1
|
Zheng Q, Wang L, Hao L, Wu J, Fu R, Du L, Ren Y, Fang K. Synergetic construction of color and multifunction for sustainable lyocell fabric by Coptis chinensis and BTCA. Int J Biol Macromol 2024; 281:136595. [PMID: 39414195 DOI: 10.1016/j.ijbiomac.2024.136595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
In the context of escalating standards of living, the demand for healthy and multifunctional textiles is increasing. As a kind of cellulose macromolecular-based material, lyocell fiber has low carbon, is environmentally friendly, and demonstrates superb performance. The utilization of some Chinese herb dyes solves the pollution problem in the color and functionality construction of lyocell fabric by synthetic dyes and finishing agents. However, problems such as low dye utilization rate, light apparent color, and weak functionality of dyed fabrics remain, thus limiting the further application of the powerful combination of lyocell fabric and Chinese herb dyes. Here, a color and multifunction construction method of lyocell fabric with Coptis chinensis and 1,2,3,4-butanetetracarboxylic acid was proposed. Under the optimal color construction condition, the color depth increased remarkably, and the dye exhaustion rate of the modified fabric enhanced by 332.3 % compared with the unmodified one. The multifunction construction imparted outstanding fuzz and pilling inhibition, fibrillation resistance, and antiwrinkle performance for lyocell fabrics. Moreover, the dyed lyocell fabric exhibited considerable UV protective activity and antibacterial property against Staphylococcus aureus. This work provided an efficient color and multifunction construction technology for lyocell fabric with high value added.
Collapse
Affiliation(s)
- Qiumeng Zheng
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Lei Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Longyun Hao
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, Qingdao 266071, China; State Key Laboratory of Biofibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Jing Wu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Ranran Fu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Lixin Du
- Luthai Textile Co., Ltd., Zibo 255100, China
| | - Yanfei Ren
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, Qingdao 266071, China; State Key Laboratory of Biofibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China; Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, Qingdao 266071, China; State Key Laboratory of Biofibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Shen R, Cheng K, Li G, Pan Z, Qiaolongbatu X, Wang Y, Ma C, Huang X, Wang L, Li W, Wang Y, Jing L, Fan G, Wu Z. Alisol A, the Eye-Entering Ingredient of Alisma orientale, Relieves Macular Edema Through TNF-α as Revealed by UPLC-Triple-TOF/MS, Network Pharmacology, and Zebrafish Verification. Drug Des Devel Ther 2024; 18:3361-3382. [PMID: 39100223 PMCID: PMC11297588 DOI: 10.2147/dddt.s468119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Alisma orientale (AO, Alisma orientale (Sam). Juzep) has been widely employed for the treatment of macular edema (ME) in traditional Chinese medicine due to its renowned water-relief properties. Nonetheless, the comprehensive investigation of AO in alleviating ME remained unexplored. This study aims to identify the active components of AO that target the eye and investigate its pharmacological effects and mechanisms on ME. Methods The study commenced with UPLC-Triple-TOF/MS analysis to identify the primary constituents of AO. Zebrafish eye tissues were then analyzed after a five-day administration of AO to detect absorbed components and metabolites. Subsequently, network pharmacology, molecular docking, and molecular dynamics simulations were employed to predict the mechanisms of ME treatment via biological target pathways. In vivo experiments were conducted to corroborate the pharmacological actions and mechanisms. Results A total of 7 compounds, consisting of 2 prototype ingredients and 5 metabolites (including isomers), were found to traverse the blood-eye barrier and localized within eye tissues. Network pharmacology results showed that AO played a role in the treatment of ME mainly by regulating the pathway network of PI3K-AKT and MAPK with TNF-α centered. Computational analyses suggested that 11-dehydro-16-oxo-24-deoxy-alisol A, a metabolite of alisol A, mitigates edema through TNF-α inhibition. Furthermore, zebrafish fundus confocal experiments and HE staining of eyes confirmed the attenuating effects of alisol A on fundus angiogenesis and ocular edema, representing the first report of AO's ME-inhibitory effects. Conclusion In this study, computational analyses with experimental validation were used to understand the biological activity and mechanism of alisol A in the treatment of ME. The findings shed light on the bioactive constituents and pharmacological actions of AO, offering valuable insights and a theoretical foundation for its clinical application in managing ME.
Collapse
Affiliation(s)
- Rui Shen
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Kebin Cheng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Zhendong Pan
- Department of Clinical Pharmacy, Eye and ENT Hospital, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Xijier Qiaolongbatu
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Yuting Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Cui Ma
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Xucong Huang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Li Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Wenjing Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Yuanyuan Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Lili Jing
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| |
Collapse
|
3
|
Ye X, Yang C, Xu H, He Q, Sheng L, Lin J, Wang X. Exploring the therapeutic mechanisms of Coptidis Rhizoma in gastric precancerous lesions: a network pharmacology approach. Discov Oncol 2024; 15:211. [PMID: 38837097 PMCID: PMC11153449 DOI: 10.1007/s12672-024-01070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Gastric precancerous lesions are a critical stage in the development of gastric cancer or gastric adenocarcinoma, and their outcome plays an important role in the malignant progression of gastric cancer. Coptidis Rhizoma has a good effect on Gastric precancerous lesions. However, the specific mechanisms of its action remain incompletely elucidated. METHODS Network pharmacology and molecular docking techniques were used to explore the active ingredients and molecular mechanism of Coptidis Rhizoma in treating gastric precancerous lesions. The active compounds of Coptidis Rhizoma and their potential gastric precancerous lesions related targets were obtained from TCMSP, GeneCards, and OMIM databases. An interaction network based on protein-protein interactions (PPIs) was constructed to visualize the interactions between hub genes. Analysis of GO enrichment and KEGG pathway were conducted using the DAVID database. An investigation of interactions between active compounds and potential targets was carried out by molecular docking. Finally, animal experiments were conducted to verify the effect and mechanism of Coptidis Rhizoma in treating precancerous lesions of gastric cancer. RESULTS A total of 11 active compounds and 95 anti-gastric precancerous lesions targets of Coptidis Rhizoma were screened for analysis. GO enrichment analysis showed that the mechanism of Coptidis Rhizoma acting on gastric precancerous lesions involves gene expression regulation and apoptosis regulation. KEGG pathway enrichment analysis showed that Coptidis Rhizoma against gastric precancerous lesions involving the AKT /HIF-1α/VEGF signalling pathway. Molecular docking simulations indicated potential interactions between these compounds and core targets involved in anti-gastric precancerous lesions activity. In addition, it was confirmed in vivo that Berberine and Coptidis Rhizoma may reverse atrophy and potential intestinal metaplasia by inhibiting the expression of p-AKT, HIFA, and VEGF. CONCLUSION Bioactive compounds in Coptidis Rhizoma have the potential to prevent atrophy and intestinal metaplasia. These compounds function by regulating the proteins implicated in AKT /HIF-1α/VEGF signalling pathways that are crucial in gastric epithelial cell differentiation, proliferation and maturation.
Collapse
Affiliation(s)
- Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China
| | - Chao Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310000, China
| | - Hanzhi Xu
- Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qin He
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China
| | - Lin Sheng
- Department of Pulmonary and Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321000, Zhejiang, China.
| | - Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310000, China.
| |
Collapse
|
4
|
Yang C, Zhao Y, Jiang S, Sun X, Wang X, Wang Z, Wu Y, Wu J, Li Y. A breakthrough in phytochemical profiling: ultra-sensitive surface-enhanced Raman spectroscopy platform for detecting bioactive components in medicinal and edible plants. Mikrochim Acta 2024; 191:286. [PMID: 38652378 DOI: 10.1007/s00604-024-06360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
A perennial challenge in harnessing the rich biological activity of medicinal and edible plants is the accurate identification and sensitive detection of their active compounds. In this study, an innovative, ultra-sensitive detection platform for plant chemical profiling is created using surface-enhanced Raman spectroscopy (SERS) technology. The platform uses silver nanoparticles as the enhancing substrate, excess sodium borohydride prevents substrate oxidation, and methanol enables the tested molecules to be better adsorbed onto the silver nanoparticles. Subsequently, nanoparticle aggregation to form stable "hot spots" is induced by Ca2+, and the Raman signal of the target molecule is strongly enhanced. At the same time, deuterated methanol was used as the internal standard for quantitative determination. The method has excellent reproducibility, RSD ≤ 1.79%, and the enhancement factor of this method for the detection of active ingredients in the medicinal plant Coptis chinensis was 1.24 × 109, with detection limits as low as 3 fM. The platform successfully compared the alkaloid distribution in different parts of Coptis chinensis: root > leaf > stem, and the difference in content between different batches of Coptis chinensis decoction was successfully evaluated. The analytical technology adopted by the platform can speed up the determination of Coptis chinensis and reduce the cost of analysis, not only making better use of these valuable resources but also promoting development and innovation in the food and pharmaceutical industries. This study provides a new method for the development, evaluation, and comprehensive utilization of both medicinal and edible plants. It is expected that this method will be extended to the modern rapid detection of other medicinal and edible plants and will provide technical support for the vigorous development of the medicinal and edible plants industry.
Collapse
Affiliation(s)
- Chunjuan Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yue Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shuang Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaomeng Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medical (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Yanli Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jing Wu
- School of Science, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Oulu, Finland.
| |
Collapse
|
5
|
Huang HT, Lv WQ, Xu FY, Wang XL, Yao YL, Su LJ, Zhao HJ, Huang Y. Mechanism of Yiqi Huoxue Huatan recipe in the treatment of coronary atherosclerotic disease through network pharmacology and experiments. Medicine (Baltimore) 2023; 102:e34178. [PMID: 37390239 PMCID: PMC10313272 DOI: 10.1097/md.0000000000034178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
In recent years, with population aging and economic development, morbidity and mortality of atherosclerotic cardiovascular disease associated with atherosclerosis (AS) have gradually increased. In this study, a combination of network pharmacology and experimental verification was used to systematically explore the action mechanism of Yiqi Huoxue Huatan Recipe (YHHR) in the treatment of coronary atherosclerotic heart disease (CAD). We searched and screened the active ingredients of Coptis chinensis, Astragalus membranaceus, Salvia miltiorrhiza, and Hirudo. We also searched multiple databases for related target genes corresponding to the compounds and CAD. STRING was used to construct the protein-protein interaction (PPI) network of genes. Metascape was used to perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for common targets to analyze the main pathways, and finally, the molecular docking and main possible pathways were verified by experimental studies. Firstly, a total of 1480 predicted target points were obtained through the Swiss Target Prediction database. After screening, merging, and deleting duplicate values, a total of 768 targets were obtained. Secondly, "Coronary atherosclerotic heart disease" was searched in databases such as the OMIM, GeneCards, and TTD. 1844 disease-related targets were obtained. Among PPI network diagram of YHHR-CAD, SRC had the highest degree value, followed by AKT1, TP53, hsp90aa1 and mapk3. The KEGG pathway bubble diagram was drawn using Chiplot, the Signal pathways such as NF kappa B signaling pathway, Lipid and AS, and Apelin signaling pathway are closely related to the occurrence of CAD. The PCR and Western blot methods were used to detect the expression of NF-κB p65. When compared with that in the model group, the expression of NF-κB p65mRNA decreased in the low-concentration YHHR group, with P < .05, while the expression of NF-κB p65mRNA decreased significantly in the high-concentration YHHR group, with P < .01. On the other hand, when compared with that in the model group, the expression of NF-κB p65 decreased in the low-concentration YHHR group, but was not statistically significant, while the expression of NF-κB p65 was significant in the high-concentration YHHR group, and has statistical significance with P < .05. YHHR has been shown to resist inflammation and AS through the SRC/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | - Wen-Qing Lv
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei-Yue Xu
- Shanghai Pudong New District Pudong Hospital, Shanghai, China
| | - Xiao-Long Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Li Yao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Jie Su
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han-Jun Zhao
- Shanghai Pudong New District Zhoupu Hospital, Shanghai, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Fu G, Zhou Y, Song Y, Liu C, Hu M, Xie Q, Wang J, Zhang Y, Shi Y, Chen S, Hu J, Sun Y. The effect of combined dietary supplementation of herbal additives on carcass traits, meat quality, immunity and cecal microbiota composition in Hungarian white geese. PeerJ 2023; 11:e15316. [PMID: 37180579 PMCID: PMC10174065 DOI: 10.7717/peerj.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
The present study was performed to investigate the effects of dietary supplementation with herbal additives on meat quality, slaughter performance and the cecal microbial community in Hungarian white geese. A total of 60 newborn geese were assigned equally into the control group (CON) and the herbal complex supplemented group (HS). The dietary supplementations consisted of Compound Herbal Additive A (CHAA) including Pulsatilla, Gentian and Rhizoma coptidis, and Compound Herbal Additive B (CHAB) containing Codonopsis pilosula, Atractylodes, Poria cocos and Licorice. The geese in the HS group received a basal diet supplemented with 0.2% CHAA from day 0 to day 42 at the postnatal stage. Then from day 43 to day 70, the geese in HS group were provide a basal diet with 0.15% CHAB. The geese in the CON group were only provided with the basal diet. The results showed that the slaughter rate (SR), half chamber rates (HCR), eviscerated rate (ER) and breast muscle rate (BMR) in the HS group tended to increase slightly compared with the CON group (ns). In addition, the shear force, filtration rate and pH value of breast muscle and thigh muscle in the HS group were slightly enhanced compared to the CON group (ns). Significant increased levels in carbohydrate content, fat content and energy (P < 0.01) and significant decreased levels in cholesterol content (P < 0.01) were observed in the muscle of the HS group. The total amino acid (Glu, Lys, Thr and Asp) content in the muscle increased in HS group than in the CON group (P < 0.01). Dietary herb supplementations significantly increased the levels of IgG in serum (P < 0.05) on day 43 and higher levels of IgM, IgA and IgG (P < 0.01) were also observed in the HS group on day 70. Furthermore, 16S rRNA sequencing results indicated that herbal additives increased the growth of beneficial bacteria and inhibited the proliferation of harmful bacteria in the geese caecum. Altogether, these results offer crucial insights into the potential benefits of incorporating CHAA and CHAB into the diets of Hungarian white goose. The findings indicate that such supplementations could significantly improve meat quality, regulate the immune system and shape the intestinal microbiota composition.
Collapse
Affiliation(s)
- Guilin Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chang Liu
- Changchun Animal Husbandry Service, Changchun, China
| | - Manjie Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qiuyu Xie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxin Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yumeng Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shuhao Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Cheng X, Chen Q, Sun P. Natural phytochemicals that affect autophagy in the treatment of oral diseases and infections: A review. Front Pharmacol 2022; 13:970596. [PMID: 36091810 PMCID: PMC9461701 DOI: 10.3389/fphar.2022.970596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a critical factor in eukaryotic evolution. Cells provide nutrition and energy during autophagy by destroying non-essential components, thereby allowing intracellular material conversion and managing temporary survival stress. Autophagy is linked to a variety of oral disorders, including the type and extent of oral malignancies. Furthermore, autophagy is important in lymphocyte formation, innate immunity, and the regulation of acquired immune responses. It is also required for immunological responses in the oral cavity. Knowledge of autophagy has aided in the identification and treatment of common oral disorders, most notably cancers. The involvement of autophagy in the oral immune system may offer a new understanding of the immune mechanism and provide a novel approach to eliminating harmful bacteria in the body. This review focuses on autophagy creation, innate and acquired immunological responses to autophagy, and the status of autophagy in microbial infection research. Recent developments in the regulatory mechanisms of autophagy and therapeutic applications in oral illnesses, particularly oral cancers, are also discussed. Finally, the relationship between various natural substances that may be used as medications and autophagy is investigated.
Collapse
Affiliation(s)
| | | | - Ping Sun
- *Correspondence: Ping Sun, ; Qianming Chen,
| |
Collapse
|
8
|
Gu W, Zhang M, Gao F, Niu Y, Sun L, Xia H, Li W, Zhang Y, Guo Z, Du G. Berberine regulates PADI4-related macrophage function to prevent lung cancer. Int Immunopharmacol 2022; 110:108965. [PMID: 35764017 DOI: 10.1016/j.intimp.2022.108965] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Coptis chinensis Franch (CCF) has been widely used by Chinese old herbalist doctor to treat internal and external diseases including malignant sore and cancer. Berberine (BBR) is a major bioactive compound in CCF and may exert anti-tumor and anti-inflammatory effects like CCF. However, the prevention effect of berberine against lung cancer and its relevance of anti-inflammation property to cancer-preventing effect are still obscure. Protein arginine deaminase 4 (PAD4) played an important role in macrophage related inflammatory response, the purpose of this study was to identify whether berberine can prevent lung cancer and explore its effect on PADI4-related macrophage function. In vitro, PADI4 overexpression affects cell-activated state in macrophages. PADI4 overexpressed macrophages promote epithelial-mesenchymal transition (EMT) of A549 lung cancer cells and inhibit cell apoptosis. Berberine at the experiment dose had no effect on cell viability of U937-derived macrophages, but could significantly inhibit PADI4 expression to reverse the macrophage-activated state and the lung cancer -promoting effect of PADI4-overexpressed macrophages. Unlike GSK484, berberine had a little effect on the PADI4 citrullination activity at the experimental doses, its IC50 for PADI4 inhibition is 45.07 μM (44.03-46.12 μM). In the mouse lung carcinogenetic model, PADI4 expression was directly related to the number of lung nodules. Berberine had the similar role to GSK484 in reducing the number of lung tumor nodules with the improved lung pathology in a dose-dependent manner and significantly inhibited PADI4 expression. Further, we found that PADI4 overexpression could inhibit IRF5 expression, up-regulate CD163 and CD206 and down-regulate CD86 in macrophages, which could be reversed by berberine. Our results suggest that berberine may regulate PADI4-related macrophage function to prevent lung cancer.
Collapse
Affiliation(s)
- Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Mengdi Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Luyao Sun
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Haojie Xia
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China.
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China; School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province 451150, China.
| |
Collapse
|
9
|
Wang T, Bai Y, Du Y, An S, Han B, Yang X, He C, Sun H, Zhao K, Xue X, Kang J. HPLC-DVD combined with chemometrics to analyze the correlation between the Q-marker content and color of Corni Fructus. Food Funct 2022; 13:5455-5465. [PMID: 35475458 DOI: 10.1039/d1fo03866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although Corni Fructus (CF) is a fruit with great economic value and development potential in medicine and food, too much reliance on personal experience for quality evaluation seriously limits the trading and circulation of CF. In the present study, through the research on the correlation between the chemical composition and the appearance color, a standard colorimetric card related to CF quality was established, which simplified the quality evaluation process and improved the accuracy of the visual evaluation of CF. Firstly, a total of 29 batches of CF from different places were collected. Then, "imread" in the MATLAB software was used to convert the color of all samples into RGB values, and HPLC-DVD was used to measure the content of the main chemical components in CF. Thereafter, the correlation between the content and color was studied by using MLR, BP-ANNs and SVM chemometric tools to screen the Q-marker of CF, which was further confirmed by in vivo and in vitro experiments. Finally, the Q-marker standard colorimetric card with the best fitting degree is established according to the prediction model. Thus, this study provides an auxiliary reference for the color evaluation of CF and a reference for the standardization and quantification of the macro characteristics of traditional Chinese medicine and food.
Collapse
Affiliation(s)
- Ting Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Yilin Bai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Yating Du
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Shujing An
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Binkai Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Xiaolin Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Changfen He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Haoqiang Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Ke Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Xiaochang Xue
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | - Jiefang Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| |
Collapse
|
10
|
Chen Y, Huang X, Li L, Wu J, Guo Y, Yao Y, Zhou L. Paper mill sludge-based carbon quantum dots as a specifically ratiometric fluorescent probe for the sensitive and selective detection of coptisine. LUMINESCENCE 2022; 37:1078-1086. [PMID: 35441456 DOI: 10.1002/bio.4260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 11/09/2022]
Abstract
Coptisine (COP), one of the bioactive components in Rhizoma Coptidis, has many pharmacological effects. Meanwhile, the determination of COP is essential in pharmacological and clinical applications. Herein, we prepared carbon quantum dots (CQDs) by one-step oil-thermal method using paper mill sludge (PMS) as precursor, and developed a ratiometric fluorescence method for the determination of COP. The structural and optical properties of PMS-CQDs were evaluated through HRTEM, FT-IR, XPS, XRD, UV-vis, fluorescence, zeta potential and fluorescence lifetime experiments. Fluorescence intensity ratio at 550 nm and 425 nm (I550 /I425 ) was recorded as an index for quantitative detection of COP. The detection concentration of COP ranges from 0.1 to 50 μM in good linear correlation (R2 = 0.9974) with a limit of detection of 0.028 μM (3σ/k). The quenching mechanism was deduced to be inner filter effect and static quenching. The ratiometric fluorescent probe showed impressive selectivity and sensitivity towards COP, and was successfully applied to the detection of COP in human urine with expected recoveries (95.22-111.00%) and relative standard deviation (0.46-2.95%), indicating that our developed method has a great application prospect in actual sample detection.
Collapse
Affiliation(s)
- Yingxin Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Xiaotong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Lu Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Junxian Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Yongqi Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Yachao Yao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, P.R. China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| |
Collapse
|
11
|
Chang Z, Zhang J, Lei M, Jiang Z, Wu X, Huang Y, He Z, Zhang Y, Li S, Duan X, Wu W. Dissecting and Evaluating the Therapeutic Targets of Coptis Chinensis Franch in the Treatment of Urinary Tract Infections Induced by Escherichia coli. Front Pharmacol 2022; 12:794869. [PMID: 35095505 PMCID: PMC8790249 DOI: 10.3389/fphar.2021.794869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Coptis chinensis Franch (CCF) is extensively used in the treatment of inflammatory-related diseases. Accumulating studies have previously demonstrated the anti-inflammatory properties of CCF, yet data on its exact targets against urinary tract infections (UTIs) remain largely unknown. Therefore, the present study decodes the potential targets of action of CCF against UTIs by network pharmacology combined with experiment evaluations. Based on the pharmacology network analysis, the current study yielded six core ingredients: quercetin, palmatine (R)-canadine, berlambine, berberine, and berberrubine. The protein–protein interaction network (PPI) was generated by the string database, and then, four targets (IL6, FOS, MYC, and EGFR) were perceived as the major CCF targets using the CytoNCA plug-in. The results of molecular docking showed that the six core constituents of CCF had strong binding affinities toward the four key targets of UTIs after docking into the crystal structure. The enrichment analysis indicated that the possible regulatory mechanisms of CCF against UTIs were based on the modules of inflammation, immune responses, and apoptosis among others. Experimentally, the Escherichia coli (E. coli) strain CFT073 was applied to establish in vivo and in vitro models. In vivo results revealed that the key targets, IL6 and FOS, are significantly upregulated in rat bladder tissues of UTIs, whereas the expression of MYC and EGFR remained steady. Last, in vitro results further confirmed the therapeutic potential of CCF by reducing the expression of IL6 and FOS. In conclusion, IL6 and FOS were generally upregulated in the progression of E. coli–induced UTIs, whereas the CCF intervention exerted a preventive role in host cells stimulated by E. coli, partially due to inhibiting the expression of IL6 and FOS.
Collapse
Affiliation(s)
- Zhenglin Chang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jinhu Zhang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Lei
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zheng Jiang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiangkun Wu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, China
| | - Yapeng Huang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhican He
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuyan Zhang
- Guangzhou Institute of Dermatology, Guangzhou, China
| | - Shujue Li
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolu Duan
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenqi Wu
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Yang J, Jiao D, Zhang G, Liu J, Qu C, Chen H, Chen C, Yu S. Prediction of the Molecular Mechanism of Eucommiae Cortex - Achyranthis Bidentatae Radix in the treatment of Osteoarthritis: Network Pharmacology and Molecular Docking. Drug Dev Ind Pharm 2021; 47:1235-1247. [PMID: 34590537 DOI: 10.1080/03639045.2021.1988098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To retrieve the core drug of osteoarthritis in clinic using Data Mining, predict the drug molecular action target through the Network Pharmacology, identify the key nodes of the interaction by combining with the related targtes of osteoarthritis, explore the pharmacological mechanism of Traditional Chinese Medicine against osteoarthritis and other possible mechanisms of actions. METHODS to retrieve the commonly used therapeutic formulations for osteoarthritis patients in clinical with PubMed, CNKI, VIP, CBM, WanFang Database and other databases, and screen out the core drugs through the Ancient and Modern Medical Case Cloud Platform and software Gephi, filter out the core drug molecules and targets combined with TCMSP database and the targets of osteoarthritis in Genecard and OMIM database, plunge those data into R project and Cytoscape to construct the intersection model of Drug molecule-osteoarthritis, establish PPI network and GO and conduct KEGG enrichment analysis with String database. Vina molecular docking was finally implemented to draw molecular docking diagram, and the results were analyzed after comprehensive analysis. RESULTS The core drug pairs were identified as "Eucommiae Cortex - Achyranthis Bidentatae Radix" through correlation analysis, complex network analysis based on the coefficient. "Eucommiae Cortex - Achyranthis Bidentatae Radix" can intervene cell behavior through multiple pathways and regulate cell metabolism, cytokine synthesis, oxidative and cellular immunity with the help of topology analysis in String Database. CONCLUSIONS The core molecules of Quercetin and Kaempferol derived from "Eucommia bark - achyranthes" can change the spatial conformation of PTGSs by hydrogen bonding with PTGSs, the hydrophobic bonds and van der Waals forces generated by Baicalein, Wogonin and β-carotene, thereby changing the activity of PTGSs and affecting bone properties the process of osteoarthritis.
Collapse
Affiliation(s)
- Jie Yang
- Shenyang Orthopedics Hospital, NO.115, Dongbei Road, Dadong District, Shenyang City, Liaoning Province, China
| | - Dijin Jiao
- Shenyang Orthopedics Hospital, NO.115, Dongbei Road, Dadong District, Shenyang City, Liaoning Province, China
| | - Guoguang Zhang
- Liaoning Traditional Chinese Medicine University, NO.79 Chongshan Road,Shenyang City Liaoning Province, China
| | - Juntong Liu
- Liaoning Traditional Chinese Medicine University, NO.79 Chongshan Road,Shenyang City Liaoning Province, China
| | - Chao Qu
- Liaoning Traditional Chinese Medicine University, NO.79 Chongshan Road,Shenyang City Liaoning Province, China
| | - Hongxu Chen
- Liaoning Traditional Chinese Medicine University, NO.79 Chongshan Road,Shenyang City Liaoning Province, China
| | - Chongmin Chen
- Shenyang Orthopedics Hospital, NO.115, Dongbei Road, Dadong District, Shenyang City, Liaoning Province, China
| | - Sun Yu
- Shenyang Orthopedics Hospital, NO.115, Dongbei Road, Dadong District, Shenyang City, Liaoning Province, China
| |
Collapse
|
13
|
Xu Y, Huang J, Wang N, Tan HY, Zhang C, Li S, Tang G, Feng Y. Network Pharmacology-Based Analysis and Experimental Exploration of Antidiabetic Mechanisms of Gegen Qinlian Decoction. Front Pharmacol 2021; 12:649606. [PMID: 34381354 PMCID: PMC8350346 DOI: 10.3389/fphar.2021.649606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) and therapy options have been studied increasingly due to their rising incidence and prevalence. The trend of applying traditional Chinese medicine (TCM) to treat T2DM is increasing as a crucial medical care for metabolic dysfunctions. Gegen Qinlian decoction (GQL), a well-known classical TCM formula used in China, has been clinically applied to treat various types of chronic metabolic diseases. However, antidiabetic effects of GQL administration during T2DM have never been studied systematically. We assessed physiological and molecular targets associated with therapeutic effects of GQL by evaluating network topological characteristics. The GQL-related biological pathways are closely associated with antidiabetic effects, including the TNF and PI3K–AKT signaling pathways. Associated primary biological processes such as RNA polymerase II promoter transcription participate in the inflammatory response, oxidative stress reduction, and glucose metabolic process, thereby exerting multiple biological effects on the antidiabetic mechanism. Furthermore, our results showed that GQL can affect blood glycemic levels and ameliorate inflammatory symptoms, and liver and pancreas tissue injury in high-fat diet plus streptozotocin-induced diabetic mice. In vivo and in vitro experiments confirmed that antidiabetic effects of GQL were associated with a modulation of the TNF and PI3K–AKT–MTOR pathways.
Collapse
Affiliation(s)
- Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jihan Huang
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
The Potential Effect of Rhizoma coptidis on Polycystic Ovary Syndrome Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5577610. [PMID: 34306142 PMCID: PMC8282388 DOI: 10.1155/2021/5577610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022]
Abstract
Background Rhizoma coptidis (RC) showed a significant effect on PCOS, but its mechanism in PCOS remains unclear. Methods The components of RC were searched by TCMSP. The Smiles number of the active ingredients was queried through PubChem, and the predicted targets were obtained from the SwissTargetPrediction database. The DrugBank, GeneCards, and DisGeNET databases were retrieved to acquire the related targets of PCOS. Then, the network of compound-target was constructed. The core targets were analyzed using protein-protein interaction (PPI) analysis, and the binding activities were verified by molecular docking. The enriched pathways of key targets were examined by GO and KEGG. Results 13 components and 250 targets of RC on PCOS were screened. The core network was filtered based on topological parameters, and the key components were palmatine, berberine, berberrubine, quercetin, and epiberberine. The key targets included DRD2, SLC6A4, CDK2, DPP4, ESR1, AKT2, PGR, and AKT1. Molecular docking displayed that the active ingredients of RC had good binding activities with potential targets of PCOS. After enrichment analysis, 30 functional pathways were obtained, including neuroactive ligand-receptor interaction, dopaminergic synapse, and cAMP signaling pathway. Conclusion In summary, this study clarified the potential effect of RC on PCOS, which is helpful to provide references for clinical practice. It is also conducive to the secondary development of RC and its monomer components.
Collapse
|
15
|
Zhang B, Zhang Y, Ma B, Ma J, Chen X, Li J, Yuan H. Does surgical treatment increase the progression of spinal cord injury in patients with ossification of posterior longitudinal ligament of cervical spine? A systematic review and meta-analysis. J Orthop Surg (Hong Kong) 2021; 29:2309499020981782. [PMID: 33410375 DOI: 10.1177/2309499020981782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The purpose of this study is to explore if the surgical treatment will accelerate the progression of spinal cord injury (SCI) in patients with cervical Ossification of the posterior longitudinal ligament (OPLL) and if surgery will have better curative effect than conservative treatment. METHODS An extensive search of literature was implemented in PubMed, EMBASE, and other online databases. The quality of the included articles was evaluated according to the Newcastle-Ottawa Quality Assessment Scale, as recommended by the Cochrane manual, and meta-analysis was performed using the review manage5.3 software. RESULTS No obvious statistical difference was observed in the rate of SCI progression (P > 0.05, OR 1.15 [0.66, 2.00]), cervical range of motion, (P > 0.05, weighted mean difference (WMD) 4.52 [-5.75, 14.79]), and Japanese Orthopedic Association scores before surgery (P > 0.05, WMD -2.78 [-7.87, 2.32]) between the surgical group and conservative treatment group. However the surgical group illustrated obviously higher neurofunctional recovery rate (P < 0.05, OR 6.07 [1.55, 23.78]) and postoperative JOA score of the surgery group (P < 0.05, WMD -0.77 [-1.21, -0.33]) than conservative group. CONCLUSIONS Based on this meta-analysis, there is not enough evidence to indicate that surgery will accelerate the progress of SCI with OPLL. However, the superiority of surgical efficacy can be observed over conservative treatment in terms of relieving neurological symptoms.
Collapse
Affiliation(s)
- Bi Zhang
- 105002Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yufei Zhang
- 105002Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bin Ma
- 105002Ningxia Medical University, Yinchuan, Ningxia, China
| | - Junchi Ma
- 105002Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoyong Chen
- 105002Ningxia Medical University, Yinchuan, Ningxia, China
| | - Junjie Li
- Department of Orthopedics, Yinchuan Guolong Hospital, Yinchuan, Ningxia, China
| | - Haifeng Yuan
- Department of Spine Orthopedics, General Hospital of 105002Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
16
|
Hong G, Kim YI, Park SJ, Lee SY, Kim JW, Yoon SH, Lee KS, Byun MK, Kim HR, Chung J. Effects of a Mixture of Ivy Leaf Extract and Coptidis rhizome on Patients with Chronic Bronchitis and Bronchiectasis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4024. [PMID: 33921227 PMCID: PMC8069972 DOI: 10.3390/ijerph18084024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/05/2022]
Abstract
BACKGROUND Hederacoside C from ivy leaf dry extracts (HH) and berberine from Coptidis rhizome dry extracts (CR) can be combined (HHCR) as a herbal product. Previous studies have demonstrated that HHCR has antitussive and expectorant effects in animal models of respiratory disease. However, the therapeutic effects of HHCR on respiratory diseases in humans have not been well-studied. Therefore, we aimed to clarify the effectiveness of HHCR in patients with chronic bronchitis and bronchiectasis. METHODS This was a multicenter (10 university teaching hospitals), open-label, prospective, single-arm, observational study. Consecutive patients with chronic bronchitis and bronchiectasis were included. Patients were orally treated with HHCR daily for 12 weeks. St. George's Respiratory Questionnaire (SGRQ) scores and bronchitis severity scores (BSS) were measured at baseline and at the end of the 12-week study. RESULTS In total, 376 patients were enrolled, of which 304 were finally included in the study, including 236 males and 68 females with a median age of 69 years (range: 37-88 years). After 12 weeks of HHCR treatment, there was a significant improvement in SGRQ score (baseline, 32.52 ± 16.93 vs. end of study, 29.08 ± 15.16; p < 0.0001) and a significant reduction in BSS (baseline, 7.16 ± 2.63 vs. end of study, 4.72 ± 2.45; p < 0.0001). During the study, 14 patients concomitantly used an inhaled corticosteroid and 83 patients used an inhaled bronchodilator. HHCR also had significant positive effects on these patients in terms of SGRQ score and BSS. No serious adverse drug reactions occurred during HHCR treatment. CONCLUSIONS treatment with HHCR improved the SGRQ score and BSS in patients with chronic bronchitis and bronchiectasis. HHCR may be a new therapeutic option for chronic bronchitis and bronchiectasis. Large-scale, randomized, double-blind, placebo-controlled clinical trials are warranted.
Collapse
Affiliation(s)
- Goohyeon Hong
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Dankook University Hospital, Dankook University College of Medicine, Cheonan 31116, Korea;
| | - Yu-Il Kim
- Department of Internal Medicine, Division of Pulmonology, Chonnam National University Hospital, Chonnam 61469, Korea;
| | - Seoung Ju Park
- Department of Internal Medicine, Division of Pulmonology, Allergy and Critical Care Medicine, Jeonbuk National University Medical School, Cheonbuk 54907, Korea;
| | - Sung Yong Lee
- Department of Internal Medicine, Division of Pulmonology, Allergy and Critical Care Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Jin Woo Kim
- Department of Internal Medicine, Division of Pulmonology, College of Medicine, The Catholic University, Uijeongbu 11765, Korea;
| | - Seong Hoon Yoon
- Department of Internal Medicine, Division of Pulmonology, Pusan National University Yangsan Hospital, Pusan 49241, Korea;
| | - Keu Sung Lee
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Ajou University Hospital, Suwon 16499, Korea;
| | - Min Kwang Byun
- Department of Internal Medicine, Division of Respiratory Medicine, Gangnam Severance Hospital, Seoul 06273, Korea;
| | - Hak-Ryul Kim
- Department of Internal Medicine, Division of Respiratory Medicine, Wonkwang University Hospital, Iksan 54538, Korea;
| | - Jaeho Chung
- Department of Internal Medicine, Division of Respiratory Medicine, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Korea
| |
Collapse
|
17
|
Wu F, Shao Q, Xia Q, Hu M, Zhao Y, Wang D, Fang K, Xu L, Zou X, Chen Z, Chen G, Lu F. A bioinformatics and transcriptomics based investigation reveals an inhibitory role of Huanglian-Renshen-Decoction on hepatic glucose production of T2DM mice via PI3K/Akt/FoxO1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153487. [PMID: 33636476 DOI: 10.1016/j.phymed.2021.153487] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Excessive hepatic glucose production (HGP) largely promotes the development of type 2 diabetes mellitus (T2DM), and the inhibition of HGP significantly ameliorates T2DM. Huanglian-Renshen-Decoction (HRD), a classic traditional Chinese herb medicine, is widely used for the treatment of diabetes in clinic for centuries and proved effective. However, the relevant mechanisms of HRD are not fully understood. PURPOSE Based on that, this study was designed to identify the potential effects and underlying mechanisms of HRD on HGP by a comprehensive investigation that integrated in vivo functional experiments, network pharmacology, molecular docking, transcriptomics and molecular biology. METHODS After confirming the therapeutic effects of HRD on T2DM mice, the inhibitory role of HRD on HGP was evaluated by pyruvate and glucagon tolerance tests, liver positron emission tomography (PET) imaging and the detection of gluconeogenic key enzymes. Then, network pharmacology and transcriptomics approaches were used to clarify the underlying mechanisms. Molecular biology, computational docking analysis and in vitro experiments were applied for final mechanism verification. RESULTS Here, our results showed that HRD can decrease weight gain and blood glucose, increase fasting insulin, glucose clearance and insulin sensitivity in T2DM mice. Dysregulated lipid profile was also corrected by HRD administration. Pyruvate, glucagon tolerance tests and liver PET imaging all indicated that HRD inhibited the abnormal HGP of T2DM, and the expressions of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) were significantly suppressed by HRD as expected. Network pharmacology and transcriptomics approaches illustrated that PI3K/Akt/FoxO1 signaling pathway may be responsible for the inhibitory effect of HRD on HGP. Afterward, further western blot and immunoprecipitation found that HRD did activate PI3K/Akt/FoxO1 signaling pathway in T2DM mice, which confirmed previous results. Additionally, the conclusion was further supported by molecular docking and in vitro experiments, in which identified HRD compound, oxyberberine, was proven to exert an obvious effect on Akt. CONCLUSION Our data demonstrated that HRD can treat T2DM by inhibiting hepatic glucose production, the underlying mechanisms were associated with the activation of PI3K/Akt/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Integrating metabolomics and network pharmacology to explore Rhizoma Coptidis extracts against sepsis-associated acute kidney injury. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1164:122525. [PMID: 33454441 DOI: 10.1016/j.jchromb.2021.122525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/01/2020] [Accepted: 01/01/2021] [Indexed: 11/20/2022]
Abstract
Sepsis remains the most common cause of acute kidney injury (AKI) in critically ill patients, increasing the risk of in-hospital and long-term death. Rhizoma Coptidis (RC), a classical traditional Chinese herb, exhibits anti-inflammatory and antioxidant properties in various diseases including sepsis. This study aimed to investigate the protective effects of RC extracts (RCE) against sepsis-associated acute kidney injury (SA-AKI) and explore the underlying mechanisms with metabolomics-based network pharmacology. The results showed that RCE improved renal function and histological injury and decreased reactive oxygen species (ROS) production in SA-AKI. Using ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS), 25 differential metabolites were identified that had a close connection with the pathological processes of SA-AKI and the effects of RCE. Afterward, a compound-metabolite-target-disease network was constructed and 17 overlapping target proteins of the components of RCE, the differential metabolites, and the disease-related genes were discovered. Among these overlapping target proteins, RCE increased the nuclear translocation of nuclear factor-erythroid 2-related factor-2 (Nrf2), the protein expression of heme oxygenase-1 (HO-1), the mRNA expression of peroxisome proliferator activated receptor α (PPARα) and reduced nitric oxide synthase 2 (NOS2) activity. In addition, molecular docking revealed that both berberine and quercetin could bond with NOS2 and PPARα, respectively. Therefore, RCE demonstrated protective effects for SA-AKI through the regulation of metabolism and different signaling pathways.
Collapse
|
19
|
Jo HG, Park C, Lee H, Kim GY, Keum YS, Hyun JW, Kwon TK, Choi YH, Hong SH. Inhibition of oxidative stress induced-cytotoxicity by coptisine in V79-4 Chinese hamster lung fibroblasts through the induction of Nrf-2 mediated HO-1 expression. Genes Genomics 2020; 43:17-31. [PMID: 33237503 DOI: 10.1007/s13258-020-01018-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Coptisine is a natural alkaloid compound and is known to have multiple beneficial effects including antioxidant activity. However, whether it can protect lung fibroblasts from oxidative damage has not been studied yet. OBJECTIVES To investigate the potential inhibitory effect of coptisine against oxidative stress in V79-4 lung fibroblast cells. METHODS V79-4 cells were treated with H2O2 (1 mM) in the presence or absence of coptisine (50 µg/ml), N-acetyl cysteine (NAC, 10 mM) or zinc protoporphyrin IX (ZnPP, 10 µM) for the indicated times. The alleviating effects of coptisine on cytotoxicity, cell cycle arrest, apoptosis, reactive oxygen species (ROS) production, DNA damage, mitochondrial dynamics, and inhibition of ATP production against H2O2 were investigated. Western blot analysis was used to analyze the expression levels of specific proteins. RESULTS Coptisine inhibited H2O2-induced cytotoxicity and DNA damage by blocking abnormal ROS generation. H2O2 treatment caused cell cycle arrest at the G2/M phase accompanied by increased expression of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP1 and decreased expression of cyclin B1 and cyclin A. However, these effects were attenuated in the presence of coptisine or NAC. Coptisine also prevented apoptosis by decreasing the rate of Bax/Bcl-2 expression in H2O2-stimulated cells and suppressing the loss of mitochondrial membrane potential and the cytosolic release of cytochrome c. In addition, the activation of nuclear factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was markedly promoted by coptisine in the presence of H2O2. However, zinc protoporphyrin IX, a potent inhibitor of HO-1, attenuated the ROS scavenging and anti-apoptotic effects of coptisine. CONCLUSIONS Based on current data, we suggest that coptisine can be used as a potential treatment for oxidative stress-related lung disease.
Collapse
Affiliation(s)
- Hyeon-Gyun Jo
- Cheong-Choon Korean Medical Clinic, 47388, Busan, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, 47227, Busan, Republic of Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, 47340, Busan, Republic of Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, 47227, Busan, Republic of Korea.,Anti-Aging Research Center, Dong-eui University, 47340, Busan, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, 63243, Jeju, Republic of Korea
| | - Young-Sam Keum
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 10326, Goyang, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, 63243, Jeju, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 42601, Daegu, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, 47227, Busan, Republic of Korea. .,Anti-Aging Research Center, Dong-eui University, 47340, Busan, Republic of Korea.
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, 47227, Busan, Republic of Korea. .,Anti-Aging Research Center, Dong-eui University, 47340, Busan, Republic of Korea.
| |
Collapse
|
20
|
Kim SY, Hwangbo H, Kim MY, Ji SY, Lee H, Kim GY, Kwon CY, Leem SH, Hong SH, Cheong J, Choi YH. Coptisine induces autophagic cell death through down-regulation of PI3K/Akt/mTOR signaling pathway and up-regulation of ROS-mediated mitochondrial dysfunction in hepatocellular carcinoma Hep3B cells. Arch Biochem Biophys 2020; 697:108688. [PMID: 33227289 DOI: 10.1016/j.abb.2020.108688] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023]
Abstract
Coptisine is isoquinoline alkaloid derived from Coptidis Rhizoma and is known to have potential anti-cancer activity toward various carcinomas. Targeting autophagy is one of the main approaches for cancer therapy, but whether the anti-cancer efficacy of coptisine involves autophagy is still unclear. Therefore, this study investigated the effect of coptisine on autophagy in hepatocellular carcinoma (HCC) Hep3B cells, and identified the underlying mechanism. Our results showed that coptisine increased cytotoxicity and autophagic vacuoles in a concentration-dependent manner. Furthermore, the expressions of light chain 3 (LC3)-I/II, Beclin-1 and autophagy genes were markedly increased by coptisine, while the expression of p62 decreased. In addition, we found that pretreatment with bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, markedly reduced coptisine-mediated autophagic cell death, but 3-methyladenine, an inhibitor for autophagosome formation did not. Moreover, our results showed that although coptisine up-regulated AMP-activated protein kinase (AMPK) that partially induced LC3-I/II, coptisine-mediated AMPK signaling did not directly regulate autophagic cell death. Additionally, we found that coptisine suppressed the phosphorylation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), and this effect was notably enhanced by PI3K inhibitor LY294002. Meanwhile, coptisine significantly increased both the production of mitochondrial reactive oxygen species (ROS) and the recruitment of mitophagy-regulated proteins to mitochondria. Furthermore, N-acetylcysteine, a potential ROS scavenger, substantially suppressed the expression of mitophagy-regulated proteins and LC3 puncta by coptisine. Overall, our results demonstrate that coptisine-mediated autophagic cell death was regulated by PI3K/Akt/mTOR signaling and mitochondrial ROS production associated with mitochondrial dysfunction. Taken together, these findings suggest that coptisine exerts its anti-cancer effects through induction of autophagy in HCC Hep3B cells.
Collapse
Affiliation(s)
- So Young Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine and Anti-Aging Research Center, Dong-eui University, Busan, 47227, Republic of Korea; Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun Hwangbo
- Department of Biochemistry, Dong-eui University College of Korean Medicine and Anti-Aging Research Center, Dong-eui University, Busan, 47227, Republic of Korea; Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Yeong Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine and Anti-Aging Research Center, Dong-eui University, Busan, 47227, Republic of Korea
| | - Seon Yeong Ji
- Department of Biochemistry, Dong-eui University College of Korean Medicine and Anti-Aging Research Center, Dong-eui University, Busan, 47227, Republic of Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine and Anti-Aging Research Center, Dong-eui University, Busan, 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chan-Young Kwon
- Department of Oriental Neuropsychiatry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, College of Natural Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine and Anti-Aging Research Center, Dong-eui University, Busan, 47227, Republic of Korea
| | - JaeHun Cheong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine and Anti-Aging Research Center, Dong-eui University, Busan, 47227, Republic of Korea.
| |
Collapse
|
21
|
Zhou J, Pan J, Xiang Z, Wang Q, Tong Q, Fang J, Wan L, Chen J. Xiaokeyinshui extract combination, a berberine-containing agent, exerts anti-diabetic and renal protective effects on rats in multi-target mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113098. [PMID: 32726678 DOI: 10.1016/j.jep.2020.113098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/19/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaokeyinshui (XKYS) formula, an anti-diabetic formula, was recorded in many ancient Chinese medical books. Xiaokeyinshui extract combination (XEC) originated from this ancient formula, consisting extracts of four herbal drugs, namely, Coptidis Rhizoma, Liriopes Radix, bitter melon, and Cassiae Semen. OBJECTIVE Therapeutic effects of Xiaokeyinshui extract combination (XEC) were assessed on diabetic rats. MATERIALS AND METHODS Herb extracts were prepared and mixed, yielding XEC. XEC were intragastrically given at doses of 260, 380 and 500 mg/kg/d to diabetic rats for 60 days. Anti-diabetic effects of XEC were studied, with measurement of body weight, and assessment of both glycemic control and lipid management. Measurement of oxidative stress and inflammatory cytokines were conducted in accordance to protocols of commercial kits. Parameters related to renal functions were also measured. Western blot (WB) analysis was performed to explore the anti-diabetic and renal protective mechanisms of XEC. RESULTS Compared to diabetic control, XEC exhibited significant effects in both glucose-lowering and lipid management (p < 0.01). Both oxidative stress and inflammatory cytokines were reduced after treatment of XEC for two months. In addition, XEC exhibited renal protective effects. WB analysis of liver tissue demonstrated that XEC achieved anti-diabetic effects through up-regulation of InsRα/IRS-1/PI3K/Akt/GLUT4 signaling pathway and phosphorylation of AMPK. In addition, renal protective effects were also achieved with down-regulation of RAGE and VEGF expressions in kidney. CONCLUSIONS XEC exerts promising anti-diabetic and renal protective effects on diabetic rats in multi-target mechanisms. XEC could be a satisfying alternative treating T2DM and preventing diabetic nephropathy.
Collapse
Affiliation(s)
- Jiewen Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Jun Pan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Zhinan Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Qiuyan Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Qilin Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Jinbo Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Luosheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China.
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
22
|
Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum. J Antibiot (Tokyo) 2020; 74:206-214. [PMID: 33082529 DOI: 10.1038/s41429-020-00380-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022]
Abstract
Coptis alkaloids show potent antifungal activity against Trichophyton rubrum (T. rubrum), which was a Tinea pedis fungus, but little of the literature was reported to investigate the antifungal activity of magnoflorine against it. Meanwhile, the potential mechanism of magnoflorine against T. rubrum is unknown. In the present study, we found that Coptis alkaloids, especially magnoflorine had significant antifungal activities against T. rubrum and Trichophyton mentagrophyte (T. mentagrophyte). The MIC values of magnoflorine against T. rubrum and T. mentagrophyte were both 62.5 μg ml-1, but magnoflorine exerted a better fungicidal efficiency against T. rubrum than T. mentagrophyte. Magnoflorine inhibited the conidia germination and hyphal growth, and changed the mycelial morphology such as deformation growth, surface peeling, and cytoplasmic contraction in T. rubrum. Magnoflorine had no significant effect on cell wall integrity. However, magnoflorine destroyed the fungal cell membrane of T. rubrum through increasing the nucleic acid leakage, reducing the activities of squalene epoxidase and CYP51 enzyme, and decreasing the content of ergosterol in hyphae. Our study supported the potential use of magnoflorine as an antifungal agent against T. rubrum and made contributions to the clinical application of magnoflorine against fungi.
Collapse
|
23
|
Jiang H, Chen Y, Ni J, Song J, Li L, Yu Z, Pang L, Qi H. Biphasic Dose-Response of Components From Coptis chinensis on Feeding and Detoxification Enzymes of Spodoptera litura Larvae. Dose Response 2020; 18:1559325820916345. [PMID: 32973415 PMCID: PMC7495943 DOI: 10.1177/1559325820916345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/23/2022] Open
Abstract
Due to long-term coevolution, secondary metabolites present in plants
apparently function as chemical defense against insect feeding, while
various detoxification enzymes in insects are adaptively induced as a
prosurvival mechanism. Coptis chinensis, a medicinal
plant used in traditional Chinese medicine for a thousand years, was
found to be less prey to insects in our earlier field observations.
Herein, 4 crude extracts obtained from sequential partition of aqueous
extract of Rhizoma coptidis with petroleum ether,
ethyl acetate, and n-butanol exhibited antifeedant activity against
Spodoptera litura (Fabricius) larvae at high
doses and inducing activity at low doses. Furthermore, a similar
biphasic dose–response of the antifeedant activity against S
litura larvae was also observed for jateorhizine,
palmatine, and obakunone in Coptis chinensis.
Notably, the enzyme activities of glutathione-S-transferase and
carboxyl esterase in S litura larvae affected by the
different components (jateorhizine, palmatine, obakunone, berberine,
and coptisine) of C chinensis also showed a biphasic
dose–response with an increasing trend at low doses and a decreasing
trend at high doses. Together, our study suggests that the components
of C chinensis may play a chemical defensive role
against S litura larvae in a hormetic manner.
Collapse
Affiliation(s)
- Houhui Jiang
- College of Pharmaceutical Sciences and College of Chinese Medicine, Southwest University, Chongqing, China
| | - Yin Chen
- College of Pharmaceutical Sciences and College of Chinese Medicine, Southwest University, Chongqing, China
| | - Juan Ni
- College of Pharmaceutical Sciences and College of Chinese Medicine, Southwest University, Chongqing, China
| | - Jia Song
- College of Pharmaceutical Sciences and College of Chinese Medicine, Southwest University, Chongqing, China
| | - Li Li
- College of Pharmaceutical Sciences and College of Chinese Medicine, Southwest University, Chongqing, China
| | - Zanyang Yu
- College of Pharmaceutical Sciences and College of Chinese Medicine, Southwest University, Chongqing, China
| | - Lei Pang
- College of Pharmaceutical Sciences and College of Chinese Medicine, Southwest University, Chongqing, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences and College of Chinese Medicine, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Li J, Meng X, Wang C, Zhang H, Chen H, Deng P, Liu J, Huandike M, Wei J, Chai L. Coptidis alkaloids extracted from Coptis chinensis Franch attenuate IFN-γ-induced destruction of bone marrow cells. PLoS One 2020; 15:e0236433. [PMID: 32706801 PMCID: PMC7380622 DOI: 10.1371/journal.pone.0236433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Coptidis alkaloids are the primary active components of Coptis chinensis Franch. Clinical and pharmacodynamic studies have confirmed that Coptidis alkaloids have multiple therapeutic effects including anti-inflammatory, antioxidant and antitumor effects, and they are usually used to treat various inflammatory disorders and related diseases. Mouse bone marrow cells (BMCs) were isolated from BALB/c mice. Immune-mediated destruction of BMCs was induced by interferon (IFN) -γ. High-performance liquid chromatography-electrospray ionization/ mass spectrometry was used to analyze the ingredients of the aqueous extract from Coptis chinensis Franch. The results confirmed that Coptidis alkaloids were the predominant ingredients in the aqueous extract from Coptis chinensis. The functional mechanism of Coptidis alkaloids in inhibiting immune-mediated destruction of BMCs was studied in vitro. After Coptidis alkaloid treatment, the percentages of apoptotic BMCs and the proliferation and differentiation of helper T (Th) cells and regulatory T (Treg) cells were measured by flow cytometry. The expression and distribution of T-bet in BMCs were observed by immunofluorescence. Western blotting analysis was used to assay the expression of key molecules in the Fas apoptosis and Jak/Stats signaling pathways in BMCs. We identified five alkaloids in the aqueous extract of Coptis chinensis. The apoptotic ratios of BMCs induced by IFN-γ were decreased significantly after Coptidis alkaloid treatment. The levels of key molecules (Fas, Caspase-3, cleaved Caspase-3, Caspase-8 and Caspase-8) in Fas apoptosis signaling pathways also decreased significantly after treatment with low concentrations of Coptidis alkaloids. Coptidis alkaloids were also found to inhibit the proliferation of Th1 and Th17 cells and induce the differentiation of Th2 and Treg cells; further, the distribution of T-bet in BMCs was decreased significantly. In addition, the levels of Stat-1, phospho-Stat-1 and phospho-Stat-3 were also reduced after Coptidis alkaloid treatment. These results indicate that Coptidis alkaloids extracted by water decoction from Coptis chinensis Franch could inhibit the proliferation and differentiation of T lymphocytes, attenuate the apoptosis of BMCs, and suppress the immune-mediated destruction of the BMCs induced by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Jinyu Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Meng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changzhi Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijie Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hening Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peiying Deng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyier Huandike
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Wei
- Pharmaceutical Departments, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- * E-mail: (LC); (JW)
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- * E-mail: (LC); (JW)
| |
Collapse
|
25
|
Xie H, Lu X, Jin W, Zhou H, Chen D, Wang X, Zhou Y. Pharmacokinetics of Picroside I, II, III, IV in Rat Plasma by UPLCMS/ MS. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412916666191022161501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modern pharmacological studies show that rhizoma coptidis has protective
effects on the liver, gallbladder, kidney, cerebral ischemia-reperfusion, local hypoxia injury, antiinflammatory,
bone injury, nerve cells and myocardial cells. The effective components have been isolated
from picroside I, II, III and IV.
Introduction:
A selective and sensitive ultra-performance liquid chromatography electrospray ionization
tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed for the simultaneous
quantitative determination of picroside I, II, III and IV in rat plasma to aid the pharmacokinetics studies.
Method:
Sprague-Dawley (SD) rats were orally administered with 10 mg/kg, intravenously injected
with 1 mg/kg for the mixture of picroside I, II, III and IV. The biological samples were collected at
0.083 3 h, 0.25 h, 1 h, 2 h, 4 h, 6 h, 8 h, 12 h, 24 h. A UPLC BEH C18 column (2.1 mm×50 mm,
1.7 μm) was used for chromatographic separation with the mobile phase consisting of acetonitrile and
0.1% formic acid by gradient elution. The flow rate was 0.4 mL/min. Multiple reaction monitoring
(MRM) transitions were m/z 491.1→147.1 for picroside I, m/z 511.1→234.9 for picroside II, m/z
537.3→174.8 for picroside III and m/z 507.3→163.1 for picroside IV in negative ion mode.
Result:
The inter-day precision was less than 13%, the intra-day precision was less than 15%. The
accuracy ranged from 89.4% to 111.1%. Recovery was higher than 79.1%, and the matrix effect ranged
from 96.2% to 109.0%.
Conclusion:
The sensitive, rapid and selective UPLC-MS/MS method can be applied to the pharmacokinetic
study of picroside I, II, III and IV in rats.
Collapse
Affiliation(s)
- Haili Xie
- Department of Pharmacy, Lihuili Hospital, Ningbo Medical Center, Ningbo 315040, China
| | - Xiaojie Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, Zhejiang 325035, China
| | - Weiqiang Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, Zhejiang 325035, China
| | - Hua Zhou
- Department of Pharmacy, Lihuili Hospital, Ningbo Medical Center, Ningbo 315040, China
| | - Dongxin Chen
- Department of Pharmacy, Lihuili Hospital, Ningbo Medical Center, Ningbo 315040, China
| | - Xianqin Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, Zhejiang 325035, China
| | - Yunfang Zhou
- Department of Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| |
Collapse
|
26
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie 2019; 162:176-184. [DOI: 10.1016/j.biochi.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|