1
|
Alonso-Serra J, Cheddadi I, Kiss A, Cerutti G, Lang M, Dieudonné S, Lionnet C, Godin C, Hamant O. Water fluxes pattern growth and identity in shoot meristems. Nat Commun 2024; 15:6944. [PMID: 39138210 PMCID: PMC11322635 DOI: 10.1038/s41467-024-51099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/28/2024] [Indexed: 08/15/2024] Open
Abstract
In multicellular organisms, tissue outgrowth creates a new water sink, modifying local hydraulic patterns. Although water fluxes are often considered passive by-products of development, their contribution to morphogenesis remains largely unexplored. Here, we mapped cell volumetric growth across the shoot apex in Arabidopsis thaliana. We found that, as organs grow, a subpopulation of cells at the organ-meristem boundary shrinks. Growth simulations using a model that integrates hydraulics and mechanics revealed water fluxes and predicted a water deficit for boundary cells. In planta, a water-soluble dye preferentially allocated to fast-growing tissues and failed to enter the boundary domain. Cell shrinkage next to fast-growing domains was also robust to different growth conditions and different topographies. Finally, a molecular signature of water deficit at the boundary confirmed our conclusion. Taken together, we propose that the differential sink strength of emerging organs prescribes the hydraulic patterns that define boundary domains at the shoot apex.
Collapse
Affiliation(s)
- Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Ibrahim Cheddadi
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Annamaria Kiss
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Guillaume Cerutti
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Marianne Lang
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Sana Dieudonné
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Claire Lionnet
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Christophe Godin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, INRIA 46 Allée d'Italie, 69364, Lyon, France.
| |
Collapse
|
2
|
Bauer A, Ali O, Bied C, Bœuf S, Bovio S, Delattre A, Ingram G, Golz JF, Landrein B. Spatiotemporally distinct responses to mechanical forces shape the developing seed of Arabidopsis. EMBO J 2024; 43:2733-2758. [PMID: 38831122 PMCID: PMC11217287 DOI: 10.1038/s44318-024-00138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Organ morphogenesis depends on mechanical interactions between cells and tissues. These interactions generate forces that can be sensed by cells and affect key cellular processes. However, how mechanical forces, together with biochemical signals, contribute to the shaping of complex organs is still largely unclear. We address this question using the seed of Arabidopsis as a model system. We show that seeds first experience a phase of rapid anisotropic growth that is dependent on the response of cortical microtubule (CMT) to forces, which guide cellulose deposition according to shape-driven stresses in the outermost layer of the seed coat. However, at later stages of development, we show that seed growth is isotropic and depends on the properties of an inner layer of the seed coat that stiffens its walls in response to tension but has isotropic material properties. Finally, we show that the transition from anisotropic to isotropic growth is due to the dampening of cortical microtubule responses to shape-driven stresses. Altogether, our work supports a model in which spatiotemporally distinct mechanical responses control the shape of developing seeds in Arabidopsis.
Collapse
Affiliation(s)
- Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| | - Olivier Ali
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Camille Bied
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Sophie Bœuf
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
- Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de Lyon, SFR Biosciences, Lyon, 69007, France
| | - Adrien Delattre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - John F Golz
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France.
| |
Collapse
|
3
|
Rambaud-Lavigne L, Chatterjee A, Bovio S, Battu V, Lavigne Q, Gundiah N, Boudaoud A, Das P. Heterogeneous identity, stiffness and growth characterise the shoot apex of Arabidopsis stem cell mutants. Development 2024; 151:dev202810. [PMID: 38752444 DOI: 10.1242/dev.202810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Stem cell homeostasis in the shoot apical meristem involves a core regulatory feedback loop between the signalling peptide CLAVATA3 (CLV3), produced in stem cells, and the transcription factor WUSCHEL, expressed in the underlying organising centre. clv3 mutant meristems display massive overgrowth, which is thought to be caused by stem cell overproliferation, although it is unknown how uncontrolled stem cell divisions lead to this altered morphology. Here, we reveal local buckling defects in mutant meristems, and use analytical models to show how mechanical properties and growth rates may contribute to the phenotype. Indeed, clv3 mutant meristems are mechanically more heterogeneous than the wild type, and also display regional growth heterogeneities. Furthermore, stereotypical wild-type meristem organisation, in which cells simultaneously express distinct fate markers, is lost in mutants. Finally, cells in mutant meristems are auxin responsive, suggesting that they are functionally distinguishable from wild-type stem cells. Thus, all benchmarks show that clv3 mutant meristem cells are different from wild-type stem cells, suggesting that overgrowth is caused by the disruption of a more complex regulatory framework that maintains distinct genetic and functional domains in the meristem.
Collapse
Affiliation(s)
- Léa Rambaud-Lavigne
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| | - Aritra Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
- PLATIM-LyMIC, Université de Lyon, ENS de Lyon, Inserm, CNRS, SFR Biosciences US8 UAR3444, UCB Lyon 1, 69364 Lyon Cedex 07, France
| | - Virginie Battu
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| | - Quentin Lavigne
- Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| | - Pradeep Das
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69364 Lyon Cedex 07, France
| |
Collapse
|
4
|
Yadav AS, Hong L, Klees PM, Kiss A, Petit M, He X, Barrios IM, Heeney M, Galang AMD, Smith RS, Boudaoud A, Roeder AH. Growth directions and stiffness across cell layers determine whether tissues stay smooth or buckle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.22.549953. [PMID: 37546730 PMCID: PMC10401922 DOI: 10.1101/2023.07.22.549953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
From smooth to buckled, nature exhibits organs of various shapes and forms. How cellular growth patterns produce smooth organ shapes such as leaves and sepals remains unclear. Here we show that unidirectional growth and comparable stiffness across both epidermal layers of Arabidopsis sepals are essential for smoothness. We identified a mutant with ectopic ASYMMETRIC LEAVES 2 (AS2) expression on the outer epidermis. Our analysis reveals that ectopic AS2 expression causes outer epidermal buckling at early stages of sepal development, due to conflicting growth directions and unequal epidermal stiffnesses. Aligning growth direction and increasing stiffness of the outer epidermis restores smoothness. Furthermore, buckling influences auxin efflux transporter protein PIN-FORMED 1 polarity to generate outgrowth in the later stages, suggesting that buckling is sufficient to initiate outgrowths. Our findings suggest that in addition to molecular cues influencing tissue mechanics, tissue mechanics can also modulate molecular signals, giving rise to well-defined shapes.
Collapse
Affiliation(s)
- Avilash S. Yadav
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lilan Hong
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Patrick M. Klees
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, F-69342 Lyon, France
| | - Manuel Petit
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, INRIA, F-69342 Lyon, France
| | - Xi He
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Iselle M. Barrios
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Michelle Heeney
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anabella Maria D. Galang
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | - Arezki Boudaoud
- LadHyX, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau Cedex, France
| | - Adrienne H.K. Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Jung JH, Chen X, Reese TS. Cryo-EM tomography and automatic segmentation delineate modular structures in the postsynaptic density. Front Synaptic Neurosci 2023; 15:1123564. [PMID: 37091879 PMCID: PMC10117989 DOI: 10.3389/fnsyn.2023.1123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
Postsynaptic densities (PSDs) are large protein complexes associated with the postsynaptic membrane of excitatory synapses important for synaptic function including plasticity. Conventional electron microscopy (EM) typically depicts PSDs as compact disk-like structures of hundreds of nanometers in size. Biochemically isolated PSDs were also similar in dimension revealing a predominance of proteins with the ability to polymerize into an extensive scaffold; several EM studies noted their irregular contours with often small granular structures (<30 nm) and holes. Super-resolution light microscopy studies observed clusters of PSD elements and their activity-induced lateral movement. Furthermore, our recent EM study on PSD fractions after sonication observed PSD fragments (40–90 nm in size) separate from intact PSDs; however, such structures within PSDs remained unidentified. Here we examined isolated PSDs by cryo-EM tomography with our new approach of automatic segmentation that enables delineation of substructures and their quantitative analysis. The delineated substructures broadly varied in size, falling behind 30 nm or exceeding 100 nm and showed that a considerable portion of the substructures (>38%) in isolated PSDs was in the same size range as those fragments. Furthermore, substructures spanning the entire thickness of the PSD were found, large enough to contain both membrane-associated and cytoplasmic proteins of the PSD; interestingly, they were similar to nanodomains in frequency. The structures detected here appear to constitute the isolated PSD as modules of various compositions, and this modular nature may facilitate remodeling of the PSD for proper synaptic function and plasticity.
Collapse
|
6
|
Formosa-Jordan P, Landrein B. Quantifying Gene Expression Domains in Plant Shoot Apical Meristems. Methods Mol Biol 2023; 2686:537-551. [PMID: 37540376 DOI: 10.1007/978-1-0716-3299-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The shoot apical meristem is the plant tissue that produces the plant aerial organs such as flowers and leaves. To better understand how the shoot apical meristem develops and adapts to the environment, imaging developing shoot meristems expressing fluorescence reporters through laser confocal microscopy is becoming increasingly important. Yet, there are not many computational pipelines enabling a systematic and high-throughput characterization of the produced microscopy images. This chapter provides a simple method to analyze 3D images obtained through laser scanning microscopy and quantitatively characterize radially or axially symmetric 3D fluorescence domains expressed in a tissue or organ by a reporter. Then, it presents different computational pipelines aiming at performing high-throughput quantitative image analysis of gene expression in plant inflorescence and floral meristems. This methodology has notably enabled the quantitative characterization of how stem cells respond to environmental perturbations in the Arabidopsis thaliana inflorescence meristem and will open new avenues in the use of quantitative analysis of gene expression in shoot apical meristems. Overall, the presented methodology provides a simple framework to analyze quantitatively gene expression domains from 3D confocal images at the tissue and organ level, which can be applied to shoot meristems and other organs and tissues.
Collapse
Affiliation(s)
- Pau Formosa-Jordan
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Science (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | - Benoit Landrein
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| |
Collapse
|
7
|
Åhl H, Zhang Y, Jönsson H. High-Throughput 3D Phenotyping of Plant Shoot Apical Meristems From Tissue-Resolution Data. FRONTIERS IN PLANT SCIENCE 2022; 13:827147. [PMID: 35519801 PMCID: PMC9062647 DOI: 10.3389/fpls.2022.827147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Confocal imaging is a well-established method for investigating plant phenotypes on the tissue and organ level. However, many differences are difficult to assess by visual inspection and researchers rely extensively on ad hoc manual quantification techniques and qualitative assessment. Here we present a method for quantitatively phenotyping large samples of plant tissue morphologies using triangulated isosurfaces. We successfully demonstrate the applicability of the approach using confocal imaging of aerial organs in Arabidopsis thaliana. Automatic identification of flower primordia using the surface curvature as an indication of outgrowth allows for high-throughput quantification of divergence angles and further analysis of individual flowers. We demonstrate the throughput of our method by quantifying geometric features of 1065 flower primordia from 172 plants, comparing auxin transport mutants to wild type. Additionally, we find that a paraboloid provides a simple geometric parameterisation of the shoot inflorescence domain with few parameters. We utilise parameterisation methods to provide a computational comparison of the shoot apex defined by a fluorescent reporter of the central zone marker gene CLAVATA3 with the apex defined by the paraboloid. Finally, we analyse the impact of mutations which alter mechanical properties on inflorescence dome curvature and compare the results with auxin transport mutants. Our results suggest that region-specific expression domains of genes regulating cell wall biosynthesis and local auxin transport can be important in maintaining the wildtype tissue shape. Altogether, our results indicate a general approach to parameterise and quantify plant development in 3D, which is applicable also in cases where data resolution is limited, and cell segmentation not possible. This enables researchers to address fundamental questions of plant development by quantitative phenotyping with high throughput, consistency and reproducibility.
Collapse
Affiliation(s)
- Henrik Åhl
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Yi Zhang
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
- Computational Biology and Biological Physics, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
9
|
Tissue folding at the organ-meristem boundary results in nuclear compression and chromatin compaction. Proc Natl Acad Sci U S A 2021; 118:2017859118. [PMID: 33608459 PMCID: PMC7923354 DOI: 10.1073/pnas.2017859118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Artificial mechanical perturbations affect chromatin in animal cells in culture. Whether this is also relevant to growing tissues in living organisms remains debated. In plants, aerial organ emergence occurs through localized outgrowth at the periphery of the shoot apical meristem, which also contains a stem cell niche. Interestingly, organ outgrowth has been proposed to generate compression in the saddle-shaped organ-meristem boundary domain. Yet whether such growth-induced mechanical stress affects chromatin in plant tissues is unknown. Here, by imaging the nuclear envelope in vivo over time and quantifying nucleus deformation, we demonstrate the presence of active nuclear compression in that domain. We developed a quantitative pipeline amenable to identifying a subset of very deformed nuclei deep in the boundary and in which nuclei become gradually narrower and more elongated as the cell contracts transversely. In this domain, we find that the number of chromocenters is reduced, as shown by chromatin staining and labeling, and that the expression of linker histone H1.3 is induced. As further evidence of the role of forces on chromatin changes, artificial compression with a MicroVice could induce the ectopic expression of H1.3 in the rest of the meristem. Furthermore, while the methylation status of chromatin was correlated with nucleus deformation at the meristem boundary, such correlation was lost in the h1.3 mutant. Altogether, we reveal that organogenesis in plants generates compression that is able to have global effects on chromatin in individual cells.
Collapse
|
10
|
Bobrovskikh A, Doroshkov A, Mazzoleni S, Cartenì F, Giannino F, Zubairova U. A Sight on Single-Cell Transcriptomics in Plants Through the Prism of Cell-Based Computational Modeling Approaches: Benefits and Challenges for Data Analysis. Front Genet 2021; 12:652974. [PMID: 34093652 PMCID: PMC8176226 DOI: 10.3389/fgene.2021.652974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Single-cell technology is a relatively new and promising way to obtain high-resolution transcriptomic data mostly used for animals during the last decade. However, several scientific groups developed and applied the protocols for some plant tissues. Together with deeply-developed cell-resolution imaging techniques, this achievement opens up new horizons for studying the complex mechanisms of plant tissue architecture formation. While the opportunities for integrating data from transcriptomic to morphogenetic levels in a unified system still present several difficulties, plant tissues have some additional peculiarities. One of the plants' features is that cell-to-cell communication topology through plasmodesmata forms during tissue growth and morphogenesis and results in mutual regulation of expression between neighboring cells affecting internal processes and cell domain development. Undoubtedly, we must take this fact into account when analyzing single-cell transcriptomic data. Cell-based computational modeling approaches successfully used in plant morphogenesis studies promise to be an efficient way to summarize such novel multiscale data. The inverse problem's solutions for these models computed on the real tissue templates can shed light on the restoration of individual cells' spatial localization in the initial plant organ-one of the most ambiguous and challenging stages in single-cell transcriptomic data analysis. This review summarizes new opportunities for advanced plant morphogenesis models, which become possible thanks to single-cell transcriptome data. Besides, we show the prospects of microscopy and cell-resolution imaging techniques to solve several spatial problems in single-cell transcriptomic data analysis and enhance the hybrid modeling framework opportunities.
Collapse
Affiliation(s)
- Aleksandr Bobrovskikh
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alexey Doroshkov
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Ulyana Zubairova
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
11
|
Establishment of a morphological atlas of the Caenorhabditis elegans embryo using deep-learning-based 4D segmentation. Nat Commun 2020; 11:6254. [PMID: 33288755 PMCID: PMC7721714 DOI: 10.1038/s41467-020-19863-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 11/02/2020] [Indexed: 01/17/2023] Open
Abstract
The invariant development and transparent body of the nematode Caenorhabditis elegans enables complete delineation of cell lineages throughout development. Despite extensive studies of cell division, cell migration and cell fate differentiation, cell morphology during development has not yet been systematically characterized in any metazoan, including C. elegans. This knowledge gap substantially hampers many studies in both developmental and cell biology. Here we report an automatic pipeline, CShaper, which combines automated segmentation of fluorescently labeled membranes with automated cell lineage tracing. We apply this pipeline to quantify morphological parameters of densely packed cells in 17 developing C. elegans embryos. Consequently, we generate a time-lapse 3D atlas of cell morphology for the C. elegans embryo from the 4- to 350-cell stages, including cell shape, volume, surface area, migration, nucleus position and cell-cell contact with resolved cell identities. We anticipate that CShaper and the morphological atlas will stimulate and enhance further studies in the fields of developmental biology, cell biology and biomechanics. The systematic characterization of C. elegans morphology during development has yet to be performed. Here, the authors produce a 3D atlas of C. elegans morphology from 17 embryos and 54 developmental stages, using an automated pipeline, CShaper (combining segmentation of fluorescently labeled membranes with automated cell lineage tracing).
Collapse
|
12
|
Takatani S, Verger S, Okamoto T, Takahashi T, Hamant O, Motose H. Microtubule Response to Tensile Stress Is Curbed by NEK6 to Buffer Growth Variation in the Arabidopsis Hypocotyl. Curr Biol 2020; 30:1491-1503.e2. [DOI: 10.1016/j.cub.2020.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/11/2020] [Accepted: 02/10/2020] [Indexed: 01/05/2023]
|
13
|
Long Y, Cheddadi I, Mosca G, Mirabet V, Dumond M, Kiss A, Traas J, Godin C, Boudaoud A. Cellular Heterogeneity in Pressure and Growth Emerges from Tissue Topology and Geometry. Curr Biol 2020; 30:1504-1516.e8. [PMID: 32169211 DOI: 10.1016/j.cub.2020.02.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 01/22/2023]
Abstract
Cell-to-cell heterogeneity prevails in many systems, as exemplified by cell growth, although the origin and function of such heterogeneity are often unclear. In plants, growth is physically controlled by cell wall mechanics and cell hydrostatic pressure, alias turgor pressure. Whereas cell wall heterogeneity has received extensive attention, the spatial variation of turgor pressure is often overlooked. Here, combining atomic force microscopy and a physical model of pressurized cells, we show that turgor pressure is heterogeneous in the Arabidopsis shoot apical meristem, a population of stem cells that generates all plant aerial organs. In contrast with cell wall mechanical properties that appear to vary stochastically between neighboring cells, turgor pressure anticorrelates with cell size and cell neighbor number (local topology), in agreement with the prediction by our model of tissue expansion, which couples cell wall mechanics and tissue hydraulics. Additionally, our model predicts two types of correlations between pressure and cellular growth rate, where high pressure may lead to faster- or slower-than-average growth, depending on cell wall extensibility, yield threshold, osmotic pressure, and hydraulic conductivity. The meristem exhibits one of these two regimes, depending on conditions, suggesting that, in this tissue, water conductivity may contribute to growth control. Our results unravel cell pressure as a source of patterned heterogeneity and illustrate links between local topology, cell mechanical state, and cell growth, with potential roles in tissue homeostasis.
Collapse
Affiliation(s)
- Yuchen Long
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France.
| | - Ibrahim Cheddadi
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Gabriella Mosca
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Vincent Mirabet
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France; Lycée A. et L. Lumière, 69372 Lyon Cedex 08, France
| | - Mathilde Dumond
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Annamaria Kiss
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Jan Traas
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, 69342 Lyon, France.
| |
Collapse
|
14
|
Lee KJI, Bushell C, Koide Y, Fozard JA, Piao C, Yu M, Newman J, Whitewoods C, Avondo J, Kennaway R, Marée AFM, Cui M, Coen E. Shaping of a three-dimensional carnivorous trap through modulation of a planar growth mechanism. PLoS Biol 2019; 17:e3000427. [PMID: 31600203 PMCID: PMC6786542 DOI: 10.1371/journal.pbio.3000427] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
Leaves display a remarkable range of forms, from flat sheets with simple outlines to cup-shaped traps. Although much progress has been made in understanding the mechanisms of planar leaf development, it is unclear whether similar or distinctive mechanisms underlie shape transformations during development of more complex curved forms. Here, we use 3D imaging and cellular and clonal analysis, combined with computational modelling, to analyse the development of cup-shaped traps of the carnivorous plant Utricularia gibba. We show that the transformation from a near-spherical form at early developmental stages to an oblate spheroid with a straightened ventral midline in the mature form can be accounted for by spatial variations in rates and orientations of growth. Different hypotheses regarding spatiotemporal control predict distinct patterns of cell shape and size, which were tested experimentally by quantifying cellular and clonal anisotropy. We propose that orientations of growth are specified by a proximodistal polarity field, similar to that hypothesised to account for Arabidopsis leaf development, except that in Utricularia, the field propagates through a highly curved tissue sheet. Independent evidence for the polarity field is provided by the orientation of glandular hairs on the inner surface of the trap. Taken together, our results show that morphogenesis of complex 3D leaf shapes can be accounted for by similar mechanisms to those for planar leaves, suggesting that simple modulations of a common growth framework underlie the shaping of a diverse range of morphologies. Many plant and animal organs derive from tissue sheets, but how are they shaped to create the diversity of forms observed in nature? This study uses a combination of imaging and mathematical modelling to show how carnivorous plant traps shape themselves in 3D by a growth framework oriented by tissue polarity, similar to that found in planar leaves.
Collapse
Affiliation(s)
- Karen J. I. Lee
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Claire Bushell
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Yohei Koide
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - John A. Fozard
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Chunlan Piao
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, Zhejiang, China
| | - Man Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jacob Newman
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Christopher Whitewoods
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jerome Avondo
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Richard Kennaway
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Athanasius F. M. Marée
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Minlong Cui
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, Zhejiang, China
- * E-mail: (EC); (MC)
| | - Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (EC); (MC)
| |
Collapse
|