1
|
Yang X, Liu S, Liu Y, Wang Y, Cui D, Lan T, Zhu D, Su Z, Hao E, Qin L, Guo H. Total flavonoids of litchi seed inhibit breast cancer metastasis by regulating the PI3K/AKT/mTOR and MAPKs signaling pathways. PHARMACEUTICAL BIOLOGY 2025; 63:229-249. [PMID: 40231974 PMCID: PMC12001861 DOI: 10.1080/13880209.2025.2488135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/07/2025] [Accepted: 03/30/2025] [Indexed: 04/16/2025]
Abstract
CONTEXT Total flavonoids from Litchi chinensis Sonn. (Sapindaceae) seeds (TFLS) effectively attenuate stem cell-like properties in breast cancer cells. However, their pharmacological effects and mechanisms in suppressing breast cancer metastasis remain unclear. OBJECTIVE This study aimed to elucidate the inhibitory effects and underlying mechanisms of TFLS on breast cancer metastasis. MATERIALS AND METHODS The antiproliferative, migratory, and invasive activities of breast cancer cells following TFLS treatment were evaluated using CCK-8, wound-healing, and transwell assays. The epithelial-mesenchymal transition (EMT) biomarkers were evaluated via Western blot analysis. The anti-metastatic effects of TFLS were further validated in vivo using zebrafish and mouse models. Network pharmacology methodology was utilized to predict potential targets and signaling pathways, which were subsequently corroborated by Western blot. Potential active compounds were identified through molecular docking, and the chemical constituents of TFLS were analyzed and characterized using UPLC-QTOF/MS. RESULTS TFLS suppressed the proliferation of MDA-MB-231 and MDA-MB-468 cells, with IC50 values of 44.47 μg/mL and 37.35 μg/mL at 72 h, respectively. It effectively suppressed breast cancer metastasis in vitro, demonstrated by a marked reduction in cellular motility and invasiveness, alongside the reversal of EMT. Consistent with pathway enrichment analysis, network pharmacology revealed that TFLS reduced the phosphorylation levels of PI3K, AKT, mTOR, JNK, ERK, and p38 in breast cancer cells. Molecular docking identified seven potential active ingredients, and UPLC-MS/MS confirmed the presence of key compounds, including procyanidin A2. DISCUSSION AND CONCLUSION TFLS effectively inhibits breast cancer cell proliferation, migration, and invasion in vitro by reversing the EMT phenotype, while suppressing metastasis in vivo. These effects are likely mediated via the attenuation of the PI3K/AKT/mTOR and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Shoushi Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuanshuo Wang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Dianxin Cui
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Taijin Lan
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Lilan Qin
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica & College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Shi JY, Wang CY, Xia Y, Guo MY, Yang W, Yang YS, Zhu HL. A fluorescent probe for detecting carboxylesterase level on investigating Chinese medicine water decoction efficacy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126187. [PMID: 40215850 DOI: 10.1016/j.saa.2025.126187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 05/26/2025]
Abstract
In this work, a fluorescent probe ImPI-CE with the imidazo-pyridin-isovanillin sub-structure was developed and studied for monitoring the Carboxylesterase (CE) level in colorectal cells on evaluating the Chinese medicine water decoction efficacy. The advantages of ImPI-CE included rapid response, high stability, high sensitivity, high selectivity, and reliable anti-interference. The most significant challenging point here was the biological efficacy-based test and the imaging in colorectal scenario which were both suitable for the international recognition of Chinese medicine water decoction. In particular, ImPI-CE achieved the stable monitoring of multiple Chinese medicine water decoction samples. It was able to imaging the CE level in both the inhibition and activation situations in living colorectal cells. ImPI-CE also realized the intracellular biological efficacy-based investigation of both the separate and combination Chinese medicine water decoction samples. The findings were beneficial for the international recognition of Chinese medicine.
Collapse
Affiliation(s)
- Jing-Yi Shi
- Jinhua Key Laboratory of Quality Evaluation and Standard Research of Traditional Chinese Medicine, Jinhua Advanced Research Institute, Jinhua Institute for Food and Drug Control, Jinhua 321019, China
| | - Chao-Yue Wang
- Jinhua Key Laboratory of Quality Evaluation and Standard Research of Traditional Chinese Medicine, Jinhua Advanced Research Institute, Jinhua Institute for Food and Drug Control, Jinhua 321019, China
| | - Yifan Xia
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Meng-Ya Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wen Yang
- School of Nursing, Zhengzhou Railway Vocational and Technical College, Zhengzhou 450000, China.
| | - Yu-Shun Yang
- Jinhua Key Laboratory of Quality Evaluation and Standard Research of Traditional Chinese Medicine, Jinhua Advanced Research Institute, Jinhua Institute for Food and Drug Control, Jinhua 321019, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Yang X, Wang L, Lin P, Ning Y, Lin Y, Xie Y, Zhao C, Mu L, Xu C. Discovery of Artesunate (ARS) PROTACs as GPX4 protein degraders for the treatment of bladder cancer. Eur J Med Chem 2025; 293:117710. [PMID: 40339473 DOI: 10.1016/j.ejmech.2025.117710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025]
Abstract
Bladder cancer is the second most prevalent malignancy of the urinary system worldwide, with high incidence and mortality rates. However, existing drugs for bladder cancer treatment often cause numerous adverse reactions. Although artesunate (ARS) exhibits anti-bladder cancer activity, its scope is rather limited and the specific targets remain unclear. Therefore, in this study, the Proteolysis-Targeting Chimera (PROTAC) technology was used to design and synthesize novel ARS derivatives. The antitumor activities of these compounds were evaluated against three human bladder cancer cell lines (T24, RT4, and J82). Of these compounds, A7 exhibited 12-fold stronger antiproliferative activity against bladder cancer cells than ARS. Molecular docking, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA) and western blotting studies demonstrated that A7 directly targeted and degraded glutathione peroxidase 4 (GPX4) protein through the ubiquitin-proteasome system. A7 further induced bladder cancer cell ferroptosis. Furthermore, A7 showed potent tumor suppressive activity in a xenograft T24 nude mouse model. In conclusion, our findings indicate that A7 exerts notable antitumor effects against bladder cancer in vitro and in vivo. This study highlights the tremendous potential of the PROTAC technology in enhancing the efficacy of natural products and identifying therapeutic targets, demonstrating its broad application prospects in the development of natural products-based drugs.
Collapse
Affiliation(s)
- Xiyue Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Linghui Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Peiyu Lin
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yueni Ning
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yusi Lin
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yingying Xie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Congke Zhao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Health Science Center, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Ouyang W, Deng Z, Li Y, Chi W, Huang Z, Zhan C, Li M, Wang D, Li F, Liu Y, Ling L. Traditional Chinese medicine in cerebral infarction: Integrative strategies and future directions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156841. [PMID: 40393244 DOI: 10.1016/j.phymed.2025.156841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/09/2025] [Accepted: 05/11/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Cerebral infarction is a predominant cause of global disability and mortality, characterized by pathogenesis that includes vascular stenosis, thrombosis, ischemic necrosis, and neuroinflammation. Despite progress in medical science, effective treatments for cerebral infarction are still constrained, prompting the investigation of alternative therapeutic strategies. PURPOSE The objective of this review is to assess the efficacy of Traditional Chinese Medicine (TCM) as a treatment for cerebral infarction, emphasizing its mechanisms of action, effectiveness, and clinical relevance. STUDY DESIGN An extensive review of the existing literature regarding the role of TCM in the management of cerebral infarction, encompassing investigations on specific remedies, Chinese medicinal formulations, and contemporary advancements in preparation methodologies. METHODS This review analyzes diverse TCM remedies recognized for their antioxidant, anti-inflammatory, and neuroprotective properties. Furthermore, it examines the synergistic effects of Chinese medicine formulations in modulating inflammation, enhancing blood circulation, and facilitating neural repair. Contemporary technological advancements that improve the accuracy and efficacy of Chinese medicine are also taken into account. RESULTS TCM has shown considerable promise in tackling the complex aspects of cerebral infarction. Specific remedies and formulations have demonstrated potential in modulating inflammatory responses, enhancing cerebral blood flow, and promoting neural repair mechanisms. Contemporary formulations have enhanced these effects, facilitating more precise and effective treatment. CONCLUSION While TCM presents a promising multi-faceted and multi-tiered strategy for addressing cerebral infarction, obstacles such as elucidating mechanisms and achieving standardization must be addressed. Continued research and clinical trials are crucial to fully exploit the therapeutic potential of TCM in the management of cerebral infarction.
Collapse
Affiliation(s)
- Wenhao Ouyang
- Department of Neurology, Shenzhen Hospital, Southern Medical University, No.1333 Xinhu Road, Shenzhen, Guangdong 518000, China
| | - Zekang Deng
- School of Clinical Medicine, Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Yudi Li
- Department of Neurology, Shenzhen Hospital, Southern Medical University, No.1333 Xinhu Road, Shenzhen, Guangdong 518000, China
| | - Wenjun Chi
- Department of Neurology, Shenzhen Hospital, Southern Medical University, No.1333 Xinhu Road, Shenzhen, Guangdong 518000, China
| | - Zhenjun Huang
- Department of Medical Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Chengyi Zhan
- School of Clinical Medicine, Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Min Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524037, China; Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
| | - Fangming Li
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, No. 1298, Xueyuan Avenue, Shenzhen, Guangdong 518000, China.
| | - Yajie Liu
- Department of Neurology, Shenzhen Hospital, Southern Medical University, No.1333 Xinhu Road, Shenzhen, Guangdong 518000, China.
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, No.1333 Xinhu Road, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
5
|
Dai X, Mei K, Liu J, Sun B, Qiu N. Redox-responsive ferulic acid-biotin conjugate: Design, synthesis, and enhanced anticancer efficacy. Bioorg Med Chem Lett 2025; 122:130209. [PMID: 40147804 DOI: 10.1016/j.bmcl.2025.130209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/18/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
In this study, ferulic acid (FA) was conjugated with biotin via a disulfide bond to improve its anticancer activity. The resulting conjugate (FA-SS-Bio) was characterized by proton nuclear magnetic resonance (1H NMR) and exhibited an amorphous structure, in contrast to the crystalline nature of FA. FA-SS-Bio demonstrated accelerated drug release under reductive and oxidative conditions. Biotinylation significantly increased cell uptake of the drug in biotin receptor (BR)-positive HeLa and MCF-7 cells, as confirmed by cellular uptake studies and molecular docking, which revealed strong biotin-BR interactions. Additionally, the cytotoxicity of FA-SS-Bio was significantly improved, with IC50 values that were 2.94-fold and 2.95-fold lower than those of free FA against HeLa and MCF-7 cells, respectively. BR blockade with biotin reduced FA-SS-Bio cytotoxicity in a concentration-dependent manner, confirming biotin-mediated targeting. Apoptosis assays showed enhanced FA-induced apoptosis due to biotin and disulfide bonds. FA-SS-Bio demonstrated excellent blood compatibility, with a hemolysis rate below 0.5 %, compared to ∼1.5 % for FA. Additionally, FA-SS-Bio exhibited higher cell viability in MCF-10 A cells than in cancer cells, highlighting its favorable safety profile. These findings provide a novel perspective on the design of prodrug conjugates for improved cancer therapy.
Collapse
Affiliation(s)
- Xiaoshuang Dai
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Ke Mei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jianpeng Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Bin Sun
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Neng Qiu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
6
|
Hu Y, Wu J, Ye S, Zhang H, Guo Z, Han X, Zhou J. Gambogic acid suppresses osteosarcoma progression through upregulation of FOXO3a. Discov Oncol 2025; 16:1083. [PMID: 40512277 DOI: 10.1007/s12672-025-02776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND Osteosarcoma is a prevalent bone cancer in children and adolescents, posing significant treatment challenges due to its high metastatic potential and resistance to traditional chemotherapy. Gambogic Acid (GA), a natural compound, has demonstrated promising anticancer properties, including inhibition of cell proliferation and induction of apoptosis. METHODS This study evaluated the anticancer effects of GA on osteosarcoma cell lines 143B and U2OS through cell viability assays, proliferation tests, wound healing assays, and flow cytometry to assess migration and apoptosis. RNA sequencing and RT-qPCR analyses were conducted to identify molecular mechanisms, with a focus on the tumor suppressor transcription factor FOXO3a. siRNA-mediated knockdown of FOXO3a was performed to determine its role in GA's mechanism of action. RESULTS GA treatment significantly reduced cell viability and proliferation in a dose- and time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and CCK-8 assays. Wound healing assays revealed a marked inhibition of cell migration, while flow cytometry confirmed a significant increase in apoptosis rates following GA treatment. RNA sequencing identified FOXO3a as a key upregulated gene in both cell lines after GA exposure, which was validated by RT-qPCR. Importantly, FOXO3a knockdown diminished GA's effects on cell viability, migration, and apoptosis, underscoring its pivotal role in mediating GA's anticancer activity. CONCLUSIONS The findings suggest that GA exerts potent anticancer effects on osteosarcoma cells through the upregulation of FOXO3a, a critical tumor suppressor. These results provide a foundation for further exploration of GA as a novel therapeutic agent for osteosarcoma, potentially offering a safer alternative to conventional chemotherapy. Future research will aim to elucidate the detailed mechanisms underlying the interaction between GA and FOXO3a and to optimize GA-based therapeutic strategies.
Collapse
Affiliation(s)
- Yawei Hu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, Guangdong, China
| | - Jiawen Wu
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, Guangdong, China
| | - Songqing Ye
- BaoAn Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, Guangdong, China
| | - Zengfeng Guo
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, Guangdong, China
| | - Xiaohong Han
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jianhua Zhou
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Cui D, Zhang C, Zhang L, Zheng J, Wang J, He L, Jin H, Kang Q, Zhang Y, Li N, Sun Z, Zheng W, Wei J, Zhang S, Feng Y, Tan W, Zhong Z. Natural anti-cancer products: insights from herbal medicine. Chin Med 2025; 20:82. [PMID: 40490812 DOI: 10.1186/s13020-025-01124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 05/05/2025] [Indexed: 06/11/2025] Open
Abstract
Herbal medicine exhibits a broad spectrum of potent anti-cancer properties, including the enhancement of tumor immune responses, reversal of multidrug resistance, regulation of autophagy and ferroptosis, as well as anti-proliferative, pro-apoptotic, and anti-metastatic effects. This review systematically explores recent advances (primarily documented since 2019) in research on key anti-cancer compounds derived from herbal medicine, such as apigenin, artemisinin, berberine, curcumin, emodin, epigallocatechin gallate (EGCG), ginsenosides, icariin, resveratrol, silibinin, triptolide, and ursolic acid (UA). These studies were sourced from scientific databases, including PubMed, Web of Science, Medline, Scopus, and Clinical Trials. The review focuses on the significant role that these natural products play in modern oncology, exploring their efficacy, mechanisms of action, and the challenges and prospects of integrating them into conventional cancer therapies. Furthermore, it highlights cutting-edge approaches in cancer research, such as the utilization of gut microbiota, omics technologies, synthetic derivatives, and advanced drug delivery systems (DDS). This review underscores the potential of these natural products to advance the development of novel anti-cancer treatments and support contemporary medicine. Additionally, recent multi-omics findings reveal how these compounds reshape transcriptional and metabolic networks, further broadening their therapeutic scope. Many natural products exhibit synergy with first-line chemotherapies or targeted therapies, thereby enhancing treatment efficacy and reducing side effects. Advanced nano-formulations and antibody-drug conjugates have also substantially improved their bioavailability, making them promising candidates for future translational research.
Collapse
Affiliation(s)
- Dianxin Cui
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., 999077, China
| | - Lili Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Jingbin Zheng
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Jie Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Luying He
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Haochun Jin
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Na Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhenlong Sun
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wenying Zheng
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., 999077, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China.
| |
Collapse
|
8
|
Chen S, Li P, Shi K, Tang S, Zhang W, Peng C, Li T, Xie H, Liu C, Zhou J. Tanshinone IIA promotes ferroptosis in cutaneous melanoma via STAT1-mediated upregulation of PTGS2 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156702. [PMID: 40222167 DOI: 10.1016/j.phymed.2025.156702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Melanoma is highly aggressive, metastatic with a poor prognosis. Despite significant advances in targeted therapies and immunotherapies, their efficiency limited by drug resistance. Tanshinone IIA (Tan IIA), a bioactive compound derived from Traditional Chinese plant, exhibits significant anticancer potential, which still needs more research in its complex regulatory mechanisms. PURPOSE This study aimed to elucidate the putative targets and regulatory mechanisms of Tan IIA in anti-melanoma, with a focus on its role in inducing ferroptosis. STUDY DESIGN We designed the experiment to explore the effects of Tan IIA on melanoma through both in vitro and in vivo experiments and to investigate the underlying mechanisms through transcriptomics combining network pharmacology analysis. METHOD Ferroptosis monitored by Malondialdehyde (MDA), Fe2+, reactive oxygen species (ROS) and glutathione (GSH) in vivo and in vitro. RNA sequence was performed to explore the key regulatory pathways involved in Tan IIA-induced ferroptosis. Chromatin immunoprecipitation (ChIP) and Luciferase assays were used to validate transcription factor responsible for prostaglandin-endoperoxide synthase 2 (PTGS2) regulation. Additionally, RT-qPCR, western blot, IF, IHC were aimed to evaluate the expression of target gene. RESULT Tan IIA markedly suppresses melanoma growth in a xenograft model. The same effect performed on inhibition melanoma cells and promotion to ferroptosis with accumulation of ROS, MDA, and Fe²⁺levels and GSH consumption. RNA sequencing and public database analysis revealed that Tan IIA regulates PTGS2, the critical marker of ferroptosis, and PTGS2-knockdown attenuates Tan IIA -induced ferroptosis in melanoma cells. Furthermore, we identified that Tan IIA stimulate signal transducer and activator of transcription 1 (STAT1), a transcription factor, promoting PTGS2 expression and localized in the cell cytoplasm. Moreover, downregulation of the transcription factor STAT1 lead to PTGS2 downregulation and also inhibit ferroptosis in melanoma. CONCLUSION This study, the first to link Tan IIA-induced ferroptosis to the STAT1/PTGS2 axis in melanoma, identifies STAT1 and PTGS2 as novel therapeutic targets for melanoma, which demonstrates the potential of natural compounds Tan IIA in overcoming drug resistance and integrates traditional medicine with advanced molecular techniques for mechanistic exploration.
Collapse
Affiliation(s)
- Shuyue Chen
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Peiting Li
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ke Shi
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wancong Zhang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tianyu Li
- Department of Burns and Plastic Surgery, Nanshi Hospital of Nanyang, Nanyang, Henan Province 473000, China
| | - Huiqing Xie
- Department of Rehabilitation, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Can Liu
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
9
|
Li X, Wang L, Ni B, Wang J, Sun Y. Research Progress of Natural Compounds from Chinese Herbal Medicine in the Treatment of Melanoma. Curr Treat Options Oncol 2025:10.1007/s11864-025-01322-8. [PMID: 40372659 DOI: 10.1007/s11864-025-01322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
OPINION STATEMENT Melanoma is a malignant tumor that originates from activated or genetically altered epidermal melanocytes, resulting from the interplay of genetic, somatic, and environmental factors. It is the fastest-growing malignancy among the Caucasian population and has a high mortality rate, second only to lung cancer. Current mainstream treatments have led to unavoidable drug resistance and toxic side effects despite improvements in efficacy and prognosis. Traditional Chinese Medicine is a significant component of complementary and alternative medicine, playing a vital role in cancer treatment. Natural compounds derived from Chinese herbal medicines offer notable advantages owing to their multimolecular, multitarget, and multipathway characteristics. These compounds exert anti-melanoma effects through various mechanisms, including antiproliferation, promotion of apoptosis, inhibition of metastasis, suppression of angiogenesis, modulation of autophagy, and enhancement of the immune response. Furthermore, combining natural compounds with mainstream antagonistic medicine not only enhances treatment efficacy but also significantly reverses multidrug resistance. This article discusses the specific mechanisms by which natural compounds combat melanoma and reviews the recent research advancements in this field. It also addresses the challenges faced in the widespread clinical application of these natural compounds in melanoma treatment and outlines the future directions for their development.
Collapse
Affiliation(s)
- Xin Li
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Lankang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baoyi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yifeng Sun
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
10
|
Huang Y, Cheng N, Zhi Y, Qiao D, Wang Y, Ma M, Ge C, Tao W, Liu W. Phillyrin from Forsythia suspensa suppresses the proliferation, angiogenesis, and metastasis of colorectal cancer via targeting CD147. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119759. [PMID: 40210179 DOI: 10.1016/j.jep.2025.119759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythia suspensa (Thunb.) Vahl, a traditional Chinese herbal medicine, is widely used in clinical practice. Phillyrin (PHN), a major bioactive component of Forsythia suspensa, exhibits significant anti-inflammatory, neuroprotective, and antibacterial properties, offering potential for colorectal cancer (CRC) prevention and treatment. AIM OF THE STUDY This study aimed to clarify the effects of PHN on CRC progression, focusing on epithelial-mesenchymal transition (EMT) and angiogenesis, to elucidate the underlying molecular mechanisms involving CD147. MATERIALS AND METHODS In vitro, cell viability and colony formation were conducted to detect the inhibition of PHN on CRC cells. Wound healing and Transwell assays were used to detect the migration and invasion. PCR, Western blot and ELISA were performed to clarify the relevant molecular levels. Overexpression plasmids were constructed to regulate the target molecule for mechanism research. In vivo, subcutaneous xenograft and lung metastasis models evaluated PHN's anti-cancer effects including histological and immunohistochemical (IHC) analysis. RESULTS PHN inhibited CRC cell proliferation, migration, and invasion in vitro, downregulating CD147 expression, while CD147 overexpression reversed the effects of PHN. In vivo, PHN significantly suppressed tumor growth and lung metastasis, reducing VEGFA, N-Cadherin, Snail1, and MMP-9 expression, and increasing E-Cadherin levels. CONCLUSION These findings indicated that PHN suppressed the proliferation and metastasis of CRC via regulating CD147-mediated EMT and angiogenesis. PHN may be a promising therapeutic agent for CRC treatment in clinic, and CD147 may be a potential target for drug development.
Collapse
Affiliation(s)
- Yuzhen Huang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Nan Cheng
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yingru Zhi
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Dan Qiao
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yan Wang
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Mengqing Ma
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Chun Ge
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Weiwei Tao
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Wanli Liu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
11
|
Xiao H, Raza F, Li K, Song J, Zafar H, Yang S, Su J, Qiu M. Cell membrane derived biomimetic nanomedicine for precision delivery of traditional Chinese medicine in cancer therapy. J Control Release 2025; 383:113829. [PMID: 40355044 DOI: 10.1016/j.jconrel.2025.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
The rapidly developing modern nanotechnology has brought new vitality to the application of traditional Chinese medicine (TCM), improving the pharmacokinetics and bioavailability of unmodified natural drugs. However, synthetic materials inevitably introduce incompatibilities. This has led to focusing on biomimetic drug delivery systems (DDS) based on biologically derived cell membranes. This "top-down" approach to nanomedicine preparation is simple and effective, as the inherited cell membranes and cell surface substances can mimic nature when delivering drugs back into the body, interacting similarly to the source cells at the biological interface. The concept of biologically derived TCM and biomimetic membranes aligns well with nature, the human body, and medicine, thereby enhancing the in vivo compatibility of TCM. This review focused on the recent progress using biomimetic membranes for TCM in cancer therapy, emphasizing the effective integration of biomimetic nanomedicine and TCM in applications such as cancer diagnosis, imaging, precision treatment, and immunotherapy. The review also provided potential suggestions on the challenges and prospects in this field.
Collapse
Affiliation(s)
- Hang Xiao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinpu Song
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Yang Z, Zhao K, Li X, Yanzhang R, Zhang H, Yu Y, Yan M, Fang S, Li T, Li H, Chu X, Han S, Zhang Z, Teng J, Jin G, Guo Z. ZIP8 modulates ferroptosis to drive esophageal carcinoma progression. Cell Death Dis 2025; 16:366. [PMID: 40328750 PMCID: PMC12056185 DOI: 10.1038/s41419-025-07692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Ferroptosis, a regulated form of cell death characterized by iron-dependent phospholipid peroxidation, remains poorly understood in the context of esophageal cancer development and its regulatory mechanisms. Through comprehensive bioinformatic analyses, we identified ferroptosis-related pathways as crucial mediators in esophageal cancer progression, with ZIP8 emerging as a key regulatory element. We observed significant upregulation of ZIP8 in esophageal cancer specimens, which correlated with poor clinical outcomes. Functional studies demonstrated that ZIP8 depletion significantly attenuated cellular proliferation in vitro. Mechanistically, elevated ZIP8 expression enhanced zinc-dependent phosphorylation of CREB, leading to upregulation of the ferroptosis suppressor GPX4 and inhibition of this iron-dependent cell death modality. Significantly, we discovered that the natural compound Nobiletin targeted ZIP8, inhibiting Esophageal squamous cell carcinoma (ESCC) cell growth in vitro and in vivo. Our findings demonstrate ZIP8 as a potential therapeutic target in ESCC and suggest that promoting ferroptosis through ZIP8 inhibition may represent a novel anti-cancer strategy for ESCC therapy.
Collapse
Affiliation(s)
- Zhaojie Yang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Kexin Zhao
- China-US (Henan) Hormel Cancer Institute, No.126, Zhengzhou, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangping Li
- Department of Clinical laboratory, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Ruoping Yanzhang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Huijun Zhang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Yin Yu
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Mingyang Yan
- China-US (Henan) Hormel Cancer Institute, No.126, Zhengzhou, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shaobo Fang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Department of Medical Imaging, Zhengzhou University People's Hospital& Henan Provincial People's Hospital, Zhengzhou, China
| | - Tao Li
- Healthy Management Center, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Hao Li
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Xiao Chu
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Siyuan Han
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Ziliang Zhang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Junyan Teng
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Guoguo Jin
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China.
- China-US (Henan) Hormel Cancer Institute, No.126, Zhengzhou, Henan, China.
- Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhiping Guo
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China.
- Healthy Management Center, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China.
- Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
13
|
Jin M, Lou Y, Wang X, Lv J, Wu Y, Huang G. Hyperoside suppresses NSCLC progression by inducing ATG13-mediated autophagy and apoptosis. Cell Immunol 2025; 411-412:104947. [PMID: 40250077 DOI: 10.1016/j.cellimm.2025.104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Lung cancer is a leading cause for cancer-related mortality across the globe. In the last decade, significant advancements have been made in the research of non-small cell lung cancer (NSCLC). However, new biotherapeutic drugs urgently need to be developed. This study investigated the regulating effect of hyperoside on NSCLC progression. METHODS The colony formation assay and Cell Counting Kit-8 were used to detect cell proliferation. The Transwell assay was used to monitor cell migration. NSCLC growth in vivo was examined using a subcutaneous xenograft model. Proteomics, immunohistochemistry, and immunofluorescence analyses were used to detect anticancer regulatory mechanisms. RESULTS The results showed that hyperoside treatment inhibited cell migration, proliferation, and tumor growth in NSCLC in vivo and in vitro. Also, hyperoside treatment promoted apoptosis and cell cycle S-phase arrest. Proteomics, immunohistochemistry, and immunofluorescence detection also showed that hyperoside treatment promoted autophagy-related protein 13 (ATG13)-mediated autophagy, which further increased NSCLC apoptosis. CONCLUSION In summary, the findings illustrated that hyperoside treatment suppressed NSCLC progression by promotingATG13 expression and enhancing autophagy activation, finally promoting autophagy and apoptosis.
Collapse
Affiliation(s)
- Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yuqing Lou
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xiaoshuo Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jia Lv
- Department of Obstetrics and Gynecology, Shanghai Fourth People's hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Yue Wu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China..
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China..
| |
Collapse
|
14
|
Wu Y, Wu J, Li Z, Wu Z, Li S, Yang G, Rong X, Wang Q, Li Y, Xia Q, Shi G. Inhibition of hepatocellular carcinoma progression by artesunate via modulation of the TLR4/MyD88/NF-κB signaling pathway. J Gastrointest Oncol 2025; 16:599-614. [PMID: 40386608 PMCID: PMC12078810 DOI: 10.21037/jgo-2025-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025] Open
Abstract
Background Liver cancer remains a frequent cause of cancer-related death, and thus targeted drugs urgently need to be developed. Artesunate (ART) inhibits the progression of liver cancer; however, its mechanism of action remains unclear. The primary aim of this study is to clarify whether ART inhibits the progression of hepatocellular carcinoma (HCC) cells by suppressing the Toll-like receptor 4 (TLR4)/MyD88/nuclear factor (NF)-κB pathway. Methods In vitro studies demonstrated the effects on cell proliferation, invasion, and migration through a series of phenotypic experiments. Specifically, the CCK8 was used to assess the impact on cell proliferation, while the Transwell assay was employed to evaluate the effect on cell invasion. A xeno-inhibitory tumor model was established in vivo to verify the therapeutic effects of ART. Western blotting was used to detect changes in the TLR4/MyD88/NF-κB pathway. Results The study showed that ART inhibits HCC cell proliferation, invasion, and migration and induces apoptosis in a dose-dependent manner. In vivo studies indicated shown that ART treatment in xenograft tumor models could consistently reduce tumor growth. Moreover, ART inhibited the viability, colony formation, migration, and invasion ability of HCC cells while promoting their apoptosis in a dose-dependent manner. The treatment of xenograft models with ART consistently reduced tumor growth. Furthermore, Western blot analysis demonstrated that the levels of TLR4 and its known downstream effectors (TRAF6, MyD88, and NF-κB) were markedly downregulated after ART treatment in Huh-7 and liposaccharide-stimulated Huh-7 cells. Conclusions These results indicate that ART has a potent effect on the development of HCC cells, the underlying mechanisms of which may be associated with alterations in the TLR4/MyD88/NF-κB signaling pathway in HCC. Therefore, further development of ART as a therapeutic agent is warranted.
Collapse
Affiliation(s)
- Yongchao Wu
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhigang Li
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhonglin Wu
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shunzong Li
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guang Yang
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaocui Rong
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qi Wang
- Department of CT/MRI, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yazhou Li
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qingqing Xia
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gaofeng Shi
- Department of CT/MRI, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Azme E, Hasan MM, Ali ML, Alam R, Hoque N, Noushin F, Kabir MF, Islam A, Nipun TS, Hossen SMM, Chung HJ. Computational identification of potential natural terpenoid inhibitors of MDM2 for breast cancer therapy: molecular docking, molecular dynamics simulation, and ADMET analysis. Front Chem 2025; 13:1527008. [PMID: 40308267 PMCID: PMC12041027 DOI: 10.3389/fchem.2025.1527008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
Background Breast cancer (BC) remains a leading cause of cancer-related mortality in women. The oncoprotein MDM2 negatively regulates the tumor suppressor p53, and its overexpression in BC promotes tumor progression and resistance to therapy. Targeting the MDM2-p53 interaction represents a promising therapeutic approach. However, many existing MDM2 inhibitors suffer from poor pharmacokinetics and off-target toxicity, necessitating the discovery of novel, more selective alternatives. This study aims to identify natural terpenoid compounds with potent MDM2 inhibitory potential through computational approaches. Methods A library of 398 natural terpenoids was sourced from the NPACT database and filtered based on Lipinski's Rule of Five. A two-stage docking strategy was applied: 1) rigid protein-flexible ligand docking to screen for high-affinity binders, followed by 2) ensemble docking using multiple MDM2 conformations derived from molecular dynamics (MD) simulations. The top candidates were further evaluated for their pharmacokinetic and toxicity profiles using ADMET analysis. Finally, 150 ns MD simulations and binding free energy (MM-PBSA) calculations were performed to assess the stability and strength of protein-ligand interactions. Results Three terpenoid compounds, olean-12-en-3-beta-ol, cabralealactone, and 27-deoxyactein demonstrated strong binding affinities toward MDM2 in ensemble docking studies. ADMET analysis confirmed their favorable pharmacokinetic properties. Further MD simulations indicated that these compounds formed highly stable complexes with MDM2. Notably, 27-deoxyactein exhibited the lowest binding free energy (-154.514 kJ/mol), outperforming the reference inhibitor Nutlin-3a (-133.531 kJ/mol), suggesting superior binding stability and interaction strength. Conclusion Our findings highlight 27-deoxyactein as a promising MDM2 inhibitor with strong binding affinity, stability, and a favorable pharmacokinetic profile. This study provides a computational foundation for further experimental validation, supporting the potential of terpenoid-based MDM2 inhibitors in BC therapy.
Collapse
Affiliation(s)
- Eva Azme
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Mahmudul Hasan
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Liakot Ali
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Rashedul Alam
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Neamul Hoque
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Fabiha Noushin
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mohammed Fazlul Kabir
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Ashraful Islam
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Tanzina Sharmin Nipun
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - S. M. Moazzem Hossen
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Hea-Jong Chung
- Honam Regional Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
- Department of Bio-Analysis Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Huang R, Xu R, Shi J, Yang Z, Zheng J, Wei D. Artesunate induces ferroptosis in osteosarcoma through NCOA4-mediated ferritinophagy. FASEB J 2025; 39:e70488. [PMID: 40168090 PMCID: PMC11960798 DOI: 10.1096/fj.202403160r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/20/2025] [Accepted: 03/14/2025] [Indexed: 04/03/2025]
Abstract
Osteosarcoma (OS) is a prevalent primary malignant bone tumor that lacks effective therapeutic interventions. Artesunate (ART) has been proved to have remarkable treatment effects on severe malaria and anti-tumor properties. This study aimed to investigate the anti-OS effects and underlying mechanisms of ART. The potential mechanisms of ART-mediated anti-OS activity were analyzed by using RNA sequencing, iron accumulation, lipid peroxidation, western blotting, and small interfering RNA (siRNA) transfection. In vivo, a xenograft mice model was adopted to explore the anticancer effect of ART. The present study revealed that ART significantly suppressed OS cell proliferation. Subsequent results suggested that ART exerted anti-OS activity mainly through the ferroptosis pathway. ART decreased the GSH/GSSG ratio, xCT and GPX4 expression, while increasing MDA and lipid peroxidation, which were reversed by Fer-1, DFO, 3-MA, and NCOA4 silencing. Mechanistically, ART upregulated the expression of TFR and DMT1, and triggered ferritinophagy by upregulating the expression of NCOA4, which increased Fe2+ accumulation and triggered ferroptosis. In addition, cytoplasmic iron further activated Mfrn2-mediated transportation of cytoplasmic free iron into the mitochondria, resulting in mitochondrial iron overload, eventually leading to lipid peroxidation and ferroptosis. Furthermore, in an OS xenograft mouse model, administration of ART inhibited tumor growth by ferroptosis. Collectively, our findings indicated that ART has the potential anti-OS capacity through NCOA4-mediated ferritinophagy, which might shed light on the future of OS therapy.
Collapse
Affiliation(s)
- Rui Huang
- Department of Orthopedic SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
- The First School of Clinical MedicineGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Ruiqing Xu
- Department of Orthopedic SurgeryHonghui Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Jiandang Shi
- Department of Orthopedic SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Zongqiang Yang
- Department of Orthopedic SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
- The First School of Clinical MedicineGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Jianping Zheng
- Department of Orthopedic SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Daihao Wei
- Department of Orthopedic SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
- The First School of Clinical MedicineGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| |
Collapse
|
17
|
Xia J, Xu H, Zhou S, Li T, Lv Z, Yang Y, Huang M. (-)-Epicatechin regulates the resistance of lung adenocarcinoma cells to radiotherapy through the downregulation of FOXM1. In Vitro Cell Dev Biol Anim 2025; 61:438-449. [PMID: 40335843 DOI: 10.1007/s11626-025-01038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/09/2025] [Indexed: 05/09/2025]
Abstract
Radioresistance, particularly as manifested by cancer stem cells (CSCs), is the most common reason for the failure of cancer radiotherapy. It is essential for effective radiotherapy to inhibit cancer cell stemness. Research indicates that (-)-epicatechin (EC) enhances the radiosensitivity of non-small cell lung cancer (NSCLC); however, its influence on cell stemness in lung adenocarcinoma (LUAD) resistant to radiotherapy is still not well understood. In this study, radioresistant cell lines A549R and H1299R were constructed by repeatedly irradiating A549 and H1299 cells with gradient doses of X-rays. CCK-8, cell cloning, flow cytometry, RT-qPCR, Western blot, sphere formation detection, and other methods were used for experimental exploration. This study revealed that the radioresistance of LUAD cells was related to their stemness. By inhibiting KLF4, SOX2, CD133, and ALDH1A1 expression, EC treatment increased radiosensitivity and reduced cell sphere formation. Also, FOXM1 expression was upregulated in LUAD and in radioresistant LUAD cells. Knocking down FOXM1 inhibited the stemness of radioresistant LUAD cells. Mechanistically, EC inhibited radiotherapy-resistant LUAD cell stemness by downregulating FOXM1 expression, thereby increasing radiosensitivity. In summary, our study revealed that EC inhibited radiotherapy resistance in LUAD cells through downregulating FOXM1, and it provides a theoretical framework for treating LUAD clinically.
Collapse
Affiliation(s)
- Jie Xia
- Department of Oncology, The First People's Hospital of Qujing, the Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, Yunnan, China
| | - Hongying Xu
- Department of Oncology, The First People's Hospital of Qujing, the Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, Yunnan, China
| | - Sihan Zhou
- Department of Oncology, The First People's Hospital of Qujing, the Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, Yunnan, China
| | - Tianqian Li
- Department of Oncology, The First People's Hospital of Qujing, the Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, Yunnan, China
| | - Zengbo Lv
- Department of Oncology, The First People's Hospital of Qujing, the Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, Yunnan, China
| | - Yingyu Yang
- Department of Pathology, The First People's Hospital of Qujing, the Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, Yunnan, China.
| | - Meifang Huang
- Department of Oncology, The First People's Hospital of Qujing, the Qujing Affiliated Hospital of Kunming Medical University, Qujing, 655000, Yunnan, China.
| |
Collapse
|
18
|
Ji M, Yuan Z. The application of traditional Chinese medicine polysaccharides in wound healing: A review. Int J Biol Macromol 2025; 304:140993. [PMID: 39952517 DOI: 10.1016/j.ijbiomac.2025.140993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
"Skin wound" refers to damage or disruption of skin tissue caused by trauma, burns, surgeries, or other factors. Currently available treatment systems are relatively limited, and traditional methods such as debridement using basic materials like gauze, bandages, or vacuum sealing drainage are commonly employed. These approaches often overlook individual patient differences, leading to prolonged pain and recurrent infections. Consequently, there is an urgent need for safe and effective new materials to optimize existing treatment systems in order to enhance the management of skin wounds. In recent years, studies have reported the effects of polysaccharides derived from traditional Chinese medicine (TCMPs) including hemostatic, anti-inflammatory, antioxidative, cell migration, angiogenesis enhancement, and collagen deposition stimulation effects. These findings underscore their potential in treating skin wounds. The aim of this review is to investigate the therapeutic effects of TCMPs in skin wound healing. This investigation aims to analyze recent research advancements in this field by classifying and summarizing existing findings based on different mechanisms of action. Furthermore, various drug delivery methods for TCMP will also be reviewed to provide a theoretical foundation for future developments concerning the application of these compounds in skin wound treatment.
Collapse
Affiliation(s)
- Minrui Ji
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zaixin Yuan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
19
|
Li F, Cai R, Ye Z, Yang L, Qiu X, Sun X. Human serum albumin microspheres synchronously loaded with ZIF-8 and triptolide (TP) for the treatment of intrahepatic cholangiocarcinoma. J Biomater Appl 2025; 39:1030-1036. [PMID: 39882915 DOI: 10.1177/08853282251318872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver tumor and remains a fatal malignancy in most patients. Only 20% to 30% of patients can be treated with potentially curative surgical resection. Local therapies such as radioembolization and hepatic arterial perfusion may be a more effective treatment strategy. The active ingredients of natural plants have aroused wide interest in the treatment of tumors. Triptolide shows toxic effects on a variety of epithelioid carcinoma cells. However, there is currently a lack of suitable delivery system for the treatment of ICC. In this study, organometallic framework material ZIF-8 was chosen to load TP, and then encapsuled in HSA micro-nanoparticles for the perfusion treatment of ICC. The results of SEM, XRD, and FTIR showed that ZIF-8 nanoparticles were encapsuled in HSA micro-nanoparticles. ZIF-8 nanoparticles (57.89 ± 12.24%) and TP@ZIF-8/HSA (36.8 ± 4.71%) micro-nanoparticles could significantly inhibited proliferation of RBE cell. Also, TP@ZIF-8/HSA micro-nanoparticles of all groups exhibited favorable cytocompatibility to L929 cells and hemocompatibility. RT-qPCR and western blot showed that ZIF-8 and TP induced apoptosis in cancer cells through mitochondria-related pathways. The results demonstrated that TP@ZIF-8/HSA was a potential chemotherapy candidate for the treatment of ICC.
Collapse
Affiliation(s)
- Fuxin Li
- The people's hospital of Hezhou, Guangxi, China
| | | | - Zipian Ye
- The people's hospital of Hezhou, Guangxi, China
| | - Li Yang
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianshuai Qiu
- Center of Orthopedics and Sports Medicine, Heyou Hospital, Foshan, Guanzhou, China
| | - Xueqiang Sun
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
20
|
Chang K, Zhu LF, Wu TT, Zhang SQ, Yu ZC. Network Pharmacology and in vitro Experimental Verification on Intervention of Oridonin on Non-Small Cell Lung Cancer. Chin J Integr Med 2025; 31:347-356. [PMID: 39331210 DOI: 10.1007/s11655-024-4116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE To explore the key target molecules and potential mechanisms of oridonin against non-small cell lung cancer (NSCLC). METHODS The target molecules of oridonin were retrieved from SEA, STITCH, SuperPred and TargetPred databases; target genes associated with the treatment of NSCLC were retrieved from GeneCards, DisGeNET and TTD databases. Then, the overlapping target molecules between the drug and the disease were identified. The protein-protein interaction (PPI) was constructed using the STRING database according to overlapping targets, and Cytoscape was used to screen for key targets. Molecular docking verification were performed using AutoDockTools and PyMOL software. Using the DAVID database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. The impact of oridonin on the proliferation and apoptosis of NSCLC cells was assessed using cell counting kit-8, cell proliferation EdU image kit, and Annexin V-FITC/PI apoptosis kit respectively. Moreover, real-time quantitative PCR and Western blot were used to verify the potential mechanisms. RESULTS Fifty-six target molecules and 12 key target molecules of oridonin involved in NSCLC treatment were identified, including tumor protein 53 (TP53), Caspase-3, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase kinase 8 (MAPK8), and mammalian target of rapamycin (mTOR). Molecular docking showed that oridonin and its key target molecules bind spontaneously. GO and KEGG enrichment analyses revealed cancer, apoptosis, phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), and other signaling pathways. In vitro experiments showed that oridonin inhibited the proliferation, induced apoptosis, downregulated the expression of Bcl-2 and Akt, and upregulated the expression of Caspase-3. CONCLUSION Oridonin can act on multiple targets and pathways to exert its inhibitory effects on NSCLC, and its mechanism may be related to upregulating the expression of Caspase-3 and downregulating the expressions of Akt and Bcl-2.
Collapse
Affiliation(s)
- Ke Chang
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Li-Fei Zhu
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Ting-Ting Wu
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Si-Qi Zhang
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Zi-Cheng Yu
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
21
|
Lin Y, Guo T, Che L, Dong J, Yu T, Zeng C, Wu Z. β-Elemene Inhibits Adrenocortical Carcinoma Cell Proliferation and Migration, and Induces Apoptosis by Up-Regulating miR-486-3p/Targeting NPTX1 Axis. Mol Carcinog 2025; 64:691-702. [PMID: 39803746 DOI: 10.1002/mc.23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 03/10/2025]
Abstract
β-elemene has a variety of anti-inflammatory, antioxidant, and antitumor effects. Currently, the influence of β-elemene on adrenocortical carcinoma (ACC) malignant progression and action mechanism remains unclear. This research aims to explore the influence and action mechanism of β-elemene on ACC progression. The impacts of β-elemene on ACC cell viability, proliferation, migration, and apoptosis were investigated through CCK-8 assay, clone formation assay, Transwell experiment, Wound healing assay, and flow cytometry. The miR-486-3p expression was analyzed utilizing RT-qPCR. According to different databases, neuronal pentraxin 1 (NPTX1) is the predicted downstream target gene of miR-486-3p. Western blot and RT-qPCR were utilized to examine NPTX1 expression. Silencing miR-486-3p or Overexpression NPTX1 in ACC cells further explored whether β-elemene affects ACC cells by regulating miR-486-3p/NPTX1. Finally, a subcutaneous graft tumor model was constructed to investigate how β-elemene may impact tumor growth in vivo. β-elemene decreased the cell viability, hindered cell proliferation and migration capacity, and induced apoptosis of ACC cells. miR-486-3p level in ACC cells was notably reduced in comparison to normal cells, but treatment with β-elemene markedly increased miR-486-3p expression. Additionally, ACC cells showed high level of NPTX1, while miR-486-3p targeted negative regulation of NPTX1. Overexpression miR-486-3p hindered the malignant progression of ACC cells, whereas overexpression NPTX1 reversed the impact of overexpression miR-486-3p. Silencing miR-486-3p or overexpression NPTX1 both attenuated the suppressive influence of β-elemene on the malignant behavior of ACC cells. Additionally, tumor growth was suppressed and apoptosis was induced in tumor cells in vivo by β-elemene. In conclusion, β-elemene reduces ACC cell viability, hinders proliferation and migration, and induces apoptosis through the miR-486-3p/NPTX1 axis.
Collapse
Affiliation(s)
- Yan Lin
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Tailin Guo
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Lishuang Che
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jieqiong Dong
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Ting Yu
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Chaiming Zeng
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Ziyu Wu
- Provincial Clinical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
22
|
Ma Y, Zheng H, Liu S, Yuan E, Qiao X, Dai Z, Wu W, Pan R. Integrative analysis of anti-breast CancerPotential of metabolites from Pseudomonas frederiksbergensis isolated from Taoerqi. Front Pharmacol 2025; 16:1469949. [PMID: 40223933 PMCID: PMC11987712 DOI: 10.3389/fphar.2025.1469949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/16/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction The Tibetan medicinal botanical drug Taoerqi has long been recognized for its anti-inflammatory, antibacterial, and tumor-inhibitory properties. Methods Botanical drug focuses on the isolation and characterization of secondary metabolites from Pseudomonas frederiksbergensis, an endophytic bacterium isolated from Taoerqi roots. The metabolites were obtained through fermentation and purification processes and were evaluated for their anti-breast cancer activities using cellular assays and transcriptomic analysis. Key regulatory targets, including SARM1, RGS5, PROM2, and BAG1, were identified through bioinformatics analysis and validated using qPCR and Western blotting. Furthermore, a clinical risk assessment model was constructed using breast cancer transcriptome databases to explore the potential prognostic value of these targets. Results The secondary metabolites from Pseudomonas frederiksbergensis exhibit significant anti-tumor effects and highlight their potential molecular mechanisms in breast cancer regulation. Discussion This study provides insights into the therapeutic potential of these metabolites and lays the groundwork for future preclinical and in vivo investigations.
Collapse
Affiliation(s)
- Yuexing Ma
- College of Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Science and Technology College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Pharmacy Colledge, Key Laboratory of Key Technology and Application of Drug Screening for Inflammatory Diseases and Inflammation, Jiangxi Provincial Department of Education, Nanchang Medical College, Nanchang, Jiangxi, China
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Haoyi Zheng
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Science and Technology College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Pharmacy Colledge, Key Laboratory of Key Technology and Application of Drug Screening for Inflammatory Diseases and Inflammation, Jiangxi Provincial Department of Education, Nanchang Medical College, Nanchang, Jiangxi, China
| | - Simin Liu
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Science and Technology College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Pharmacy Colledge, Key Laboratory of Key Technology and Application of Drug Screening for Inflammatory Diseases and Inflammation, Jiangxi Provincial Department of Education, Nanchang Medical College, Nanchang, Jiangxi, China
| | - En Yuan
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Xin Qiao
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhang Dai
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Science and Technology College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Pharmacy Colledge, Key Laboratory of Key Technology and Application of Drug Screening for Inflammatory Diseases and Inflammation, Jiangxi Provincial Department of Education, Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wenli Wu
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Science and Technology College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Pharmacy Colledge, Key Laboratory of Key Technology and Application of Drug Screening for Inflammatory Diseases and Inflammation, Jiangxi Provincial Department of Education, Nanchang Medical College, Nanchang, Jiangxi, China
| | - Rongbin Pan
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Li X, Yin J, Song Q, Yang Q, Li C, Gao H. The novel ginseng Rh2 derivative 2-deoxy-Rh2, exhibits potent anticancer effect via the AMPK/mTOR/autophagy signaling pathway against breast cancer. Chem Biol Interact 2025; 409:111422. [PMID: 39961461 DOI: 10.1016/j.cbi.2025.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/15/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Breast cancer is the most prevalent cancer and the second leading cause of cancer-related mortality among women globally, resulting in considerable psychological and physical distress for patients. Our previous study synthesized a novel derivative, 2-Deoxy-Rh2, which exhibited anticancer properties by influencing glycolysis and mitochondrial respiration. The objective of the current study was to investigate the anti-proliferative effects and underlying mechanisms of 2-Deoxy-Rh2 on human breast cancer cell lines MCF-7 and MDA-MB-231. In our experiments, we observed that 2-Deoxy-Rh2 reduced cell viability and induced cell cycle arrest, reactive oxygen species accumulation, and mitochondrial dysfunction. Furthermore, treatment with 2-Deoxy-Rh2 affected autophagic flux and induction, leading to increased expression of microtubule-associated protein light chain 3B (LC3B) and decreased expression of sequestosome 1 (P62) expression in both two breast cancer cell lines, which could be reversed by 3-Methyladenine (3-MA). Additionally, the AMPK signaling pathway plays a crucial role in 2-Deoxy-Rh2-induced autophagy. 2-Deoxy-Rh2 modulated the expression levels of mTOR and AMPK in MCF-7 and MDA-MB-231 cells, resulting in the cellular homeostasis disruption, autophagy and apoptosis, which was further corroborated by compound C (CC). Finally, the study validated the antitumor activity and mechanism of 2-Deoxy-Rh2 in vivo using Balb/c mice bearing 4T1 tumor cells. Overall, the results suggest that 2-Deoxy-Rh2 can induce apoptosis and autophagic cell death through the AMPK/mTOR signaling pathway, positioning it as a promising candidate for an antitumor agent against breast cancer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianyuan Yin
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Qing Song
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qi Yang
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Chenchen Li
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China; State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, China; Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
24
|
Zhang R, Zhang Z, Xie L, Yu Z, Gao R, Zhang ZR, Zhang Y, Wei X, Chen Y, Jiao S, Gao Y, Guo JP. In vitro analysis of the molecular mechanisms of ursolic acid against ovarian cancer. BMC Complement Med Ther 2025; 25:65. [PMID: 39984915 PMCID: PMC11846399 DOI: 10.1186/s12906-025-04808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
Ovarian cancer is one of most common gynaecologic malignancy and ranks third in cancer-related deaths among women. Ursolic acid (UA) is a pharmacologically active pentacyclic triterpenoid isolated from a large variety of vegetables, fruits and many traditional medicinal plants. However, the mechanism of action of UA in inhibiting the proliferation of ovarian cancer cells remains unclear. Consequently, this experiment was designed to elucidate the mechanism of action of UA in inhibiting the proliferation of ovarian cancer cells in greater detail.The results indicated that UA was capable of effectively inhibiting the proliferation, migration, and colony formation of ovarian cancer cells.UA was observed to up-regulate Bcl-2-associated X protein(BAX)and cysteinyl aspartate specific proteinase 3 (Caspase3) expression and down-regulating B-cell lymphoma-2(Bcl-2) expression.Meanwhile, UA up-regulated Sequestosome 1(p62)expression and down-regulated coiled-coil, moesin-like BCL2-interacting protein(Becline1), microtubule-associated proteins light chain 3(LC3), Phosphoinositide 3-Kinase(PI3K), andProtein Kinase B( AKT) expression, thus effectively inhibiting autophagy in ovarian cancer cells.Furthermore, UA upregulated pancreatic ER kinase (PKR)-like ER kinase (PERK), eukaryotic translation initiation factor 2 A(eIF2α), and The C/EBP Homologous Protein(CHOP) expression.In addition UA upregulates PERK, eIF2α, and CHOP expression and effectively promotes endoplasmic reticulum stress(ERS).In conclusion, UA can inhibit ovarian cancer cell proliferation, migration, colony formation, and may inhibit tumor cell autophagy by promoting tumor cell ERS, and ultimately promote ovarian cancer cell apoptosis.
Collapse
Affiliation(s)
- Ru Zhang
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhaopeng Zhang
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Lulu Xie
- Affiliated Hospital, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ziqing Yu
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Rui Gao
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhi-Run Zhang
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ying Zhang
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuyang Wei
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yang Chen
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Sue Jiao
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yiren Gao
- Affiliated Hospital, Changchun University of Traditional Chinese Medicine, Changchun, China.
| | - Jun-Peng Guo
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China.
| |
Collapse
|
25
|
Zhang H, Tang J, Cao H, Wang C, Shen C, Liu J. Effect and mechanism of Magnolia officinalis in colorectal cancer: Multi-component-multi-target approach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119007. [PMID: 39471878 DOI: 10.1016/j.jep.2024.119007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Colorectal cancer (CRC) is a prevalent malignant tumor of the digestive tract. Traditional Chinese medicine (TCM) has a long history of treating CRC, with advantages such as effectiveness, multi-target, multi-pathway, and minimal side effects. TCM Magnolia officinalis (M. officinalis) refers to the dried bark, root bark, and branch bark of either Magnolia officinalis Rehd.et Wils. or Magnolia officinalis Rehd.et Wils. var. biloba Rehd.et Wils. It is commonly utilized to alleviate the side effects of chemotherapy for CRC, owing to its anti-inflammatory and anti-tumor properties. However, current research primarily focuses on the individual components and does not take into consideration the characteristics of multi-component-multi-target action. AIM OF THE STUDY Our aim is to study the new action characteristics of M. officinalis in the treatment of CRC. MATERIALS AND METHODS Utilizing network pharmacology to identify potential active ingredients, key targets, and main signaling pathways of M. officinalis for the treatment of CRC. The binding effect was further validated through molecular docking analysis. Furthermore, the aforementioned components were identified using liquid chromatography-mass spectrometry (LC-MS), and the cleavage pathways of the main components were analyzed. Subsequently, both in vitro and in vivo experiments were carried out to investigate the anti-CRC effect of the active ingredients of M. officinalis and its potential mechanism. RESULTS Network pharmacology and Molecular docking identified 5 main active ingredients and 6 core targets of M. officinalis for the treatment of CRC. Then, LC-MS identified the active components of M. officinalis. At the same time, both in vitro and in vivo experiments have confirmed the ability of Eucalyptol (Euc) and Obovatol (Obo)to inhibit inflammation and tumor cell proliferation. The possible mechanism involved is that Euc and Obo counteract CRC by inhibiting the over-activation of NF-κBp65/JAK and Bcl-2/Caspase signaling pathways, respectively. They also play a role in the anti-CRC effect of M. officinalis. CONCLUSION Magnolol (MAG), Honokiol (HK), Euc, Obo, and Neohesperidin (NHP) in M. officinalis may be the pharmacological substance basis for its anti-cancer effect on CRC. The treatment of CRC with M. officinalis is characterized by its multi-component, multi-target, and multi-pathway approach. These findings provide a theoretical basis for further inspiring the clinical application of M. officinalis and the development of efficacy targets.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Huiliang Cao
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chenguang Wang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chong Shen
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
26
|
Song S, Tai L, Zhou L, Jiang J, Zhao J. Lathyrol affects the expression of AR and PSA and inhibits the malignant behavior of RCC cells. Open Med (Wars) 2025; 20:20241136. [PMID: 39927164 PMCID: PMC11806241 DOI: 10.1515/med-2024-1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025] Open
Abstract
Objective To investigate how lathyrol affects aggressive behaviors and related proteins of the androgen receptor (AR) 786-O cells. Methods 786-O cells were cultured in vitro and divided into these groups at random: the dimethylsulfoxide (DMSO) control group (A group), negative control group (B group), and experimental group (C group). Cells in A group were grown in DMSO working medium (contained RPMI 1640 medium and 1% DMSO), B group cells were cultured in nilutamide working medium (contained DMSO working medium and 325 μg/mL nilutamide), while those in C group were cultured in lathyrol working medium (contained DMSO working medium and 300 μg/mL lathyrol). Cell proliferation was measured via CCK-8 assays, and cell apoptosis was examined through terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Scratch tests and Transwell invasion tests were used to evaluate cell movement and penetration. The expression information about p-AR, AR, p-Akt, ki67, caspase3, cleaved-caspase3, Bcl-2, Bax, caspase9, cleaved-caspase9, and GAPDH proteins was investigated through western blotting. Immunocytochemistry was used to identify the 786-O cells' secretion level of matrix metalloproteinase 2 (MMP2), MMP9, and prostate-specific antigen (PSA) proteins. Results The negative control and experimental groups' cells exhibited reduced proliferation, migration, and invasion and increased apoptosis after 24 h treatment. Furthermore, these two group cells exhibited a notable reduction in the status of Ki67, Bcl-2, MMP2, MMP9, and p-Akt (P < 0.05) and significantly increased the expressions of AR, p-AR, Bax, cleaved-caspase3, and cleaved-caspase9 (P < 0.05). There was no statistical distance in PSA, caspase3, and caspase9 expressions among the three groups (P > 0.05). Conclusion In vitro, lathyrol and nilutamide exert notable anticancer effects by effectively suppressing the proliferation, migration, and invasion of 786-O cells while also inducing apoptosis.
Collapse
Affiliation(s)
- Shengyou Song
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450002, China
| | - Lunwei Tai
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450002, China
| | - Lei Zhou
- Department of Urology, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450002, China
| | - Junling Jiang
- Department of Urology, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450002, China
| | - Junfeng Zhao
- Department of Urology, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450002, China
| |
Collapse
|
27
|
Li S, Chen X, Tang J, Zhang D, Jiang Y, Zhang H, Song X, Wang W, Li Y. Genus Helleborus: a comprehensive review of phytochemistry, pharmacology and clinical applications. Nat Prod Res 2025; 39:888-904. [PMID: 38372230 DOI: 10.1080/14786419.2024.2317880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
The genus Helleborus belongs to the Ranunculaceae family, distributed in southeastern Europe and western Asia. In folk medicine, it is commonly used as an anti-inflammatory and analgesic medicine for rheumatoid arthritis and bruises. Through reviewing recent articles, it was found that two hundred and twenty-six compounds have been isolated and identified from the genus Helleborus. These compounds include steroids, flavonoids, phenylpropanoids, lignans, anthraquinones, phenolics and others. Among them, the main chemical constituents are steroids. Pharmacological studies show Helleborus has anti-cancer, immunomodulatory, anti-inflammatory, analgesic, anti-hyperglycaemic, antioxidant and antibacterial properties. This article reviews the botany, phytochemistry, pharmacological effects and clinical applications of the genus Helleborus. Hopefully, it will provide a reference for in-depth research and exploitation of the genus Helleborus.
Collapse
Affiliation(s)
- Shixing Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Xiaolin Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Jiamei Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, PR China
| | - Yi Jiang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, PR China
| | - Huawei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, PR China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, PR China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, PR China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, PR China
| |
Collapse
|
28
|
Jia WD, Bai X, Ma QQ, Bian M, Bai CM, Li D, Li LF, Wei CX, Yu LJ. Synthesis, molecular docking studies of formononetin derivatives as potent Bax agonists for anticancer activity. Nat Prod Res 2025; 39:423-437. [PMID: 37921074 DOI: 10.1080/14786419.2023.2269592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Formononetin as a Bax agonist exhibits anticancer effects. To identify novel Bax agonist, 18 new structurally modified formononetin derivatives were synthesised and their anticancer activities were evaluated in the A549 and Beas-2b cell lines. The results indicated that 7a elicited the most potent inhibitory effect against the A549 cell line, with an IC50 value of 0.87 μM, and no obvious toxicity to Beas-2b cells. These results indicated that 7a was 40-fold and 6.94-fold more efficacious than Formononetin and Doxorubicin, respectively. Additionally, western blot and immunofluorescence assays demonstrated that 7a downregulated the protein expression of Bcl-2 and upregulated the expressions of Bax to promote A549 apoptosis, the obtained results also suggested that 7a had the potential to be developed into a lead compound that can be applied in the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Wei-Dong Jia
- Inner Mongolia Minzu University, Tongliao, P.R. China
| | - Xue Bai
- Inner Mongolia Minzu University, Tongliao, P.R. China
- College of Public Health, Inner Mongolia Minzu University, Tongliao, China
| | - Qian-Qian Ma
- Inner Mongolia Minzu University, Tongliao, P.R. China
- College of Public Health, Inner Mongolia Minzu University, Tongliao, China
| | - Ming Bian
- Inner Mongolia Minzu University, Tongliao, P.R. China
- College of Public Health, Inner Mongolia Minzu University, Tongliao, China
| | - Chun-Mei Bai
- Inner Mongolia Minzu University, Tongliao, P.R. China
| | - Di Li
- Inner Mongolia Minzu University, Tongliao, P.R. China
| | - Li-Fei Li
- First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, P.R. China
| | - Cheng-Xi Wei
- Inner Mongolia Minzu University, Tongliao, P.R. China
| | - Li-Jun Yu
- Inner Mongolia Minzu University, Tongliao, P.R. China
- College of Public Health, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
29
|
Wang X, Wang XQ, Luo K, Bai H, Qi JL, Zhang GX. Research Progress of Chinese Medicine Monomers in Treatment of Cholangiocarcinoma. Chin J Integr Med 2025; 31:170-182. [PMID: 39470920 DOI: 10.1007/s11655-024-4203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 11/01/2024]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating from cholangiocytes. However, it remains unclear about the pathogenesis of this carcinoma, which may be related to multiple factors. Currently, CCA is mainly treated by surgery, chemotherapy, and radiotherapy. Among them, surgery is the only potentially curative option for CCA. Nevertheless, the high malignancy and asymptomatic nature of CCA may lead to poor treatment outcomes. It has been demonstrated that Chinese medicine (CM) plays a significant role in various antitumor applications. Meanwhile, CM exhibits fewer side effects and high availability. Moreover, the in vitro application of CM monomers has been explored in many domestic and foreign studies. This article mainly reviews the signaling pathways and molecular mechanisms of CM monomers in the treatment of CCA in recent years. These findings are expected to provide new insights into the treatment of CCA.
Collapse
Affiliation(s)
- Xiang Wang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Hepatobiliary Surgery Department, Shandong Provincial Third Hospittal, Shandong University, Jinan, 250031, China
| | - Xiao-Qing Wang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Kai Luo
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - He Bai
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Jia-Lin Qi
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Gui-Xin Zhang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
30
|
Tian F, Sun S, Ge Z, Ge Y, Ge X, Shi Z, Qian X. Understanding the Anticancer Effects of Phytochemicals: From Molecular Docking to Anticarcinogenic Signaling. J Nutr 2025; 155:431-444. [PMID: 39581266 DOI: 10.1016/j.tjnut.2024.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
As nontraditional nutrients, the biological activity of phytochemicals have been extensively studied for their antioxidant, anti-inflammatory, and apoptosis-promoting effects in various diseases. The general anticancer benefits of phytochemicals have been demonstrated in both basic researches and clinical trials. However, researchers understanding of how phytochemicals target cancer-related signaling pathways is still in its infancy. Molecular docking simulation analyses have yielded a large amount of cellular target molecules of phytochemicals. Herein, we review the potential signaling pathways that may be involved in the phytochemical-driven cancer benefits. We expect these findings to help in the design of potential cancer treatments designed by manipulating the binding modes and sites of these plant chemicals.
Collapse
Affiliation(s)
- Fuwei Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuhong Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehe Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqian Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurosurgery of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurosurgery of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
31
|
Wang Y, Sheng Z, Li H, Tan X, Liu Y, Zhang W, Ma W, Ma L, Fan Y. The effects of Fraxini cortex and Andrographis herba on Escherichia coli-induced diarrhea in chicken. Poult Sci 2025; 104:104824. [PMID: 39874706 PMCID: PMC11810841 DOI: 10.1016/j.psj.2025.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Escherichia coli (E. coli) is a type of pathogenic bacteria that often causes diarrhea in poultry. While antibiotics can control E. coli-induced diarrhea in chickens, it can lead the ongoing proliferation of antibiotic resistance. Traditional Chinese medicines (TCMs) that effectively protect against and treat chicken diarrhea caused by E. coli are an encouraging alternative. That enhance poultry immunity, curtail antibiotic resistance, and provide a secure, eco-friendly, and efficacious option for the livestock and poultry industry. In this study, the model of chicken diarrhea induced by E. coli was established, and different TCM formulas were used for treatment, and finally the formula with the best effect was screened out. The research also investigated the impact of these formulas on gut microbiota and serum metabolites in chickens, using 16S rRNA sequencing technology and metabolomics. Mass spectrometry technology and network pharmacology were used to analyze the optimal TCM formula corroborated by molecular docking and qPCR for further explore mechanism exploration. The findings indicated that Fraxini cortex and Andrographis herba dramatically lowered mortality rates and alleviated pathologic changes in cases of avian E. coli diarrhea (P < 0.05). Fraxini cortex and Andrographis herba significantly boosted the abundance of Bacteroidetes (P < 0.05) and mainly enhanced cysteine and methionine metabolic pathways. Moreover, 97 active ingredients in Fraxini cortex and Andrographis herba were identified, along with 1425 diarrhea-related targets, primarily enriched in the MAPK signaling pathway. Molecular docking and qPCR revealed that the crucial active ingredients in Fraxini cortex and Andrographis herba bonded effectively with disease targets and treated diarrhea by regulating the MAPK signaling pathway. This suggests that Fraxini cortex and Andrographis herba exerts an optimal effect on diarrhea by multi-target and multi-pathway regulation of metabolic pathways and gut microbiota.
Collapse
Affiliation(s)
- Yunying Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Zhenwei Sheng
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Huicong Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Xuewen Tan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Lin Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
32
|
Fang H, Xu J, Ma H, Feng Z, Cheng YY, Nie Y, Guan Y, Liu Y, Song K. A quercetin nanoparticle combined with a 3D-printed decellularized extracellular matrix/ gelatin methacryloyl/sodium alginate biomimetic tumor model for the treatment of melanoma. Int J Biol Macromol 2025; 288:138680. [PMID: 39672413 DOI: 10.1016/j.ijbiomac.2024.138680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The traditional drug efficacy testing often conducted using two-dimensional (2D) cell culture methods, which do not accurately replicate the complexity of the tumor microenvironment. Melanoma in particular, is known for its high incidence, and aggressive nature, highlighting the need for more sophisticated in vitro models that better simulate the tumor's true biological microenvironment drug research and therapy. In this study, we developed quercetin nanoparticles (QueNPs) with enhanced water solubility and promising tumor therapeutic effects. These nanoparticles were formed through the self-assembly of Pluronic F127 (PF127) and quercetin (Que). To better mimic the in vivo tumor environment, we also created a composite scaffold using three-dimensional (3D) printing technology, incorporating a decellularized extracellular matrix (dECM), which closely resembles the native tissue microenvironment. The scaffold also included gelatin methacryloyl (GelMA), which forms a polymeric network via photocrosslinking, and sodium alginate (SA), which enhances structural stability through ion cross-linking with calcium ions. This combination was used to construct a more physiologically relevant 3D melanoma model. The anti-cancer effects of QueNPs were assessed in both 2D and 3D culture systems. The results showed that tumor cells in the 3D model formed cluster and distributed across the scaffold, creating a more realistic tumor microenvironment compared to the 2D system. Cells in the 3D tumor model exhibited significant resistance to QueNPs, with a time dependent response that resulted in a killing rate of over 90 % by day 14. These findings highlight the efficiency of the QueNPs in the 3D melanoma model and emphasize the importance of incorporation 3D printing and nanomedicine for more accurate and effective drug screening.
Collapse
Affiliation(s)
- Huan Fang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Zijiao Feng
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
| | - Yanchun Guan
- Department of Rheumatology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yaqian Liu
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| |
Collapse
|
33
|
Zhou C, Zhong R, Zhang L, Yang R, Luo Y, Lei H, Li L, Cao J, Yuan Z, Tan X, Xie M, Qu H, He Z. Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation. Discov Oncol 2025; 16:47. [PMID: 39812944 PMCID: PMC11735722 DOI: 10.1007/s12672-025-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Rosmarinic acid (RosA) is a natural polyphenol compound that has been shown to be effective in the treatment of inflammatory disease and a variety of malignant tumors. However, its specific mechanism for the treatment of lung adenocarcinoma (LUAD) has not been fully elucidated. Therefore, this study aims to clarify the mechanism of RosA in the treatment of LUAD by integrating bioinformatics, network pharmacology and in vivo experiments, and to explore the potential of the active ingredients of traditional Chinese medicine in treating LUAD. METHODS Firstly, the network pharmacology was used to screen the RosA targets, and LUAD-related differential expressed genes (DEGs) were acquired from the GEO database. The intersection of LUAD regulated by RosA (RDEGs) was obtained through the Venn diagram. Secondly, GO and KEGG enrichment analysis of RDEGs were performed, and protein-protein interaction networks (PPIs) were constructed to identify and visualize hub RDEGs. Then, molecular docking between hub RDEGs and RosA was performed, and further evaluation was carried out by using bioinformatics for the predictive value of the hub RDEGs. Finally, the mechanism of RosA in the treatment of LUAD was verified by establishing a xenograft model of NSCLC in nude mouse. RESULTS Bioinformatics and other analysis showed that, compared with the control group, the expressions of MMP-1, MMP-9, IGFBP3 and PLAU in LUAD tissues were significantly up-regulated, and the expressions of PPARG and FABP4 were significantly down-regulated, and these hub RDEGs had potential predictive value for LUAD. In vivo experimental results showed that RosA could inhibit the growth of transplanted tumors in nude mice bearing tumors of lung cancer cells, reduce the positive expression of Ki67 in lung tumor tissue, and hinder the proliferation of lung tumor cells. Upregulated expression of PPARG and FABP4 by activating the PPAR signaling pathway increases the level of ROS in lung tumor tissues and promotes apoptosis of lung tumor cells. In addition, RosA can also reduce the expression of MMP-9 and IGFBP3, inhibit the migration and invasion of lung tumor tissue cells. CONCLUSIONS This study demonstrated that RosA could induce apoptosis by regulating the PPAR signaling pathway and the expression of MMP-9, inhibit the proliferation, migration and invasion of lung cancer cells, thereby exerting anti-LUAD effects. This study provides new insight into the potential mechanism of RosA in treating LUAD and provides a new therapeutic avenue for treatment of LUAD.
Collapse
Affiliation(s)
- Chaowang Zhou
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Ruqian Zhong
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Lei Zhang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Renyi Yang
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
| | - Yuxin Luo
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Huijun Lei
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Liang Li
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Changsha, 410208, Hunan, China
| | - Zhiying Yuan
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China
| | - Xiaoning Tan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China
| | - Mengzhou Xie
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Haoyu Qu
- Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, 410208, Hunan, China.
| | - Zuomei He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No. 58, Yuelu District, Changsha, 410006, Hunan, China.
| |
Collapse
|
34
|
Ji Y, Li L, Li W, Li L, Ma Y, Li Q, Chen X, Zhao W, Zhu H, Huo J, Wu M. Xiaoai Jiedu recipe reduces cell survival and induces apoptosis in hepatocellular carcinoma by stimulating autophagy via the AKT/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119135. [PMID: 39586558 DOI: 10.1016/j.jep.2024.119135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Xiaoai Jiedu recipe (XJR) is a traditional Chinese medicine formulation used in clinical settings to treat liver cancer. It has shown promising effectiveness by combining herbal and animal-derived ingredients, offering a new approach to cancer treatment. However, its mechanism of action is poorly understood. AIM OF THE STUDY The molecular processes underlying the inhibitory effects of the XJR on hepatocellular cancer (HCC) were investigated. MATERIALS AND METHODS The primary chemical components of XJR and associated disease targets relevant to HCC were anticipated and compiled using a database. The potential targets and processes by which XJR influenced HCC were investigated using GO and KEGG enrichment analyses, as well as protein-protein interaction (PPI) networks. Transmission electron microscopy, laser confocal microscopy, and Western blotting were used to evaluate autophagy, while CCK-8 assays measured cell viability and Western blotting and flow cytometry evaluated apoptosis. In vivo assays were conducted employing an HCC xenograft mouse model. RESULTS Network pharmacology analysis identified 456 intersecting targets between XJR and HCC. The top five active components are quercetin, cholesterol, jaceosidine, eupafolin, and oleanolic acid. The key targets include TP53, AKT1, IL6, EGFR, SRC, HSP90AA1, TNF, IL1B, MYC, and CASP3. Additionally, the autophagy pathway was found to be one of the main pathways through which XJR intervenes in HCC. The increased quantity of autophagosomes and autolysosomes, the overexpression of Beclin1 and LC3A/B-II proteins, and the downregulation of P62 all suggest that XJR stimulated autophagy in HCC cells. Functional tests employing pathway-specific activators and inhibitors and siRNA-based knockdown demonstrated that XJR promoted autophagy by blocking AKT/mTOR signaling. Furthermore, XJR reduced the viability of HCC cells and promoted apoptosis by upregulating apoptosis proteins. Autophagy inhibitors and Beclin1 silencing reversed these effects. Research conducted in vivo showed that XJR activated autophagy through the AKT/mTOR axis, thereby markedly reducing tumor growth and inducing tumor cell demise. CONCLUSIONS These studies show that XJR activates autophagy in both cellular and animal models to induce apoptosis and decrease HCC cell proliferation, as shown by network pharmacology and verification assays. Further, these findings provide experimental evidence that the anti-tumor activity of XJR involves autophagy stimulation.
Collapse
Affiliation(s)
- Yi Ji
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Li Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Wenting Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Liu Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Yanxia Ma
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingfeng Li
- School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Wenyue Zhao
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| | - Hengzhou Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Mianhua Wu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China.
| |
Collapse
|
35
|
Shen J, Gong X, Ren H, Tang X, Yu H, Tang Y, Chen S, Ji M. Identification and validation of CDK1 as a promising therapeutic target for Eriocitrin in colorectal cancer: a combined bioinformatics and experimental approach. BMC Cancer 2025; 25:76. [PMID: 39806333 PMCID: PMC11731355 DOI: 10.1186/s12885-025-13448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy worldwide, associated with significant morbidity and mortality. Cyclin-dependent kinase 1 (CDK1) plays a crucial role in cell cycle regulation and has been implicated in various cancers. This study aimed to evaluate the prognostic value of CDK1 in CRC and to identify traditional Chinese medicines (TCM) that can target CDK1 as potential treatments for CRC. METHODS The expression and prognostic value of CDK1 were analyzed through TCGA, GEO, GEPIA, UALCAN and HPA databases. An ESTIMATE analysis was applied to estimate the proportions of stromal and immune cells in tumor samples. GO and KEGG enrichment analyses were performed to clarify the functional roles of CDK1-related genes. CCK-8, colony formation, cell migration, cell invasion, and wound healing assays were employed to explore tumor-promoting role of CDK1. Molecular docking, cellular thermal shift, and isothermal dose-response assays were employed to identify potential inhibitors of CDK1. RESULTS CDK1 was highly expressed in CRC and associated with a poorer prognosis. The expression of CDK1 was also correlated with the levels of immune cells infiltration. CDK1-related genes were primarily involved in the cell cycle and the P53 signaling pathway. Knockdown of CDK1 inhibited the proliferation, migration, and invasion of CRC cells in vitro. Furthermore, Eriocitrin emerged as a potential inhibitor, exerting its anti-tumor effects by targeting and inhibiting CDK1 activity. CONCLUSION CDK1 plays a critical role in CRC prognosis. Eriocitrin, a potential CDK1 inhibitor derived from TCM, highlights a promising new therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Jiemiao Shen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Xing Gong
- Department of Environment Health, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin, Nanjing, 210003, P. R. China
| | - Haili Ren
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Xia Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Hairong Yu
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Yilu Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Shen Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Minghui Ji
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| |
Collapse
|
36
|
Ren L, Fang Z, Xu J, Wu X, Zhang Y, Cai H, Han Z. Matrine Inhibits Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition Through Regulating the LINC01116/miR-9-5p/ITGB1 Axis. Balkan Med J 2025; 42:54-65. [PMID: 39757516 PMCID: PMC11725677 DOI: 10.4274/balkanmedj.galenos.2024.2024-8-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Background Breast cancer (BC) is the most prevalent solid cancer affecting women's health globally. Matrine (MAT), a traditional Chinese herb, has exhibited antitumor effects against BC. However, its mechanism of action, particularly whether it involves the control of cell proliferation and epithelial-mesenchymal transition (EMT), remains unknown. Aims To explore MAT's role in BC and its regulatory mechanisms, as well as to identify targets for the development of novel medicines and improvement of BC treatment modalities. Study Design Experimental study. Methods The UALCAN and Lnc2Cancer 3.0 databases were used to predict the expression of LINC01116 in BC. The BC cells (MDA-MB-231 and MCF-7) were treated with various concentrations of MAT, and the optimal dose and timing of MAT action were determined using CCK-8 and quantitative real-time polymerase chain reaction assays. Functional assays such as CCK-8, EdU, Transwell, Western blot, and flow cytometry assays were performed on the BC cells, and the impacts of LINC01116, miR-9-5p, and ITGB1 expression levels on MAT's mechanism of action were assessed. The association between LINC01116, miR-9-5p, and ITGB1 was evaluated using dual luciferase and RNA immunoprecipitation assays. Furthermore, the size and weight of the subcutaneous tumors in mice model were assessed. The effect of LINC01116 overexpression on the in vivo action of MAT and histopathological staining (TUNEL immunofluorescence, hematoxylin & eosin staining, immunohistochemistry staining for Ki67 and Bax) were also assessed. Results The optimal dose and duration of MAT administration were 8 μm and 24 h, respectively. MAT effectively inhibited BC cell proliferation, EMT progression, and biological functions, while promoting BC cell apoptosis. The animal model experiments also demonstrated that MAT inhibited BC tumor growth in vivo. Furthermore, MAT inhibited LINC01116, which acted as a sponge for miR-9-5p, increasing the ITGB1 level. Conclusion MAT suppresses BC cell and EMT proliferation via the LINC01116/miR-9-5p/ITGB1 pathway. Thus, MAT may be a promising target for adjuvant anti-BC therapy.
Collapse
Affiliation(s)
- Lili Ren
- Department of Integration of Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310022, China
| | - Ziru Fang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jiaojiao Xu
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaoxiao Wu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yongjun Zhang
- Department of Integration of Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310022, China
| | - Hu Cai
- Department of Integration of Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhicun Han
- Department of Acupuncture, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
37
|
Liang Z, Wei J, Chan S, Zhang S, Xu L, Shen C, Zhong Z, Wang Y. Pinelliae Rhizoma: a systematic review on botany, ethnopharmacology, phytochemistry, preclinical and clinical evidence. Chin J Nat Med 2025; 23:1-20. [PMID: 39855824 DOI: 10.1016/s1875-5364(25)60807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 01/27/2025]
Abstract
Pinelliae Rhizoma (PR), known as Banxia in Chinese, Hange in Japanese, and Banha in Korean, is a renowned herbal medicine in East Asia derived from the dry tuber of Pinellia ternata (Thunb.) Breit. (PT). It is extensively utilized in dispensing granules, classical prescriptions, and herbal formulas to treat various conditions, including cough, infection, phlegm, nausea, asthma, and inflammation. Despite numerous studies on PR and its classical prescriptions over recent decades, a comprehensive synthesis of available evidence regarding its multifunctional roles and therapeutic potential is lacking. This review aims to address this gap by examining emerging evidence from metabonomics, preclinical studies, and clinical trials, while exploring potential trends and prospects for future research. A systematic literature search was conducted across six electronic databases, including PubMed, Web of Science, Scopus, ScienceDirect, Wanfang, and China National Knowledge Infrastructure, to identify relevant articles on PR published until March 2023. PR contains 107 compounds with diverse pharmacological activities, including anti-inflammatory, immune regulatory, anti-viral, anti-cancer, anti-asthma, antitussive and expectorant, antioxidant, anti-obesity, anti-atherosclerosis, anti-microbial, emetic and anti-emetic, anti-convulsant and anti-epileptic, sedative and hypnotic, learning and memory enhancement, and anti-depressant effects. Metabonomic studies suggest that raw PR may exhibit cardiotoxicity and pregnancy toxicity while showing no apparent hepatorenal toxicity. However, limited pharmacokinetic investigations on PR constrain its clinical translation. Furthermore, clinical safety data on PR is scarce, with only four clinical trials assessing its positive effects in pediatric epilepsy, nausea and vomiting, soft tissue injury, and chronic sinus tract. This review aims to enhance understanding of PR and provide valuable information and recommendations for further research and development of herbal medicine.
Collapse
Affiliation(s)
- Zuanji Liang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Sioi Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Li Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Chenxiao Shen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
38
|
Zhang H, Hu J, Zhao X, Zheng B, Han Y, Luo G, Dou D. Ginsenoside RK3 inhibits glioblastoma by modulating macrophage M2 polarization via the PPARG/CCL2 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156271. [PMID: 39616731 DOI: 10.1016/j.phymed.2024.156271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 11/16/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Glioblastoma is recognized as the most aggressive form of intracranial tumor, presenting significant challenges in treatment. Recent emphasis has been placed on the potential of traditional Chinese medicine (TCM) as an adjuvant treatment for cancer. METHODS We employed a series of assays-including CCK8, EdU, Transwell, and neurosphere formation-to evaluate the impact of ginsenoside RK3 on the phenotype of GBM. The modulation of macrophage M2 polarization by ginsenoside RK3 was assessed through flow cytometry, immunohistochemistry, and Western blot analysis. Furthermore, we utilized sequencing analysis and network pharmacology to identify potential therapeutic targets. RESULTS Our findings reveal that ginsenoside RK3 not only inhibits the phenotype of glioblastoma cells but also suppresses tumor progression in vivo while attenuating macrophage M2 polarization within the tumor immune microenvironment. Notably, ginsenoside RK3 down-regulates PPARG expression in tumor cells, leading to decreased secretion of CCL2, which subsequently diminishes macrophage M2 polarization. Additionally, we demonstrated that combining ginsenoside RK3 with temozolomide significantly enhances the inhibition of glioblastoma's malignant characteristics and progression. CONCLUSIONS This study innovatively highlights the dual mechanism of ginsenoside RK3 in glioblastoma treatment: it impedes tumor progression by modulating the PPARG/CCL2 pathway and enhances the efficacy of temozolomide. Our research underscores the promising role of herbal medicine in the management of glioblastoma, paving the way for novel therapeutic strategies that integrate traditional approaches with conventional treatments.
Collapse
Affiliation(s)
- Haiying Zhang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110042 China
| | - Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001 China
| | - Xiang Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001 China
| | - Bohao Zheng
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110042 China
| | - Ying Han
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110042 China
| | - Gang Luo
- Liaoning Maternal and Child Health Hospital, No. 240 Shayang Road, Shenyang 110005, China.
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, China.
| |
Collapse
|
39
|
Tang N, Deng W, Wu Y, Deng Z, Wu X, Xiong J, Zhao Q. Decoding the role of SLC25A5 in osteosarcoma drug resistance and CD8+ T cell exhaustion: The therapeutic potential of phyllanthin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156291. [PMID: 39752785 DOI: 10.1016/j.phymed.2024.156291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/14/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025]
Abstract
Osteosarcoma is an aggressive malignant bone tumor with an obscure etiology, as well as high prevalence and poor prognosis in children and adolescents. We aimed to investigate the pathogenesis of osteosarcoma through a comprehensive analysis of the tumor immune microenvironment (TIME) using multiple single-cell RNA sequencing datasets. SLC25A5, a gene implicated in cellular aging, significantly influenced osteosarcoma development by altering the TIME and promoting CD8+ T cell exhaustion, which contributed to reduced chemosensitivity. Experimental validation demonstrated that SLC25A5 enhanced the proliferative, migratory, invasive, and osteolytic properties of drug-resistant osteosarcoma cells while reducing apoptosis, intensifying cisplatin resistance. Phyllanthin inhibited the malignant phenotype of cisplatin-resistant osteosarcoma cells and enhanced their sensitivity to cisplatin by suppressing SLC25A5 expression. This study highlights a novel pathogenic role of SLC25A5 in osteosarcoma and presents Phyllanthin as a promising therapeutic agent. Our study offers a pioneering exploration of the single-cell spatiotemporal evolution of osteosarcoma and identifies SLC25A5 as a critical factor in drug resistance and immune evasion. By integrating advanced single-cell technologies and functional assays, we provided novel insights into the molecular mechanisms underlying osteosarcoma progression and treatment resistance, facilitating innovative therapeutic strategies.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Woding Deng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yupeng Wu
- Department of Spine Surgery, First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhixuan Deng
- Institute of Cell Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianbin Xiong
- Department of Orthopedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Qiangqiang Zhao
- Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Xining, Qinghai, China; Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China.
| |
Collapse
|
40
|
Fan J, Lin H, Luo J, Chen L. 4‑Methoxydalbergione inhibits the tumorigenesis and metastasis of lung cancer through promoting ferroptosis via the DNMT1/system Xc‑/GPX4 pathway. Mol Med Rep 2025; 31:19. [PMID: 39513605 PMCID: PMC11564907 DOI: 10.3892/mmr.2024.13384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024] Open
Abstract
Lung cancer is responsible for the highest number of tumor‑related deaths worldwide. A flavonoid extracted from the heartwood of Dalbergia sissoo Roxb., 4‑methoxydalbergione (4‑MD), exhibits potent anticancer activity in multiple malignancies; however, the potential anticancer activity of 4‑MD in lung cancer has not yet been elucidated. In the present study, A549 cells were treated with increasing concentrations of 4‑MD, and cell viability was assessed using a Cell Counting Kit‑8 assay. In addition, colony formation, 5‑ethynyl‑2'‑deoxyuridine, wound healing and Transwell assays were conducted to evaluate cell proliferation, migration and invasion, respectively. Cell morphology was observed using transmission electron microscopy, and ferroptosis was determined using thiobarbituric acid reactive substance, lipid reactive oxygen species (ROS) and iron assays. Moreover, molecular docking was used to verify the potential interaction between 4‑MD and DNA methyltransferase 1 (DNMT1). Tumor‑bearing mice were established and treated with 10 or 30 mg/kg 4‑MD, and tumor volume and weight were recorded. Immunohistochemistry and Prussian blue staining were conducted to examine Ki‑67 expression and iron deposition in tumor tissues, and protein expression was further explored using western blot analysis. The results of the present study revealed that 4‑MD significantly inhibited cell proliferation, migration, invasion and epithelial‑mesenchymal transition in a concentration‑dependent manner. Notably, 4‑MD induced ferroptosis via increased lipid peroxidation, lipid ROS and Fe2+ levels. In addition, it was revealed that 4‑MD can directly bind to DNMT1 to inhibit expression, and inhibit solute carrier family 7 member 11 (SLC7A11; also known as cystine‑glutamate antiporter) and glutathione peroxidase 4 expression. Following DNMT1 overexpression, the observed antitumor activity and ferroptosis‑promoting effects of 4‑MD were partially reversed. Furthermore, 4‑MD significantly inhibited tumor growth in vivo, and reduced tumor volume and weight. In addition, Ki‑67 expression was reduced while iron deposition was increased in the tumor tissues of mice following treatment with 4‑MD. In conclusion, 4‑MD may exhibit anticancer activity through the promotion of DNMT1‑mediated cell ferroptosis. Thus, 4‑MD may have potential as a novel therapeutic agent in the treatment of lung cancer.
Collapse
Affiliation(s)
- Jun Fan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Haoran Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jinhua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
41
|
Xie H, Lin F, Shi F, Johnstone E, Wang Y, An Y, Su J, Liu J, Dong Q, Liu J. Synthesis, biological evaluation and mechanism study based on network pharmacology of amino acids esters of 20(S)-protopanaxadiol as novel anticancer agents. Fitoterapia 2025; 180:106274. [PMID: 39537112 DOI: 10.1016/j.fitote.2024.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
As one of the metabolites of ginseng, 20(S)-protopanaxadiol (PPD) is a compound with dammarane-type tetracyclic triterpene, which performs a wide range of anticancer activities. In this study, PPD was used as a lead. A series of compounds were synthesized respectively with 11 amino acids through esterification and were evaluated for their cytotoxicity against several cancer cell lines. One of the synthetic products (PL) exhibited potent inhibitory effect on Huh-7 cells relative to that of PPD in vitro. Subsequently, the Annexin V-FITC /PI staining assay was used to verify that PL induced apoptosis of Huh-7 cells in a dose-dependent manner. A UPLC-Q/TOF-MS analysis method was established and validated for assessing pharmacokinetic properties after the administration of PPD and PL in rats. The results showed that compared with PPD, T1/2of PL in rats was prolonged, and the peak time was delayed, resulting in broader tissue distribution of the compound in the body. In addition, the targets of PL against several cancers were predicted and analyzed via network pharmacology. Molecular docking simulations demonstrated that PL interacted with the active sites of the above targets. In conclusion, this study provided a theoretical basis for the development and clinical application of anti-tumor activity of PPD.
Collapse
Affiliation(s)
- Hongliu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Fang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Fei Shi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | | | - Yaqi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yang An
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Jun Su
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China; Basic Medicine Department, Fenyang College of Shanxi Medical University, Fenyang 032200, PR China
| | - Jiayin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Qinghai Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Jihua Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
42
|
Yang Y, Shen J, Deng P, Chen P. Mechanism investigation of Forsythoside A against esophageal squamous cell carcinoma in vitro and in vivo. Cancer Biol Ther 2024; 25:2380023. [PMID: 39046082 PMCID: PMC11271126 DOI: 10.1080/15384047.2024.2380023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
CONTEXT Forsythoside A (FSA) was extracted from Forsythia suspensa, a traditional Chinese medicine, which has been demonstrated to exert anti-inflammatory, antibacterial, and other pharmacological effects. However, the anticancer effect of FSA in esophageal squamous cell carcinoma (ESCC) has not been documented. OBJECTIVE The present study aimed to elucidate the mechanism of FSA against ESCC. MATERIALS AND METHODS Network pharmacology and molecular docking were employed to predict the mechanism. FSA was utilized to treat ESCC cell lines KYSE450 and KYSE30, followed by CCK-8 assay, cell cloning formation assay, flow cytometry, Western blot, RNA-seq analysis, and subsequent in vivo experiments. RESULTS Network pharmacology and molecular docking predicted that the therapeutic effect of FSA in ESCC is mediated through proteins such as BCL2 and BAX, influencing KEGG pathways associated with apoptosis. In vitro experiments showed that FSA inhibited cell proliferation and plate clone formation, promoted cell apoptosis and impacted the cell cycle distribution of G2/M phase by regulating BCL2, BAX, and p21. Further RNA-seq in KYSE450 cells showed that FSA regulated the expression of 223 genes, specifically affecting the biological process of epidermal development. In vivo experiments showed that gastric administration of FSA resulted in notable reductions in both tumor volume and weight by regulating BCL2, BAX, and p21. 16S rRNA sequencing showed that FSA led to significant changes of beta diversity. Abundance of 11 specific bacterial taxa were considerably changed following administration of FSA. CONCLUSIONS This study presents a novel candidate drug against ESCC and establishes a foundation for future clinical application.
Collapse
Affiliation(s)
- Yingying Yang
- School of Life Sciences, Zhengzhou Normal University, Zhengzhou, People’s Republic of China
| | - Junru Shen
- School of Life Sciences, Zhengzhou Normal University, Zhengzhou, People’s Republic of China
| | - Peiyuan Deng
- School of Life Sciences, Zhengzhou Normal University, Zhengzhou, People’s Republic of China
| | - Ping Chen
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
43
|
Song Y, Zhao H, Yu R, Zhang Y, Zou Y, Liu X, Sun S. Wogonin suppresses proliferation, invasion and migration in gastric cancer cells via targeting the JAK-STAT3 pathway. Sci Rep 2024; 14:30803. [PMID: 39730467 DOI: 10.1038/s41598-024-81196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Wogonin is a compound extracted from the medicinal plant Scutellaria baicalensis Geogi and has been found to exert antitumor activities in a variety of malignancies. However, the molecular mechanisms involved in the anti-gastric cancer (GC) effects of wogonin remain poorly understood. In the present study, we found that wogonin treatment inhibited the proliferation of GC cells, induced apoptosis and G0/G1 cell arrest, and suppressed the migration and invasion of SGC-7901 and BGC-823 cells in vitro. In addition, wogonin inhibited in vivo tumor growth in SGC-7901 xenograft mice. Transcriptomic analysis suggested that wogonin affected several signaling pathways closely related to tumor proliferation and metastasis, including the STAT3 signaling pathway. Further research indicated that wogonin may exert antitumor effects in GC cells by downregulating the JAK-STAT3 pathway. Altogether, our results demonstrate that wogonin exerts antitumor effects by perturbing JAK-STAT3 signaling in GC cells and that wogonin may be a potential therapeutic option for GC.
Collapse
Affiliation(s)
- Yang Song
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Hui Zhao
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Runze Yu
- The Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yang Zhang
- Department of Pulmonary and Critial Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Xiaofei Liu
- Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| | - Shuna Sun
- Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| |
Collapse
|
44
|
Lee WY, Park KI, Bak SB, Lee S, Bae SJ, Kim MJ, Park SD, Kim CO, Kim JH, Kim YW, Kim CE. Evaluating current status of network pharmacology for herbal medicine focusing on identifying mechanisms and therapeutic effects. J Adv Res 2024:S2090-1232(24)00618-0. [PMID: 39730024 DOI: 10.1016/j.jare.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/05/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024] Open
Abstract
INTRODUCTION Network pharmacology has gained significant traction as a tool for identifying the mechanisms and therapeutic effects of herbal medicines. However, despite the usefulness of these approaches, their diversity underscores the critical need for a systematic evaluation to ensure consistency and reliability. OBJECTIVES We aimed to evaluate the network pharmacological analyses, focusing on identifying the mechanisms and therapeutic effects of herbal medicines. METHODS We employed a comprehensive approach involving systematic data retrieval, network construction, and analysis. Herbal compounds and their targets were meticulously extracted from five distinct network pharmacology databases to ensure extensive coverage and high data reliability. Advanced network-based methods were used to identify key herbal targets and predict therapeutic effects, thereby enriching the depth and breadth of the analysis. Experimental validation was performed on prostate cancer models to substantiate the computational predictions. RESULTS The results of the recapitulating task for known herbal ingredient targets revealed distinct patterns in performance and coverage based on network construction and aggregation methods. We performed the same analysis to identify herbal targets and found that network centrality, path counts, and downweighted path counts had their own pros and cons. By comparing network-based methods, we found that considering the impact on the multiscale interactome yielded the highest accuracy in discriminating known therapeutic effects. Using optimal conditions, we successfully identified new indications for herbal medicines and validated these findings through follow-up in vitro and in vivo experiments. CONCLUSION This study presents the first comprehensive and critical evaluation of the current network pharmacology analyses in the field of herbal medicine and provides valuable guidance for continued advances in the elucidation of the mechanisms and therapeutic effects.
Collapse
Affiliation(s)
- Won-Yung Lee
- School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; School of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea
| | - Kwang-Il Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seon-Been Bak
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seungho Lee
- School of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea
| | - Su-Jin Bae
- School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Min-Jin Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Sun-Dong Park
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Choon Ok Kim
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Ji-Hwan Kim
- School of Korean Medicine, Pusan National University, Yangsan-si 50612, Republic of Korea
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea.
| | - Chang-Eop Kim
- School of Korean Medicine, Gachon University, Seongnam 13110, Republic of Korea.
| |
Collapse
|
45
|
Guo J, Wang J, Fan S, Gao M, Liu G, Xia Y. The Novel Elemene Derivative, OMe-Ph-Elemene, Attenuates Oxidative Phosphorylation and Facilitates Apoptosis by Inducing Intracellular Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:1499. [PMID: 39765827 PMCID: PMC11672920 DOI: 10.3390/antiox13121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The incidence and mortality rates of colorectal cancer have been steadily increasing, making it one of the most prevalent cancers globally. Although current chemotherapy drugs have shown some efficacy in treating this disease, their associated side effects necessitate the development of more effective treatments and medications. The clinical application of elemene is widely utilized in tumor treatment; however, its efficacy is hindered by the requirement for high dosage and suboptimal anticancer effects. Thus, we have made modifications and enhancements to elemene, resulting in the development of a novel compound named (E)-8-(3,4,5-OMe-Ph)-β-Elemene (abbreviated as OMe-Ph-Elemene) that demonstrates significantly enhanced efficacy in suppressing colorectal cancer. We conducted an in vivo study and demonstrated the potential of OMe-Ph-Elemene in suppressing the growth of colorectal cancer xenograft tumors in zebrafish. The in vitro experiments revealed that OMe-Ph-Elemene effectively inhibited the proliferation and migration of colorectal cancer SW480 and HT-29 cells by inducing reactive oxygen species (ROS)-caused apoptosis and inhibiting mitochondrial oxidative phosphorylation. The mechanism was elucidated through high-throughput proteomic analysis and molecular biological analysis, revealing that OMe-Ph-Elemene induced cellular oxidative stress by downregulating CISD3 and promoted cell apoptosis by downregulating TRIAP1 and upregulating HMOX1. Furthermore, OMe-Ph-Elemene suppressed colorectal cancer cells' mitochondrial oxidative phosphorylation by downregulating NDUFA7. In summary, the utilization of the elemene parent nucleus structure has led to the derivation of a novel tumor suppressor compound characterized by high efficacy and low toxicity, thereby providing a significant reference for the development of innovative drugs for colorectal cancer treatment.
Collapse
Affiliation(s)
- Jianhua Guo
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- Key Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, College of Medical Engineering, Jining Medical University, Jining 272067, China; (J.W.); (S.F.); (M.G.)
| | - Jiayi Wang
- Key Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, College of Medical Engineering, Jining Medical University, Jining 272067, China; (J.W.); (S.F.); (M.G.)
| | - Shuhao Fan
- Key Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, College of Medical Engineering, Jining Medical University, Jining 272067, China; (J.W.); (S.F.); (M.G.)
| | - Mucong Gao
- Key Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, College of Medical Engineering, Jining Medical University, Jining 272067, China; (J.W.); (S.F.); (M.G.)
| | - Guodu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), Hohhot 010030, China
| | - Yong Xia
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- Key Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, College of Medical Engineering, Jining Medical University, Jining 272067, China; (J.W.); (S.F.); (M.G.)
| |
Collapse
|
46
|
Su Y, Liu L, Lin C, Deng D, Li Y, Huang M, Wang Y, Ling K, Wang H, Chen Q, Huang G. Enhancing cancer therapy: advanced nanovehicle delivery systems for oridonin. Front Pharmacol 2024; 15:1476739. [PMID: 39691396 PMCID: PMC11649421 DOI: 10.3389/fphar.2024.1476739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Oridonin (ORI), an ent-kaurane diterpenoid derived from Rabdosia rubescens (Hemsl.) H.Hara, serves as the primary bioactive component of this plant. It demonstrates a broad spectrum of therapeutic activities, including moderate to potent anticancer properties, alongside anti-inflammatory, antibacterial, antifibrotic, immunomodulatory, and neuromodulatory effects, thus influencing diverse biological processes. However, its clinical potential is significantly constrained by poor aqueous solubility and limited bioavailability. In alignment with the approach of developing drug candidates from natural compounds, various strategies, such as structural modification and nanocarrier systems, have been employed to address these challenges. This review provides an overview of ORI-based nano-delivery systems, emphasizing their potential to improve the clinical applicability of oridonin in oncology. Although some progress has been made in advancing ORI nano-delivery research, it remains insufficient for clinical implementation, necessitating further investigation.
Collapse
Affiliation(s)
- Yilin Su
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Lisha Liu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chongyang Lin
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Dashi Deng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yunfei Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Mou Huang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yu Wang
- Institute of Pain, The Affiliated Hospital of Southwest Jiaotong University, The Chengdu Third People’s Hospital, Chengdu, China
| | - Kangqiu Ling
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Haobing Wang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Qiyu Chen
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Guixiao Huang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| |
Collapse
|
47
|
Li M, Li W, Xu F, Pu Y, Li J. Global Identification of Anti-Melanoma Cellular Targets by Photochemically Induced Coupling of L-Shikonin Reactions on the Surface of Magnetic Particles. Pharmaceutics 2024; 16:1543. [PMID: 39771522 PMCID: PMC11728473 DOI: 10.3390/pharmaceutics16121543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background:L-Shikonin, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored. Methods: A novel Fe3O4@L-Shikonin was designed and synthesized in this study by linking Fe3O4 and L-Shikonin through benzophenone. Fe3O4@L-Shikonin was characterized using several techniques, including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and drug removal methods, to determine the content of L-Shikonin on the surface of the magnetic particles. Target hooking technology was utilized to identify the target proteins of the compound in melanoma. The synthesized Fe3O4@L-Shikonin was co-incubated with A375 cell lysate, followed by the target proteins, which were purified by magnetic enrichment using magnetic microspheres and identified by high-resolution mass spectrometry. Results: AutoDock Vina software was employed for molecular docking analysis, where it was found that L-Shikonin targets RPN1, CPEB4, and HNRNPUL1 proteins. Subsequently, A375 cells were treated with L-Shikonin at different concentrations (2.5, 5.0, 10.0 μM) for 48 h, and the expressions of the three proteins were observed. The results showed a significant reduction in the relative expression of CPEB4 in the high-dose group compared to the control group (p < 0.01). Moreover, the relative expression of HNRNPUL1 was decreased in the medium- and high-dose groups (p < 0.05). Conclusions: This study initially revealed from the source that L-Shikonin may regulate melanoma-specific markers, melanosomes, tyrosine kinases related to abnormal tyrosine metabolism, and melanoma through multiple targets such as CPEB4 and HNRNPUL1. Proliferation and metastasis work together to exert an anti-melanoma mechanism, which provides a new idea for the follow-up study of the molecular pharmacological mechanism of the complex system of total naphthoquinones in Arnebia euchroma (Royle) Johns.
Collapse
Affiliation(s)
- Min Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (M.L.); (W.L.); (F.X.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Xinjiang Medical University, Urumqi 830011, China
| | - Wenying Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (M.L.); (W.L.); (F.X.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Xinjiang Medical University, Urumqi 830011, China
| | - Fang Xu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (M.L.); (W.L.); (F.X.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Xinjiang Medical University, Urumqi 830011, China
| | - Yiping Pu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; (M.L.); (W.L.); (F.X.)
- Dingxi Maternal and Child Health Hospital, Dingxi 743099, China
| | - Jianguang Li
- College of Pharmacy, Xinjiang Second Medical College, Karamay 834000, China
| |
Collapse
|
48
|
Liu J, Li SM, Tang YJ, Cao JL, Hou WS, Wang AQ, Wang C, Jin CH. Jaceosidin induces apoptosis and inhibits migration in AGS gastric cancer cells by regulating ROS-mediated signaling pathways. Redox Rep 2024; 29:2313366. [PMID: 38318818 PMCID: PMC10854459 DOI: 10.1080/13510002.2024.2313366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Jaceosidin (JAC) is a natural flavonoid with anti-oxidant and other pharmacological activities; however, its anti-cancer mechanism remains unclear. We investigated the mechanism of action of JAC in gastric cancer cells. Cytotoxicity and apoptosis assays showed that JAC effectively killed multiple gastric cancer cells and induced apoptosis in human gastric adenocarcinoma AGS cells via the mitochondrial pathway. Network pharmacological analysis suggested that its activity was linked to reactive oxygen species (ROS), AKT, and MAPK signaling pathways. Furthermore, JAC accumulated ROS to up-regulate p-JNK, p-p38, and IκB-α protein expressions and down-regulate the p-ERK, p-STAT3, and NF-κB protein expressions. Cell cycle assay results showed that JAC accumulated ROS to up-regulate p21 and p27 protein expressions and down-regulate p-AKT, CDK2, CDK4, CDK6, Cyclin D1, and Cyclin E protein expressions to induce G0/G1 phase arrest. Cell migration assay results showed JAC accumulated ROS to down-regulate Wnt-3a, p-GSK-3β, N-cadherin, and β-catenin protein expressions and up-regulate E-cadherin protein expression to inhibit migration. Furthermore, N-acetyl cysteine pre-treatment prevented the change of these protein expressions. In summary, JAC induced apoptosis and G0/G1 phase arrest and inhibited migration through ROS-mediated signaling pathways in AGS cells.
Collapse
Affiliation(s)
- Jian Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Shu-Mei Li
- Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, People’s Republic of China
| | - Yan-Jun Tang
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Jing-Long Cao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Wen-Shuang Hou
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - An-Qi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Chang Wang
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Cheng-Hao Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
- National Coarse Cereals Engineering Research Center, Daqing, People’s Republic of China
| |
Collapse
|
49
|
Yuan J, Liu Y, Zhang T, Zheng C, Ding X, Zhu C, Shi J, Jing Y. Traditional Chinese medicine for breast cancer treatment: a bibliometric and visualization analysis. PHARMACEUTICAL BIOLOGY 2024; 62:499-512. [PMID: 38813803 PMCID: PMC11141317 DOI: 10.1080/13880209.2024.2359105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
CONTEXT The use of traditional Chinese medicine (TCM) for breast cancer patients inhibits tumor cell growth and proliferation, alleviates adverse reactions, and inhibits tumor recurrence and metastasis post-surgery. An assessment of its historical efficacy and an examination of the latest research trends are imperative to thoroughly leverage the potential of TCM for breast cancer treatment. OBJECTIVE This study analyzes the published literature on TCM for breast cancer treatment using bibliometric analysis to determine the current state, identify hot spots, and discern trends, providing insight into research in this field. METHODS TCM-based breast cancer treatment publications between 2003 and 2022 were retrieved from the Web of Science, China National Knowledge Infrastructure, Wanfang, and Duxiu databases. Visual analysis was performed using VOSviewer (V1.6.19) and CiteSpace (V6.3.R1) software. Examined metrics included the annual publication count, literature and journal, national and institutional contributions, author co-occurrence, keyword co-occurrence, keywords timeline, and keywords with citation bursts in this research field. RESULTS AND CONCLUSION A total of 1080 English publications and 2617 Chinese publications were included in the analysis. China was the leading contributor of publications. High-frequency keywords such as 'apoptosis', 'expression', 'in vivo', 'chemotherapy', 'triple-negative breast cancer', and 'lymphedema' were identified from English and Chinese publications; 'epithelial mesenchymal transition' and 'network pharmacology' emerged as hotspots. The development of modern science, technology, and in-depth research can result in broader prospects for the research and application of TCM in breast cancer treatment, resulting in more effective solutions for the treatment of breast cancer and other malignant tumors.
Collapse
Affiliation(s)
- Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai’an, China
| | - Yun Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
| | - Tiantian Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
| | - Cheng Zheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
| | - Xiao Ding
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
| | - Chuanrong Zhu
- Department of General Surgery, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Jing Shi
- Department of Breast, Maternity and Child, Health Care Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai’an, China
| |
Collapse
|
50
|
Lu YY, Fang YY, Wang SS, Guo J, Song JL, Zhu L, Lin ZK, Wang R, Zhang SY, Qiu WS, Qi WW. Cepharanthine sensitizes gastric cancer cells to chemotherapy by targeting TRIB3-FOXO3-FOXM1 axis to inhibit autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156161. [PMID: 39454374 DOI: 10.1016/j.phymed.2024.156161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Gastric cancer is among the common solid tumors. Chemotherapy resistance is the most common issue in gastric cancer treatment. Inhibiting intracellular autophagy may be a feasible method for overcoming chemotherapy resistance. Cepharanthine (CEP), a natural small molecule extracted from the stephania cephalantha Hayata plant, has been demonstrated to significantly inhibit cancer growth and can regulate autophagy. Although CEP can significantly inhibit cancer growth, it remains unclear whether CEP can regulate autophagy in gastric cancer. This study aimed to investigate whether CEP can enhance the sensitivity of gastric cancer to chemotherapy and elucidate its molecular mechanism. METHODS Three gastric cancer cell lines (AGS, SGC7901, and MFC) and one normal gastric mucosal epithelial cell line (GES-1) were used for in vitro experiments. The characterization of autophagy in gastric cancer cells included the detection of autophagy markers and autophagy flux through immunofluorescence staining and Western blotting, as well as the assessment of lysosomal function using fluorescence staining (LysoTracker Red DND-99, Acridine Orange staining) and Western blotting. The cytotoxicity of CEP, autophagy inhibitors (chloroquine [CQ] and 3-methyladenine [3MA]), and chemotherapy drugs (doxorubicin [DOX] and cisplatin [CIS]) was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell colony formation, and fluorescence staining techniques (H2DCFDA, Dihydroethidium, and JC-1 staining). The interaction between CEP and autophagy inhibitors was tested in a 615 mice model, and changes in the gut microbiota were determined through accurate 16S absolute quantification sequencing. The signaling pathway and autophagy regulatory target TRIB3-FOXO3-FOXM1 were confirmed through molecular docking, RNA sequencing, bioinformatic analysis, transfection techniques, and Western blotting. RESULTS CEP blocked autophagic flux in gastric cancer cells without affecting lysosomal function. As a novel autophagy inhibitor, CEP could combine with conventional autophagy inhibitors (CQ and 3MA) to block intracellular autophagy, thereby inhibiting gastric cancer growth. During this process, changes in the gut microbiota were observed, including low-level changes in Odoribacterium, Erysipelatoclostridium, and ParaPrevotella and high-level changes in Ileibacterium, Enterorhabdus, and Bifidobacterium. Additionally, CEP synergistically inhibited the growth of gastric cancer when combined with chemotherapy drugs. Mechanistically, the TRIB3-FOXO3-FOXM1 signaling axis was found to be involved in the inhibition of gastric cancer by CEP combined with autophagy inhibitors and chemotherapy drugs, thereby mediating cell apoptosis. CONCLUSION This study links the TRIB3-FOXO3-FOXM1 axis with chemotherapy efficacy. Our findings demonstrated that CEP inhibits autophagy by modulating the FOXO3-FOXM1 axis. When combined with chemotherapy drugs (DOX and CIS), CEP, as an autophagy inhibitor, can limit TRIB3 protein expression, thereby regulating the FOXO3-FOXM1 axis and enhancing its ability to prevent gastric cancer growth. These findings may contribute to improving the prognosis of patients with gastric cancer. Furthermore, these results enrich the fundamental understanding of how autophagy inhibition can enhance clinical cancer treatment efficacy and provide insights into the potential mechanisms by which CEP functions as an anti-tumor drug, thereby exploring its value for clinical application.
Collapse
Affiliation(s)
- Yang-Yang Lu
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Yuan-Yuan Fang
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Sha-Sha Wang
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Jing Guo
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Jia-Lin Song
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Liang Zhu
- Qingdao Municipal Hospital, Department of Orthopedic Surgery, No.1 Jiaozhou Road, Shibei District, Qingdao City, Shandong Province, Qingdao 266000, China
| | - Zhong-Kun Lin
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China; Department of Oncology, Shandong Provincial Third Hospital, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan City, Shandong Province, Jinan 250031, China
| | - Rui Wang
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Si-Yi Zhang
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Wen-Sheng Qiu
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China.
| | - Wei-Wei Qi
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China.
| |
Collapse
|