | - Feng Liu
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|
28
|
miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget 2018; 7:53558-53570. [PMID: 27448964 PMCID: PMC5288205 DOI: 10.18632/oncotarget.10669] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are attractive therapeutic targets for various therapy-resistant tumors. However, the association between miRNA and BRAF inhibitor resistance in melanoma remains to be elucidated. We used microarray analysis to comprehensively study the miRNA expression profiling of vemurafenib resistant (VemR) A375 melanoma cells in relation to parental A375 melanoma cells. MicroRNA-7 (miR-7) was identified to be the most significantly down-regulated miRNA in VemR A375 melanoma cells. We also found that miR-7 was down-regulated in Mel-CVR cells (vemurafenib resistant Mel-CV melanoma cells). Reestablishment of miR-7 expression could reverse the resistance of both cells to vemurafenib. We showed that epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R) and CRAF were over-expressed in VemR A375 melanoma cells. Introduction of miR-7 mimics could markedly decrease the expressions of EGFR, IGF-1R and CRAF and further suppressed the activation of MAPK and PI3K/AKT pathway in VemR A375 melanoma cells. Furthermore, tumor growth was inhibited in an in vivo murine VemR A375 melanoma tumor model transfected with miR-7 mimics. Collectively, our study demonstrated that miR-7 could reverse the resistance to BRAF inhibitors in certain vemurafenib resistant melanoma cell lines. It could advance the field and provide the basis for further studies in BRAF inhibitor resistance in melanoma.
Collapse
|
29
|
Bhere D, Tamura K, Wakimoto H, Choi SH, Purow B, Debatisse J, Shah K. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol 2018; 20:215-224. [PMID: 29016934 PMCID: PMC5777493 DOI: 10.1093/neuonc/nox138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background MicroRNAs (miRs) are known to play a pivotal role in tumorigenesis, controlling cell proliferation and apoptosis. In this study, we investigated the potential of miR-7 to prime resistant tumor cells to apoptosis in glioblastoma (GBM). Methods We created constitutive and regulatable miR-7 expression vectors and utilized pharmacological inhibition of caspases and genetic loss of function to study the effect of forced expression of miR-7 on death receptor (DR) pathways in a cohort of GBM with established resistance to tumor necrosis factor apoptosis inducing ligand (TRAIL) and in patient-derived primary GBM stem cell (GSC) lines. We engineered adeno-associated virus (AAV)-miR-7 and stem cell (SC) releasing secretable (S)-TRAIL and utilized real time in vivo imaging and neuropathology to understand the effect of the combined treatment of AAV-miR-7 and SC-S-TRAIL in vitro and in mouse models of GBM from TRAIL-resistant GSC. Results We show that expression of miR-7 in GBM cells results in downregulation of epidermal growth factor receptor and phosphorylated Akt and activation of nuclear factor-kappaB signaling. This leads to an upregulation of DR5, ultimately priming resistant GBM cells to DR-ligand, TRAIL-induced apoptotic cell death. In vivo, a single administration of AAV-miR-7 significantly decreases tumor volumes, upregulates DR5, and enables SC-delivered S-TRAIL to eradicate GBM xenografts generated from patient-derived TRAIL-resistant GSC, significantly improving survival of mice. Conclusions This study identifies the unique role of miR-7 in linking cell proliferation to death pathways that can be targeted simultaneously to effectively eliminate GBM, thus presenting a promising strategy for treating GBM.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kaoru Tamura
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sung Hugh Choi
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Purow
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Jeremy Debatisse
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Zhang L, Qi M, Feng T, Hu J, Wang L, Li X, Gao W, Liu H, Jiao M, Wu Z, Bai X, Bie Y, Liu L, Han B. IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway. Neoplasia 2018; 20:207-217. [PMID: 29331887 PMCID: PMC5767912 DOI: 10.1016/j.neo.2017.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
Risk stratification using molecular features could potentially help distinguish indolent from aggressive prostate cancer (PCa). Mutations in isocitrate dehydrogenase (IDH) acquire an abnormal enzymatic activity, resulting in the production of 2-hydroxyglutarate and alterations in cellular metabolism, histone modification, and DNA methylation. Mutant IDH1 has been identified in various human malignancies, and IDH1R132H constituted the vast majority of mutational events of IDH1. Most recent studies suggested that IDH1 mutations define a methylator subtype in PCa. However, the function of IDH1R132H in PCa development and progression is largely unknown. In this study, we showed that the prevalence of IDH1R132H in Chinese PCa patients is 0.6% (2/336). Of note, IDH1R132H-mutant PCa patients lacked other canonical genomic lesions (e.g., ERG rearrangement, PTEN deletion) that are common in most other PCa patients. The in vitro experiment suggested that IDH1R132H can promote proliferation of benign prostate epithelial cell RWPE-1 when under the situation of low cytokine. It could also promote migration capacity of RWPE-1 cells. Mechanistically, IDH1R132H was an important regulator of insulin-like growth factor 1receptor (IGF1R) by downregulating a set of microRNAs (miR-141-3p, miR-7-5p, miR-223-3p). These microRNAs were repressed by the alteration of epigenetic modification to decrease the enrichment of active marker H3K4me3 or to increase repressive marker H3K27me3 at their promoters. Collectively, we proposed a novel model for an IDH1R132H-microRNAs-IGF1R regulatory axis, which might provide insight into the function of IDH1R132H in PCa development.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Mei Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Tingting Feng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Jing Hu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Lin Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Xinjun Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Wei Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Hui Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Meng Jiao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Zhen Wu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Xinnuo Bai
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Yifan Bie
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China
| | - Long Liu
- Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Bo Han
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, Shandong University QiLu Medical College, School of Basic Medical Sciences, Jinan, 250012, China; Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China.
| |
Collapse
|
31
|
Jiang J, Wang W, Fang D, Jin X, Ding L, Sun X. MicroRNA-186 targets IGF-1R and exerts tumor-suppressing functions in glioma. Mol Med Rep 2017; 16:7821-7828. [DOI: 10.3892/mmr.2017.7586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 06/26/2017] [Indexed: 11/06/2022] Open
|
32
|
Liu S, Zhou C, Zhu C, Song Q, Wen M, Liu Y, An H. Low-expression of miR-7 promotes cell proliferation and exhibits prognostic value in osteosarcoma patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9035-9041. [PMID: 31966774 PMCID: PMC6965431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/25/2016] [Indexed: 06/10/2023]
Abstract
AIM MicroRNAs (miRNAs) play important roles in occurrence and development of osteosarcoma. Previous studies had verified the role of microRNA-7 (miR-7) in various diseases, especially in cancers. Our purpose in this study was to investigate the values of miR-7 in development and prognosis of osteosarcoma. METHODS QRT-PCR was used to measure the expression of miR-7 in osteosarcoma tissues, adjacent tissues and healthy tissues as well as in osteosarcoma cell lines MG63, U2OS and normal osteoblastic cell line hFOB1.19. CCK-8 and siRNA assays were performed to estimate the effect of miR-7 in the process of cell proliferation. The Kaplan-Meier and Cox regression analysis were performed to detect the prognostic values of the miR-7 in osteosarcoma patients. RESULTS The results demonstrated that miR-7 expression decreased in osteosarcoma tissues and cell lines compared with the controls. Proliferation assay declared that the cell proliferation was accelerated by down-regulation of miR-7. Kaplan-Meier exhibited that the overall survival time of low-miR-7 expression was shorter than those with high-miR-7 expression (P=0.001). Cox regression analysis revealed that Enneking, distant metastasis and recurrence were all prognostic factors just like low-miR-7. CONCLUSION The expression of miR-7 was lower in osteosarcoma tissues and cell lines and miR-7 acted as a tumor suppressor. The low-expression of miR-7 was associated with clinicopathologic characteristics (age, tumor site, Enneking, therapies). Moreover, miR-7 might be an independent prognostic marker and promote cell proliferation in osteosarcoma.
Collapse
Affiliation(s)
- Shouying Liu
- Department of Orthopaedics, The 253th Hospital of The Chinese People’s Liberation ArmyHohhot 010051, China
| | - Changxi Zhou
- Department of Nanlou Respiratory Diseases, PLA General HospitalBeijing 100853, China
| | - Changbao Zhu
- Department of Orthopaedics, The 474th Hospital of The Chinese People’s Liberation ArmyUrumchi 830013, China
| | - Qiuhe Song
- Department of Dermatology, Attached Hospital of Jiujiang UniversityJiujiang 332000, China
| | - Ming Wen
- Department of Human Resources, Human Resources China Communications Construction Company LtdBeijing 100088, China
| | - Ye Liu
- Department of Anesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing 100026, China
| | - Huaijie An
- Center of Basic Medical Sciences, Navy General Hospital of PLABeijing 100037, China
| |
Collapse
|
33
|
Pinheiro C, Granja S, Longatto-Filho A, Faria AM, Fragoso MCBV, Lovisolo SM, Bonatelli M, Costa RFA, Lerário AM, Almeida MQ, Baltazar F, Zerbini MCN. GLUT1 expression in pediatric adrenocortical tumors: a promising candidate to predict clinical behavior. Oncotarget 2017; 8:63835-63845. [PMID: 28969033 PMCID: PMC5609965 DOI: 10.18632/oncotarget.19135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
Background Discrimination between benign and malignant tumors is a challenging process in pediatric adrenocortical tumors. New insights in the metabolic profile of pediatric adrenocortical tumors may contribute to this distinction, predict prognosis, as well as identify new molecular targets for therapy. The aim of this work is to characterize the expression of the metabolism-related proteins MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX in a series of pediatric adrenocortical tumors. Methods A total of 50 pediatric patients presenting adrenocortical tumors, including 41 clinically benign and 9 clinically malignant tumors, were included. Protein expression was evaluated using immunohistochemistry in samples arranged in tissue microarrays. Results The immunohistochemical analysis showed a significant increase in plasma membrane expression of GLUT1 in malignant lesions, when compared to benign lesions (p=0.004), being the expression of this protein associated with shorter overall and disease-free survival (p=0.004 and p=0.001, respectively). Although significant differences were not observed for proteins other than GLUT1, MCT1, MCT4 and CD147 were highly expressed in pediatric adrenocortical neoplasias (around 90%). Conclusion GLUT1 expression was differentially expressed in pediatric adrenocortical tumors, with higher expression in clinically malignant tumors, and associated with shorter survival, suggesting a metabolic remodeling towards a hyperglycolytic phenotype in this malignancy.
Collapse
Affiliation(s)
- Céline Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Barretos School of Health Sciences Dr. Paulo Prata - FACISB, São Paulo, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil.,Laboratory of Medical Investigation (LIM-14), School of Medicina, University of São Paulo, São Paulo, Brazil
| | - André M Faria
- Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria C B V Fragoso
- Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto do Câncer do Estado de São Paulo - ICESP, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvana M Lovisolo
- Hospital Universitário, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Ricardo F A Costa
- Barretos School of Health Sciences Dr. Paulo Prata - FACISB, São Paulo, Brazil
| | - Antonio M Lerário
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Madson Q Almeida
- Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto do Câncer do Estado de São Paulo - ICESP, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria C N Zerbini
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Wang KCW, Botting KJ, Zhang S, McMillen IC, Brooks DA, Morrison JL. Akt signaling as a mediator of cardiac adaptation to low birth weight. J Endocrinol 2017; 233:R81-R94. [PMID: 28219933 DOI: 10.1530/joe-17-0039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Intrauterine insults, such as poor nutrition and placental insufficiency, can alter cardiomyocyte development, and this can have significant long-term implications for heart health. Consequently, epidemiological studies have shown that low-birth-weight babies have an increased risk of death from cardiovascular disease in adult life. In addition, intrauterine growth restriction can result in increased left ventricular hypertrophy, which is the strongest predictor for poor health outcomes in cardiac patients. The mechanisms responsible for these associations are not clear, but a suboptimal intrauterine environment can program alternative expression of genes such as cardiac IGF-2/H19, IGF-2R and AT1R through either an increase or decrease in DNA methylation or histone acetylation at specific loci. Furthermore, hypoxia and other intrauterine insults can also activate the IGF-1 receptor via IGF-1 and IGF-2, and the AT1 receptor via angiotensin signaling pathways; both of which can result in the phosphorylation of Akt and the activation of a range of downstream pathways. In turn, Akt activation can increase cardiac angiogenesis and cardiomyocyte apoptosis and promote a reversion of metabolism in postnatal life to a fetal phenotype, which involves increased reliance on glucose. Cardiac Akt can also be indirectly regulated by microRNAs and conversely can target microRNAs that will eventually affect other specific cardiac genes and proteins. This review aims to discuss our understanding of this complex network of interactions, which may help explain the link between low birth weight and the increased risk of cardiovascular disease in adult life.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Identification of IGF-1-enhanced cytokine expressions targeted by miR-181d in glioblastomas via an integrative miRNA/mRNA regulatory network analysis. Sci Rep 2017; 7:732. [PMID: 28389653 PMCID: PMC5429683 DOI: 10.1038/s41598-017-00826-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/14/2017] [Indexed: 02/03/2023] Open
Abstract
The insulin-like growth factor (IGF)-1 signaling is relevant in regulating cell growth and cytokine secretions by glioblastomas. MicroRNAs determine the cell fate in glioblastomas. However, relationships between IGF-1 signaling and miRNAs in glioblastoma pathogenesis are still unclear. Our aim was to validate the IGF-1-mediated mRNA/miRNA regulatory network in glioblastomas. Using in silico analyses of mRNA array and RNA sequencing data from The Cancer Genome Atlas (TCGA), we identified 32 core enrichment genes that were highly associated with IGF-1-promoted cytokine-cytokine receptor interactions. To investigate the IGF-1-downregulated miRNA signature, microarray-based approaches with IGF-1-treated U87-MG cells and array data in TCGA were used. Four miRNAs, including microRNA (miR)-9-5p, miR-9-3p, miR-181d, and miR-130b, exhibited an inverse correlation with IGF-1 levels. The miR-181d, that targeted the most IGF-1-related cytokine genes, was significantly reduced in IGF-1-treated glioma cells. Statistical models incorporating both high-IGF-1 and low-miR-181d statuses better predicted poor patient survival, and can be used as an independent prognostic factor in glioblastomas. The C-C chemokine receptor type 1 (CCR1) and interleukin (IL)-1b demonstrated inverse correlations with miR-181d levels and associations with patient survival. miR-181d significantly attenuated IGF-1-upregulated CCR1 and IL-1b gene expressions. These findings demonstrate a distinct role for IGF-1 signaling in glioma progression via miR-181d/cytokine networks.
Collapse
|
36
|
He J, Xie Q, Xu H, Li J, Li Y. Circular RNAs and cancer. Cancer Lett 2017; 396:138-144. [PMID: 28342987 DOI: 10.1016/j.canlet.2017.03.027] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNA molecules that lack a 5'-terminal cap and 3'-terminal poly A tail. A large number of circRNAs have been identified through biological experiments, computational methods and high-throughput sequencing. CircRNA sequence composition determines if a given circRNA is exonic, intronic or retained-intronic. CircRNAs are more abundant and stable than linear mRNAs, and their expression is both step- and location-specific. CircRNAs mediate transcriptional and post-transcriptional regulation of gene and protein expression. CircRNAs regulate cancer development via multiple mechanisms, including miRNA sponges, modulating Wnt signaling pathway and epithelial-mesenchymal transition. An in-depth study of circRNA will provide a better understanding of carcinogenesis and assist in developing clinical diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery, Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiande, Zhejiang 311600, China.
| | - Qichao Xie
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hailin Xu
- Department of General Surgery, Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiande, Zhejiang 311600, China
| | - Jiantian Li
- Department of General Surgery, Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiande, Zhejiang 311600, China
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
37
|
Zhou K, Fan YD, Wu PF, Duysenbi S, Feng ZH, Du GJ, Zhang TR. MicroRNA-145 inhibits the activation of the mTOR signaling pathway to suppress the proliferation and invasion of invasive pituitary adenoma cells by targeting AKT3 in vivo and in vitro. Onco Targets Ther 2017; 10:1625-1635. [PMID: 28352194 PMCID: PMC5360400 DOI: 10.2147/ott.s118391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose This study was designed to explore how miR-145 regulates the mTOR signaling pathway in invasive pituitary adenoma (IPA) by targeting AKT3. Methods A total of 71 cases of IPA tissues and 66 cases of non-IPA tissues were obtained in this study. In vitro, the IPA cells were assigned into blank control, empty plasmid, miR-145 mimic, miR-145 inhibitor, miR-145 mimic + rapamycin, miR-145 inhibitor + rapamycin and rapamycin groups. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed to detect the protein expressions of PI3K, AKT3, mTOR mRNA and the mRNA expression of miR-145 both in vivo and in vitro. Additionally, the S6K and RPS6 mRNA and protein expressions as well as the relative phosphorylation levels were determined in vitro. MTT assay, flow cytometry and transwell assay were used to testify the cell proliferation, apoptosis and invasion ability, respectively. Results The IPA tissues exhibited significantly lower expression of miR-145 but higher PI3K, AKT3 and mTOR mRNA and protein expressions when compared with the non-IPA tissues. Compared with the blank control and empty plasmid groups, the miR-145 mimic group showed significantly decreased PI3K, AKT3, mTOR, S6K and RPS6 mRNA and protein expressions as well as phosphorylation levels; besides, the IPA cell proliferation, migration and invasion ability were strongly inhibited, accompanied with the increased number of apoptotic cells. In the miR-145 inhibitor group, the PI3K, AKT3, mTOR, S6K and RPS6 mRNA and protein expressions as well as the phosphorylation levels were significantly increased; cell proliferation, migration and invasion ability were remarkably elevated, accompanied with reduced apoptotic cell number. Conclusion The study demonstrates that miR-145 inhibits the mTOR signaling pathway to suppress the IPA cell proliferation and invasion and promotes its apoptosis by targeting AKT3.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yan-Dong Fan
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Peng-Fei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Serick Duysenbi
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Zhao-Hai Feng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Guo-Jia Du
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Ting-Rong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
38
|
Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, Cai S, Qin H, Ma Y, Goel A. Circular RNA ciRS-7-A Promising Prognostic Biomarker and a Potential Therapeutic Target in Colorectal Cancer. Clin Cancer Res 2017; 23:3918-3928. [PMID: 28174233 DOI: 10.1158/1078-0432.ccr-16-2541] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/12/2022]
Abstract
Purpose: Colorectal cancer is one of the most common malignancies worldwide. Recently, a novel circular RNA, ciRS-7, was proposed to be a potential miR-7 sponge. As miR-7, a putative tumor-suppressor, regulates the expression of several important drivers of colorectal cancer, we analyzed the clinical significance of ciRS-7 in colorectal cancer patients.Experimental Design: Initially, we evaluated the expression levels of ciRS-7 in a training cohort comprising of 153 primary colorectal cancer tissues and 44 matched normal mucosae. We subsequently confirmed its clinical relevance in an independent validation cohort (n = 165), and evaluated the effect of ciRS-7 on miR-7, and its target genes EGFR and RAF1. Functional analyses were performed in cell lines and an animal model to support clinical findings.Results: Our data revealed that ciRS-7 was significantly upregulated in colorectal cancer tissues compared with matched normal mucosae (P = 0.0018), and its overexpression was associated with poor patient survival (P = 0.0224 and 0.0061 in the training and validation cohorts, respectively). Multivariate survival analysis revealed that ciRS-7 emerged as an independent risk factor for overall survival (P = 0.0656 and 0.0324 in the training and validation cohorts, respectively). Overexpression of ciRS-7 in HCT116 and HT29 cells led to the blocking of miR-7 and resulted in a more aggressive oncogenic phenotype, and ciRS-7 overexpression permitted the inhibition of miR-7 and subsequent activation of EGFR and RAF1 oncogenes.Conclusions: CiRS-7 is a promising prognostic biomarker in colorectal cancer patients and may serve as a therapeutic target for reducing EGFR-RAF1 activity in colorectal cancer patients. Clin Cancer Res; 23(14); 3918-28. ©2017 AACR.
Collapse
Affiliation(s)
- Wenhao Weng
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas.,Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shusuke Toden
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Kazuhiro Yoshida
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
39
|
Lima TI, Araujo HN, Menezes ES, Sponton CH, Araújo MB, Bomfim LH, Queiroz AL, Passos MA, e Sousa TA, Hirabara SM, Martins AR, Sampaio HC, Rodrigues A, Curi R, Carneiro EM, Boschero AC, Silveira LR. Role of microRNAs on the Regulation of Mitochondrial Biogenesis and Insulin Signaling in Skeletal Muscle. J Cell Physiol 2016; 232:958-966. [DOI: 10.1002/jcp.25645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Tanes I. Lima
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
- Ribeirão Preto Medical School; Department of Biochemistry and Immunology; USPRP; Ribeirão Preto SP Brazil
| | - Hygor N. Araujo
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Eveline S. Menezes
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Carlos H. Sponton
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Michel B. Araújo
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Lucas H.M. Bomfim
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - André L. Queiroz
- Ribeirão Preto Medical School; Department of Biochemistry and Immunology; USPRP; Ribeirão Preto SP Brazil
| | - Madla A. Passos
- Ribeirão Preto Medical School; Department of Biochemistry and Immunology; USPRP; Ribeirão Preto SP Brazil
| | | | - Sandro M. Hirabara
- Institute of Physical Activity Sciences and Sports; Cruzeiro do Sul University; São Paulo SP Brazil
| | - Amanda R. Martins
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Helena C.L.B. Sampaio
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Alice Rodrigues
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Rui Curi
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Everardo M. Carneiro
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Antônio C. Boschero
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Leonardo R. Silveira
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| |
Collapse
|
40
|
Beltrán-Anaya FO, Cedro-Tanda A, Hidalgo-Miranda A, Romero-Cordoba SL. Insights into the Regulatory Role of Non-coding RNAs in Cancer Metabolism. Front Physiol 2016; 7:342. [PMID: 27551267 PMCID: PMC4976125 DOI: 10.3389/fphys.2016.00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer represents a complex disease originated from alterations in several genes leading to disturbances in important signaling pathways in tumor biology, favoring heterogeneity that promotes adaptability and pharmacological resistance of tumor cells. Metabolic reprogramming has emerged as an important hallmark of cancer characterized by the presence of aerobic glycolysis, increased glutaminolysis and fatty acid biosynthesis, as well as an altered mitochondrial energy production. The metabolic switches that support energetic requirements of cancer cells are closely related to either activation of oncogenes or down-modulation of tumor-suppressor genes, finally leading to dysregulation of cell proliferation, metastasis and drug resistance signals. Non-coding RNAs (ncRNAs) have emerged as one important kind of molecules that can regulate altered genes contributing, to the establishment of metabolic reprogramming. Moreover, diverse metabolic signals can regulate ncRNA expression and activity at genetic, transcriptional, or epigenetic levels. The regulatory landscape of ncRNAs may provide a new approach for understanding and treatment of different types of malignancies. In this review we discuss the regulatory role exerted by ncRNAs on metabolic enzymes and pathways involved in glucose, lipid, and amino acid metabolism. We also review how metabolic stress conditions and tumoral microenvironment influence ncRNA expression and activity. Furthermore, we comment on the therapeutic potential of metabolism-related ncRNAs in cancer.
Collapse
Affiliation(s)
- Fredy O Beltrán-Anaya
- Cancer Genomics Laboratory, National Institute of Genomic Medicine Mexico City, Mexico
| | - Alberto Cedro-Tanda
- Cancer Genomics Laboratory, National Institute of Genomic Medicine Mexico City, Mexico
| | | | | |
Collapse
|
41
|
Liu X, Trakooljul N, Hadlich F, Muráni E, Wimmers K, Ponsuksili S. MicroRNA-mRNA regulatory networking fine-tunes the porcine muscle fiber type, muscular mitochondrial respiratory and metabolic enzyme activities. BMC Genomics 2016; 17:531. [PMID: 27485725 PMCID: PMC4970254 DOI: 10.1186/s12864-016-2850-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/20/2016] [Indexed: 02/02/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in diverse biological processes via regulation of gene expression including in skeletal muscles. In the current study, miRNA expression profile was investigated in longissimus muscle biopsies of malignant hyperthermia syndrome-negative Duroc and Pietrain pigs with distinct muscle metabolic properties in order to explore the regulatory role of miRNAs related to mitochondrial respiratory activity and metabolic enzyme activity in skeletal muscle. Results A comparative analysis of the miRNA expression profile between Duroc and Pietrain pigs was performed, followed by integration with mRNA profiles based on their pairwise correlation and computational target prediction. The identified target genes were enriched in protein ubiquitination pathway, stem cell pluripotency and geranylgeranyl diphosphate biosynthesis, as well as skeletal and muscular system development. Next, we analyzed the correlation between individual miRNAs and phenotypical traits including muscle fiber type, mitochondrial respiratory activity, metabolic enzyme activity and adenosine phosphate concentrations, and constructed the regulatory miRNA-mRNA networks associated with energy metabolism. It is noteworthy that miR-25 targeting BMPR2 and IRS1, miR-363 targeting USP24, miR-28 targeting HECW2 and miR-210 targeting ATP5I, ME3, MTCH1 and CPT2 were highly associated with slow-twitch oxidative fibers, fast-twitch oxidative fibers, ADP and ATP concentration suggesting an essential role of the miRNA-mRNA regulatory networking in modulating the mitochondrial energy expenditure in the porcine muscle. In the identified miRNA-mRNA network, a tight relationship between mitochondrial and ubiquitin proteasome system at the level of gene expression was observed. It revealed a link between these two systems contributing to energy metabolism of skeletal muscle under physiological conditions. Conclusions We assembled miRNA-mRNA regulatory networks based on divergent muscle properties between different pig breeds and further with the correlation analysis of expressed genes and phenotypic measurements. These complex networks relate to muscle fiber type, metabolic enzyme activity and ATP production and may contribute to divergent muscle phenotypes by fine-tuning the expression of genes. Altogether, the results provide an insight into a regulatory role of miRNAs in muscular energy metabolisms and may have an implication on meat quality and production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2850-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuan Liu
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Eduard Muráni
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
42
|
Park YS, Kim DJ, Koo H, Jang SH, You YM, Cho JH, Yang SJ, Yu ES, Jung Y, Lee DC, Kim JA, Park ZY, Park KC, Yeom YI. AKT-induced PKM2 phosphorylation signals for IGF-1-stimulated cancer cell growth. Oncotarget 2016; 7:48155-48167. [PMID: 27340866 PMCID: PMC5217008 DOI: 10.18632/oncotarget.10179] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 06/04/2016] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase muscle type 2 (PKM2) exhibits post-translational modifications in response to various signals from the tumor microenvironment. Insulin-like growth factor 1 (IGF-1) is a crucial signal in the tumor microenvironment that promotes cell growth and survival in many human cancers. Herein, we report that AKT directly interacts with PKM2 and phosphorylates it at Ser-202, which is essential for the nuclear translocation of PKM2 protein under stimulation of IGF-1. In the nucleus, PKM2 binds to STAT5A and induces IGF-1-stimulated cyclin D1 expression, suggesting that PKM2 acts as an important factor inducing STAT5A activation under IGF-1 signaling. Concordantly, overexpression of STAT5A in cells deficient in PKM2 expression failed to restore IGF-induced growth, whereas reconstitution of PKM2 in PKM2 knockdown cells restored the IGF-induced growth capacity. Our findings suggest a novel role of PKM2 in promoting the growth of cancers with dysregulated IGF/phosphoinositide 3-kinase/AKT signaling.
Collapse
Affiliation(s)
- Young Soo Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Dong Joon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Yeon-Mi You
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Jung Hee Cho
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Suk-Jin Yang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Eun Sil Yu
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yuri Jung
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Dong Chul Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Young Il Yeom
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
43
|
Yue K, Wang X, Wu Y, Zhou X, He Q, Duan Y. microRNA-7 regulates cell growth, migration and invasion via direct targeting of PAK1 in thyroid cancer. Mol Med Rep 2016; 14:2127-34. [PMID: 27430434 DOI: 10.3892/mmr.2016.5477] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/28/2016] [Indexed: 11/06/2022] Open
Abstract
The expression and function of microRNA-7 (miR-7) has been studied in a variety of different cancer types. However, to date, no studies have investigated the expression of miR‑7 in human thyroid cancer. In the present study, the expression levels and biological function of miR‑7 were investigated in human thyroid cancer, with the aim of evaluating whether it may serve as a therapeutic biomarker. The expression levels of miR‑7 in human thyroid cancer tissues, matched, adjacent normal tissues, normal thyroid tissues and human thyroid cancer cell lines were determined using RT‑qPCR and western blot analysis. To explore the functional role of miR‑7 in human thyroid cancer cell lines, MTT assays, cell migration and invasion assays were employed. TargetScan software identified p21 activated kinase‑1 (PAK1) as a putative interacting partner of miR‑7. Therefore, functional assays were performed to explore the effects of endogenous PAK1 in thyroid cancer. In the present study, miR‑7 was significantly downregulated in thyroid cancer tissues and cells compared with normal thyroid tissue samples. A correlation between miR‑7 expression and thyroid tumor stage was also observed. Ectopic expression of miR‑7 was found to suppress the proliferation, migra-tion and invasion of thyroid cancer cells in vitro. Dual-luciferase reporter assays demonstrated that PAK1 was a direct target of miR-7 in vitro. RT-qPCR and western blot analysis demonstrated that miR‑7 negatively regulates PAK1 protein expression but has no effect on PAK1 mRNA expression. Knockdown of PAK1 expression markedly suppressed thyroid cancer cell proliferation, migration and invasion. These results suggest that miR‑7 functions as a tumor suppressor by targeting PAK1 directly and may therefore present a novel therapeutic target for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Kai Yue
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xudong Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yansheng Wu
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xuan Zhou
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Qinghua He
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yuansheng Duan
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
44
|
Deng D, Wang L, Chen Y, Li B, Xue L, Shao N, Wang Q, Xia X, Yang Y, Zhi F. MicroRNA-124-3p regulates cell proliferation, invasion, apoptosis, and bioenergetics by targeting PIM1 in astrocytoma. Cancer Sci 2016; 107:899-907. [PMID: 27088547 PMCID: PMC4946703 DOI: 10.1111/cas.12946] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/22/2016] [Accepted: 04/09/2016] [Indexed: 12/12/2022] Open
Abstract
The PIM1 protein is an important regulator of cell proliferation, the cell cycle, apoptosis, and metabolism in various human cancers. MicroRNAs (miRNAs) are powerful post‐transcriptional gene regulators that function through translational repression or transcript destabilization. Therefore, we aimed to identify whether a close relationship exists between PIM1 and miRNAs. PIM1 protein levels and mRNA levels were significantly upregulated in astrocytoma tissues, indicating the oncogenic role of PIM1 in astrocytoma. Further bioinformatics analysis indicated that miR‐124‐3p targeted the 3′‐UTR of PIM1. We also observed an inverse correlation between the miR‐124‐3p levels and PIM1 protein or mRNA levels in astrocytoma samples. Next, we experimentally confirmed that miR‐124‐3p directly recognizes the 3′‐UTR of the PIM1 transcript and regulates PIM1 expression at both the protein and mRNA levels. Furthermore, we examined the biological consequences of miR‐124‐3p targeting PIM1 in vitro. We showed that the repression of PIM1 in astrocytoma cancer cells by miR‐124‐3p suppressed proliferation, invasion, and aerobic glycolysis and promoted apoptosis. We observed that the restoration or inhibition of PIM1 activity resulted in effects that were similar to those induced by miR‐124‐3p inhibitors or mimics in cancer cells. Finally, overexpression of PIM1 rescued the inhibitory effects of miR‐124‐3p. In summary, these findings aid in understanding the tumor‐suppressive role of miR‐124‐3p in astrocytoma pathogenesis through the inhibition of PIM1 translation.
Collapse
Affiliation(s)
- Danni Deng
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lei Wang
- Xuzhou Central Hospital, Affiliated Hospital of Southeast University, Xuzhou, China
| | - Yao Chen
- Biopharm Industry Service Center, Changzhou Center for Biotech Development, Changzhou, China
| | - Bowen Li
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lian Xue
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Naiyuan Shao
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qiang Wang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiwei Xia
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yilin Yang
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Feng Zhi
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
45
|
Tomasetti M, Amati M, Santarelli L, Neuzil J. MicroRNA in Metabolic Re-Programming and Their Role in Tumorigenesis. Int J Mol Sci 2016; 17:E754. [PMID: 27213336 PMCID: PMC4881575 DOI: 10.3390/ijms17050754] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/27/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
The process of metabolic re-programing is linked to the activation of oncogenes and/or suppression of tumour suppressor genes, which are regulated by microRNAs (miRNAs). The interplay between oncogenic transformation-driven metabolic re-programming and modulation of aberrant miRNAs further established their critical role in the initiation, promotion and progression of cancer by creating a tumorigenesis-prone microenvironment, thus orchestrating processes of evasion to apoptosis, angiogenesis and invasion/migration, as well metastasis. Given the involvement of miRNAs in tumour development and their global deregulation, they may be perceived as biomarkers in cancer of therapeutic relevance.
Collapse
Affiliation(s)
- Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60020, Italy.
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60020, Italy.
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60020, Italy.
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science and Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia.
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, Prague-West 25243, Czech Republic.
| |
Collapse
|
46
|
Gao H, Deng H, Xu H, Yang Q, Zhou Y, Zhang J, Zhao D, Liu F. MicroRNA-223 promotes mast cell apoptosis by targeting the insulin-like growth factor 1 receptor. Exp Ther Med 2016; 11:2171-2176. [PMID: 27284298 PMCID: PMC4887759 DOI: 10.3892/etm.2016.3227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to examine the functional role of miR-223 in the regulation of mast cell apoptosis. Overexpressed miR-223 in mast cells transfected by Lipofectamine 2000 was used as a model, and miR-223 was found to promote mast cell apoptosis. To investigate the underlying mechanisms involved, the potential and putative target molecules of miR-223 were detected by bioinformatical analysis using predictive software, and western blotting. Insulin-like growth factor-1 receptor (IGF-1R) was found to be the functional target of miR-223 in the promotion of cell apoptosis. The downstream PI3K/protein kinase B (Akt) signaling pathway was also inhibited, and signaling was mediated by IGF-1R. Furthermore, the relative luciferase activity of the reporter containing the 3′-untranslated region (3′-UTR) of IGF-1R was significantly suppressed, while suppression of miR-223-inhibited IGF-1R protein expression was also observed. In conclusion, the results suggest that IGF-1R is the functional target for miR-223 promotion of cell apoptosis, and its downstream PI3K/Akt signaling pathway was suppressed by miR-223 through targeting of IGF-1R.
Collapse
Affiliation(s)
- Haiyan Gao
- Department of Respiratory Medicine, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China; Department of Pediatrics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Huan Deng
- Department of Respiratory Medicine, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Xu
- Department of Respiratory Medicine, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qianyuan Yang
- Department of Respiratory Medicine, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yao Zhou
- Department of Respiratory Medicine, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiamin Zhang
- Department of Respiratory Medicine, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Deyu Zhao
- Department of Respiratory Medicine, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Feng Liu
- Department of Respiratory Medicine, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
47
|
Noncoding RNAs in Regulation of Cancer Metabolic Reprogramming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:191-215. [PMID: 27376736 DOI: 10.1007/978-981-10-1498-7_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the description of the Warburg effect 90 years ago, metabolic reprogramming has been gradually recognized as a major hallmark of cancer cells. Mounting evidence now indicates that cancer is a kind of metabolic disease, quite distinct from conventional perception. While metabolic alterations in cancer cells have been extensively observed in glucose, lipid, and amino acid metabolisms, its underlying regulatory mechanisms are still poorly understood. Noncoding RNA, also known as the "dark matter in life," functions through various mechanisms at RNA level regulating different biological pathways. The last two decades have witnessed the booming of noncoding RNA study on microRNA (miRNA), long noncoding RNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), etc. In this chapter, we will discuss the regulatory roles of noncoding RNAs on cancer metabolism.
Collapse
|
48
|
Arora A, Singh S, Bhatt AN, Pandey S, Sandhir R, Dwarakanath BS. Interplay Between Metabolism and Oncogenic Process: Role of microRNAs. TRANSLATIONAL ONCOGENOMICS 2015; 7:11-27. [PMID: 26740741 PMCID: PMC4696840 DOI: 10.4137/tog.s29652] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 12/17/2022]
Abstract
Cancer is a complex disease that arises from the alterations in the composition and regulation of several genes leading to the disturbances in signaling pathways, resulting in the dysregulation of cell proliferation and death as well as the ability of transformed cells to invade the host tissue and metastasize. It is increasingly becoming clear that metabolic reprograming plays a critical role in tumorigenesis and metastasis. Therefore, targeting this phenotype is considered as a promising approach for the development of therapeutics and adjuvants. The process of metabolic reprograming is linked to the activation of oncogenes and/or suppression of tumor suppressor genes, which are further regulated by microRNAs (miRNAs) that play important roles in the interplay between oncogenic process and metabolic reprograming. Looking at the advances made in the recent past, it appears that the translation of knowledge from research in the areas of metabolism, miRNA, and therapeutic response will lead to paradigm shift in the management of this disease.
Collapse
Affiliation(s)
- Aastha Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.; Department of Biochemistry, Panjab University, Chandigarh, India
| | - Saurabh Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Anant Narayan Bhatt
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sanjay Pandey
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.; Dr B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Bilikere S Dwarakanath
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.; Sri Ramachandra University, Chennai, India
| |
Collapse
|
49
|
Wang X, Wang M, Li H, Lan X, Liu L, Li J, Li Y, Li J, Yi J, Du X, Yan J, Han Y, Zhang F, Liu M, Lu S, Li D. Upregulation of miR-497 induces hepatic insulin resistance in E3 rats with HFD-MetS by targeting insulin receptor. Mol Cell Endocrinol 2015; 416:57-69. [PMID: 26300412 DOI: 10.1016/j.mce.2015.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The study aims to find regulatory microRNA(s) responsible for down-regulated insulin receptor (InsR) in the liver of HFD-MetS E3 rats with insulin resistance. METHODS Firstly, hepatic insulin resistance in HFD-MetS E3 rats was evaluated by RT-qPCR, western blotting, immunohistochemistry and PAS staining. Secondly, the candidate miRNAs targeting rat InsR were predicted through online softwares and detected in the liver of HFD-MetS E3 rats with insulin resistance. Then, the expression of InsR, phosphorylated IRS-1 (pIRS-1) at Tyr632, phosphorylated AKTs (pAKTs) at Ser473 and Thr308, phosphorylated GSK-3β (p GSK-3β) at Ser9, phosphorylated GS (pGS) at Ser641 and the glycogen content were detected in CBRH-7919 cells treated with 100 nM insulin for different time periods by western blotting or PAS staining respectively, after transient transfection with miR-497 mimics or inhibitors for 24 h. Lastly, the relation between miR-497 and InsR was further determined using dual luciferase reporter assay. RESULTS Elevated miR-497 was negatively related with down-regulated InsR in the liver of HFD-MetS E3 rats with insulin resistance. Comparing with the mNC group, glycogen content and the expression of InsR, pIRS-1 (Tyr632), pAKTs (Ser473 and Thr308) and pGSK-3β (Ser9) decreased significantly in CBRH-7919 cells, while pGS (Ser641) increased significantly, after transient transfection with miR-497 mimics for 24 h and treatment with 100 nM insulin for corresponding time periods, counter to those results in CBRH-7919 cells after similar procedures with miR-497 inhibitors and insulin. In addition, dual luciferase reporter assay further confirmed that miR-497 can bind to the 3'UTR of rat InsR. CONCLUSION Insulin receptor is the target gene of miR-497, and elevated miR-497 might induce hepatic insulin resistance in HFD-MetS E3 Rats through inhibiting the expression of insulin receptor and confining the activation of IRS-1/PI3K/Akt/GSK-3β/GS pathway to insulin.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China; Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, PR China
| | - Meichen Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Hongmin Li
- School of Life Sciences, Northwest University, Xi'an, Shaanxi 710061, PR China
| | - Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Jiaxi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Jing Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Xiaojuan Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Jidong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
50
|
Sun F, Han DF, Cao BQ, Wang B, Dong N, Jiang DH. Caffeine-induced nuclear translocation of FoxO1 triggers Bim-mediated apoptosis in human glioblastoma cells. Tumour Biol 2015; 37:3417-23. [PMID: 26449824 DOI: 10.1007/s13277-015-4180-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022] Open
Abstract
Caffeine is one of the most commonly ingested neuroactive compounds and exhibits anticancer effects through induction of apoptosis and suppression of cell proliferation. However, the mechanisms underlying these effects are currently unknown. In this study, we investigated the mechanisms of caffeine-induced apoptosis in U251 cells (human glioma cell line). We analyzed the inhibitory effects of caffeine on cell proliferation by performing WST-8 and colony formation assays; in addition, cell survival was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and flow cytometric analysis. Western blotting was used to investigate the role played by FoxO1 in the proapoptotic effects of caffeine on glioma cells. Results showed that caffeine inhibited proliferation and survival of human glioma cells, induced apoptosis, and increased the expression of FoxO1 and its proapoptotic target Bim. In addition, we found that FoxO1 enhanced the transcription of its proapoptotic target Bim. In summary, our data indicates that FoxO1-Bim mediates caffeine-induced regression of glioma growth by activating cell apoptosis, thereby providing new mechanistic insight into the possible use of caffeine in treating human cancer.
Collapse
Affiliation(s)
- Fei Sun
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Dong-Feng Han
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Bo-Qiang Cao
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Bo Wang
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Nan Dong
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - De-Hua Jiang
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China.
| |
Collapse
|