1
|
Xu S, Yang Z, Li L, Cui Y, Chen Z. MiR-497-5p Ameliorates Deep Venous Thrombosis by Facilitating Endothelial Progenitor Cell Migration and Angiogenesis by Regulating LITAF. Biochem Genet 2024:10.1007/s10528-024-10927-x. [PMID: 39432130 DOI: 10.1007/s10528-024-10927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024]
Abstract
Deep vein thrombosis (DVT) is a clinical manifestation of venous thromboembolism and a major global burden of cardiovascular disease. In recent years, the crucial role of microRNAs (miRNAs) in cardiovascular disease has been confirmed. Here, we aimed to investigate the specific effect of miR-497-5p on DVT. The endothelial progenitor cells (EPCs) were obtained from the bone marrow of newborn rats and transfected with miR-497-5p mimics or/and pcDNA3.1/lipopolysaccharide-induced TNF factor (LITAF). The proliferation and migration abilities of EPCs were detected using CCK-8 assay and transwell assay, respectively. Angiogenesis was evaluated using tube formation assay. The interaction of miR-497-5p and LITAF was confirmed by luciferase reporter experiment. DVT rat model in vivo was established by inferior vena cava (IVC) ligation in Sprague-Dawley rats. Histological analysis of IVC tissue was conducted by hematoxylin-eosin staining. We found that enhancing miR-497-5p expression facilitated the abilities of proliferation and migration of EPCs. Additionally, overexpression of miR-497-5p increased the capacity of EPCs to form capillary tubes on Matrigel. LITAF was found to be targeted by miR-497-5p and negatively regulated by miR-497-5p. Overexpression of LITAF counteracted the miR-497-5p overexpression's effect on the proliferation, migration, and angiogenesis abilities of EPCs. Moreover, the injection of agomir-miR-497-5p alleviated thrombus formation, reduced thrombus weight, and reduced the serum level of D-dimer in DVT rat model by reducing LITAF expression. This study suggests that miR-497-5p alleviates DVT by facilitating EPCs proliferation, migration, and angiogenesis by targeting LITAF.
Collapse
Affiliation(s)
- Shuguo Xu
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Zhihong Yang
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Longbiao Li
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Yuansheng Cui
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China.
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No.26 Shengli Street, Jiang'an District, Wuhan, 430014, China.
| |
Collapse
|
2
|
Wang Z, Ren M, Liu W, Wu J, Tang P. Role of cell division cycle-associated proteins in regulating cell cycle and promoting tumor progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189147. [PMID: 38955314 DOI: 10.1016/j.bbcan.2024.189147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The cell division cycle-associated protein (CDCA) family is important in regulating cell division. High CDCA expression is significantly linked to tumor development. This review summarizes clinical and basic studies on CDCAs conducted in recent decades. Furthermore, it systematically introduces the molecular expression and function, key mechanisms, cell cycle regulation, and roles of CDCAs in tumor development, cell proliferation, drug resistance, invasion, and metastasis. Additionally, it presents the latest research on tumor diagnosis, prognosis, and treatment targeting CDCAs. These findings are pivotal for further in-depth studies on the role of CDCAs in promoting tumor development and provide theoretical support for their application as new anti-tumor targets.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Minshijing Ren
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Jin Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China; Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Peng Tang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Yu SL, Koo H, Kang Y, Jeon HJ, Kang M, Choi DH, Lee SY, Son JW, Lee DC. Exosomal miR-196b secreted from bronchial epithelial cells chronically exposed to low-dose PM 2.5 promotes invasiveness of adjacent and lung cancer cells. Toxicol Lett 2024; 399:9-18. [PMID: 38971455 DOI: 10.1016/j.toxlet.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2023] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Fine particulate matter (PM2.5) is a risk factor for pulmonary diseases and lung cancer, and inhaled PM2.5 is mainly deposited in the bronchial epithelium. In this study, we investigated the effect of long-term exposure to low-dose PM2.5 on BEAS-2B cells derived from the normal bronchial epithelium. BEAS-2B cells chronically exposed to a concentration of 5 µg/ml PM2.5 for 30 passages displayed the phenotype promoting epithelial-mesenchymal transition (EMT) and cell invasion. Cellular internalization of exosomes (designated PM2.5 Exo) extracted from BEAS-2B cells chronically exposed to low-dose PM2.5 promoted cell invasion in vitro and metastatic potential in vivo. Hence, to identify the key players driving phenotypic alterations, we analyzed microRNA (miRNA) expression profiles in PM2.5 Exo. Five miRNAs with altered expression were selected: miRNA-196b-5p, miR-135a-2-5p, miR-3117-3p, miR-218-5p, and miR-497-5p. miR-196b-5p was the most upregulated in both BEAS-2B cells and isolated exosomes after PM2.5 exposure. In a functional validation study, genetically modified exosomes overexpressing a miR-196b-5p mimic induced an enhanced invasive phenotype in BEAS-2B cells. Conversely, miR-196b-5p inhibition diminished the PM2.5-enhanced EMT and cell invasion. These findings indicate that exosomal miR-196b-5p may be a candidate biomarker for predicting the malignant behavior of the bronchial epithelium and a therapeutic target for inhibiting PM2.5-triggered pathogenesis.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea.
| | - Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yujin Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hye Jin Jeon
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Su Yel Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Ji Woong Son
- Division Pulmonology, Department of Internal Medicine, Konyang, University Hospital, Daejeon 35365, Republic of Korea
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Chen X, Zhou L, Han Y, Lin S, Zhou L, Wang W, Zhang W, Xuan S, Yu J, Zheng W. miR-497-5p Expression and Biological Activity in Gastric Cancer. J Cancer 2024; 15:3995-4006. [PMID: 38911367 PMCID: PMC11190777 DOI: 10.7150/jca.90087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2023] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background: This research aims to investigate the expression and biological roles of miR-497-5p in gastric cancer (GC), and its possible mechanisms. Methods: Real Time Quantitative PCR (RT-qPCR) was performed to detect miR-497-5p in GC and normal tissues, as well as GC cell lines versus normal gastric mucosal cells (GES-1). The effects of miR-497-5p overexpression on proliferation were measured by the cell counting kit-8 (CCK8) assay and ethidium bromide (EdU) assay. Flow cytometry was used to assess the cell cycle. The migration and invasion were evaluated by scratch assay and Transwell assay, respectively. Gene targets of miR-497-5p were predicted using "multiMiR" R package combined with mirTarPathway database. And then luciferase reporter experiment was used to evaluate the activity of ERBB2 by miR-497-5p mimics in GC cell line. Besides, functional experiments were performed to verify the impact of miR-497-5p /ERBB2 on phenotypes of GC cells. Results: Compared with the normal tissues and mucosal cells, miR-497-5p was reduced in GC tissues and GC cell lines. miR-497-5p significantly decreased proliferation, migration, and invasion capacity, with an elevated apoptosis ratio of gastric cancer cells. Bioinformatics indicated that ERBB2 might be the potential target of miR-497-5p Dual-luciferase reporter experiments showed it adversely regulated ERBB2 3'UTR luciferase activity. The expression of ERBB2 in GC tissues and cells is significantly higher compared to normal tissues and cells. Over-expression of ERBB2 in gastric cancer cells significantly reduced miR-497-5p's inhibitory effect on the malignant behavior of GC cells. Conclusion: miR-497-5p was significantly down-regulated in GC tissues and cells, which inhibited the malignant features of GC cells by targeting ERBB2.
Collapse
Affiliation(s)
- Xin Chen
- Department of Medical Laboratory, Dongtai People's Hospital, Nantong University School of Medicine,Dongtai 224200, Jiangsu, P. R. China
| | - Linlin Zhou
- Department of Oncology, Dongtai People's Hospital, Nantong University School of Medicine, Dongtai 224200, Jiangsu, P. R. China
| | - Yaqin Han
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Suping Lin
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Li Zhou
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Wei Wang
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Wei Zhang
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Shihai Xuan
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Jianxiu Yu
- Department of Medical Laboratory, Dongtai People's Hospital, Dongtai 224200, Jiangsu, P. R. China
| | - Wenjie Zheng
- Clinical Trial Center, Affiliated Hospital of Nantong University, Nantong 226001, P. R. China
| |
Collapse
|
5
|
Tan J, Chen F, Wang J, Li J, Ouyang B, Li X, Li Y, Zhang W, Jiang Y. ALKBH5 promotes the development of lung adenocarcinoma by regulating the polarization of M2 macrophages through CDCA4. Gene 2024; 895:147975. [PMID: 37949419 DOI: 10.1016/j.gene.2023.147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer, with high morbidity and mortality. N6-methyladenosine (m6A) is an important regulator of LUAD progression. Here, we investigated the potential biological functions of ALKBH5 (a m6A demethylated enzyme) and cell division cycle associated protein 4 (CDCA4) in the progression of LUAD. METHODS The expressions of CDCA4, METTL3, ALKBH5, FTO, YTHDC2 and YTHDC1 mRNA and proteins in LUAD and adjacent tissues, as well as NCI-H1299 and NCI-H157 cells were detected by RT-qPCR and western blot. Meanwhile, the role of ALKBH5 and CDCA4 in macrophage polarization was explored through tumor formation in Lewis lung carcinoma (LLC) mice and the co-culture system of NCI-H1299 and NCI-H157/THP-1 cells. Cell characterization was further analyzed. The expression of Ki-67 in tumor tissue was tested by immunohistochemistry. The scale of M1 and M2 macrophages was determined by flow cytometry. RESULTS CDCA4 was significantly overexpressed in NCI-H1299 and NCI-H157 cell lines compared with BEAS-2B cells. The fold enrichment of CDCA4 m6A level in the overexpression (oe)-METTL3 or short hairpin (sh)-ALKBH5 cells was enhanced. Overexpression of CDCA4 promoted the cell viability, proliferation and migration, and inhibited apoptosis, which was reversed by sh-ALKBH5 intervention. Overexpression of YTHDC2 (not YTHDC1) inhibited the effect of CDCA4 on sh-ALKBH5 cells. sh-CDCA4 inhibited tumor growth and weight of LLC cells in mice, and promoted M1/M2 ratio in LLC mice and NCI-H1299/THP-1 and NCI-H157/THP-1 co-culture systems. Oe-CDCA4 promoted the volume and weight of tumor and inhibited the M1/M2 ratio of tumor tissue in LLC mice, but was reversed by sh-ALKBH5 intervention. CONCLUSION m6A demethylase ALKBH5 promotes the development of LUAD through CDCA4 regulation of malignant characterization and M1/M2 macrophage polarization.
Collapse
Affiliation(s)
- Jianlong Tan
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Fengyu Chen
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jufen Wang
- Department of Respiratory Medicine,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jianmin Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Ouyang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiuying Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yun Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Weidong Zhang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
6
|
Li R, Chen Y, Yang B, Li Z, Wang S, He J, Zhou Z, Li X, Li J, Sun Y, Guo X, Wang X, Wu Y, Zhang W, Guo G. Integrated bioinformatics analysis and experimental validation identified CDCA families as prognostic biomarkers and sensitive indicators for rapamycin treatment of glioma. PLoS One 2024; 19:e0295346. [PMID: 38181024 PMCID: PMC10769025 DOI: 10.1371/journal.pone.0295346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
The cell division cycle associated (CDCA) genes regulate the cell cycle; however, their relationship with prognosis in glioma has been poorly reported in the literature. The Cancer Genome Atlas (TCGA) was utilized to probe the CDCA family in relation to the adverse clinical features of glioma. Glioma single-cell atlas reveals specific expression of CDCA3, 4, 5, 8 in malignant cells and CDCA7 in neural progenitor cells (NPC)-like malignant cells. Glioma data from TCGA, the China Glioma Genome Atlas Project (CGGA) and the gene expression omnibus (GEO) database all demonstrated that CDCA2, 3, 4, 5, 7 and 8 are prognostic markers for glioma. Further analysis identified CDCA2, 5 and 8 as independent prognostic factors for glioma. Lasso regression-based risk models for CDCA families demonstrated that high-risk patients were characterized by high tumor mutational burden (TMB), low levels of microsatellite instability (MSI), and low tumor immune dysfunction and rejection (TIDE) scores. These pointed to immunotherapy for glioma as a potentially viable treatment option Further CDCA clustering suggested that the high CDCA subtype exhibited a high macrophage phenotype and was associated with a higher antigen presentation capacity and high levels of immune escape. In addition, hsa-mir-15b-5p was predicted to be common regulator of CDCA3 and CDCA4, which was validated in U87 and U251 cells. Importantly, we found that CDCAs may indicate response to drug treatment, especially rapamycin, in glioma. In summary, our results suggest that CDCAs have potential applications in clinical diagnosis and as drug sensitivity markers in glioma.
Collapse
Affiliation(s)
- Ren Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shule Wang
- Department of General and Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianhang He
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zihan Zhou
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuepeng Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiayu Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqi Sun
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongqiang Wu
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Li C, Fu Y, He Y, Huang N, Yue J, Miao Y, Lv J, Xiao Y, Deng R, Zhang C, Huang M. Knockdown of LINC00511 enhances radiosensitivity of lung adenocarcinoma via regulating miR-497-5p/SMAD3. Cancer Biol Ther 2023; 24:2165896. [PMID: 36861928 PMCID: PMC9988350 DOI: 10.1080/15384047.2023.2165896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/03/2023] Open
Abstract
As the most common histological subtype of primary lung cancer, lung adenocarcinoma (LUAD) causes enormous cancer deaths worldwide. Radiotherapy has been frequently used in LUAD cases, and radiosensitivity is vital for LUAD therapy. This research sought to explore the genetic factors affecting radiosensitivity in LUAD and inner mechanisms. LINC00511, miR-497-5p, and SMAD3 expression in LUAD cells were detected via qRT-PCR and western blot. CCK-8 assays, colony formation, and flow cytometry assays were employed to explore the cell viability, apoptosis, and radiosensitivity in PC-9 and A549 cells. The targeting relationship between LINC00511, miR-497-5p, and SMAD3 was verified by dual luciferase reporter assay. Furthermore, xenograft experiments were performed for the in vivo verification. In conclusion, LINC00511 was overexpressed in LUAD cells, which downregulated downstream miR-497-5p expression and mediately led to SMAD3 activation. LINC00511 downregulation suppressed cell viability while enhanced apoptosis rate in LUAD cells. Also, LINC00511 and SMAD3 were overexpressed, while miR-497-5p was downregulated in LUAD cells exposed to 4Gy irradiation treatment. Moreover, LINC00511 inhibition could block SMAD3 expression and promoted the radiosensitivity both in vitro and in vivo. These findings uncover LINC00511 knockdown promoted miR-497-5p expression and subsequently led to lower SMAD3 level, which enhanced radiosensitivity in LUAD cells. LINC00511/miR-497-5p/SMAD3 axis could be of considerable potential to enhance radiosensitivity in LUAD.
Collapse
Affiliation(s)
- Chongxin Li
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Yanyan Fu
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Yongmei He
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Nan Huang
- Department of Pulmonary, the Shizong Hospital of First People’s Hospital in Qujing, Qujing, P.R. China
| | - Jun Yue
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Yi Miao
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Jialing Lv
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Youchuan Xiao
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Ruoyu Deng
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
| | - Chao Zhang
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
- CONTACT Chao zhang
| | - Meifang Huang
- Department of Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, P.R. China
- Meifang Huang Department of Surgical Oncology, the First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan655000, P.R. China
| |
Collapse
|
8
|
Gao X, Yang X, He F, Liu X, Liu D, Yuan X. Downregulation of microRNA‑494 inhibits cell proliferation in lung squamous cell carcinoma via the induction of PUMA‑α‑mediated apoptosis. Exp Ther Med 2023; 25:242. [PMID: 37153893 PMCID: PMC10160919 DOI: 10.3892/etm.2023.11941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2022] [Accepted: 01/16/2023] [Indexed: 05/10/2023] Open
Abstract
Increased evidence has shown that abnormal microRNA (miRNA) plays pivotal roles in numerous types of cancer. However, their expression, function and mechanism in lung squamous cell carcinoma (LSCC) remains to be fully elucidated. The aim of the present study was to investigate the suppressive role of miR-494 in LSCC progression and elucidate its regulatory mechanism. By analyzing expression profiles of miRNAs in LSCC tissues using miRNA microarray, it was revealed that miR-494 was significantly upregulated in 22 pairs of LSCC tissues. Subsequently, reverse transcription-quantitative PCR was performed to determine the expression of miR-494 and p53-upregulated-modulator-of-apoptosis-α (PUMA-α). Western blot analysis was conducted to examine protein levels. Dual-luciferase reporter assay was used to confirm the binding between miR-494 and PUMA-α. Annexin V-fluoresceine isothiocyanate/propidium iodide staining and CCK-8 assays were employed to determine cell apoptosis and cell viability, respectively. It was also revealed that miR-494 was highly expressed in LSCC cell lines compared with that in 16HBE cells. Further experiments confirmed that knockdown of miR-494 reduced cell viability and induced LSCC apoptosis. Bioinformatics analysis predicted that miR-494 could potentially target PUMA-α; also known as Bcl-2-binding component 3, a pro-apoptotic factor, and an inverse correlation between the expression of miR-494 and PUMA-α mRNA levels in LSCC tissues was found. Furthermore, PUMA-α inhibition could reverse the promoting effect of miR-494 knockdown on apoptosis in LSCC cells. Taken together, these findings demonstrated that miR-494 functions as an oncogene by targeting PUMA-α in LSCC, and miR-494 may serve as a novel therapeutic target for treating LSCC.
Collapse
Affiliation(s)
- Xinyuan Gao
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Xiaohua Yang
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Fengzhen He
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Xue Liu
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Ding Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiaomei Yuan
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
- Correspondence to: Professor Xiaomei Yuan, Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, 88 Jiankang Road, Weihui, Xinxiang, Henan 453100, P.R. China
| |
Collapse
|
9
|
Tan J, Chen F, Ouyang B, Li X, Zhang W, Gao X. CDCA4 as a novel molecular biomarker of poor prognosis in patients with lung adenocarcinoma. Front Oncol 2022; 12:865756. [PMID: 36185189 PMCID: PMC9520321 DOI: 10.3389/fonc.2022.865756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Because of the high incidence and poor prognoses of lung adenocarcinoma (LUAD), it is essential to identify cost-effective treatment options and accurate and reliable prognostic biomarkers. CDCA4 upregulation has been identified in many cancers. However, the prognostic importance of CDCA4 and its role in LUAD remain unknown. Methods CDCA4 expression was assessed through IHC, Western blotting (WB) and RT-PCR. The Cancer Genome Atlas (TCGA) provided data from 513 patients to study the expression and prognostic relevance of CDCA4 in LUAD. This study used gene set enrichment analyses (GSEA), gene ontology and KEGG pathway analyses for elucidating potential mechanisms underpinning the function of CDCA4 in LUAD. We also investigated correlations between immune infiltration and CDCA4 expression with single specimen GSEA (ssGSEA). Results According to database analysis and identification of patient tissue samples, CDCA4 expression in tumour tissues surpassed that in normal tissues (P< 0.001). Increased CDCA4 expression was positively correlated with a higher T, N, pathologic stage and poor primary therapy outcome. In addition, the Kaplan–Meier plotter exhibited that an elevated CDCA4 expression was related to worse disease-specific survival(DSS) and overall survival (OS) (DSS HR= 5.145, 95% CI=3.413-7.758, P<0.001; OS HR=3.570, 95% CI=2.472-5.155, P<0.001). Then multivariate COX regression analyses indicated that the CDCA4 gene was an independent risk consideration for prognoses. GO and KEGG results showed that CDCA4 and its neighbouring genes were enriched in the cell cycle and DNA replication. As determined by GSEA, CDCA4 was related to various immune-related signalling pathways (SPs), Homologous recombination, DNA replication and the cell cycle. SsGSEA analysis showed a significant association between CDCA4 expression and Th2 cells, mast cells, eosinophils and Th17 cells. Conclusions CDCA4 expression is increased in LUAD and is a potential predictive biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jianlong Tan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Respiratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, China
| | - Fengyu Chen
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Ouyang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiuying Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Weidong Zhang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xinglin Gao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Respiratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Geriatrics Institute, Guangzhou, China
- *Correspondence: Xinglin Gao,
| |
Collapse
|