1
|
Zhang G, Li B, Xia Y. Identifying Key Genes and Their Associated Molecular Pathways in Lupus Nephritis-Osteoporosis: An In-Silico Analysis. J Clin Densitom 2024; 27:101524. [PMID: 39213724 DOI: 10.1016/j.jocd.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Nephritis and osteoporosis are debilitating medical conditions that significantly impact human health and reduce quality of life. To develop potential therapeutic strategies for these disorders necessitates understanding the genetic and molecular mechanisms. Here, we employed bioinformatics techniques purposed to find key genes and associated pathways responsible for nephritis-osteoporosis comorbidity. Six microarray datasets of systemic lupus erythematosus (SLE) and osteoporosis were retrieved from the Gene Expression Omnibus (GEO) database. Post normalization of data sets LIMMA package was utilized for differential expression analysis, among the datasets 44 differentially expressed genes (DEGs) were identified. The identified 44 genes were further analyzed for gene ontology (GO) where it was found that these genes are involved in defense response, organism interactions, and response to external stimuli. In predicting the molecular function, they were involved in several biological processes including binding to lipopolysaccharides and having peptidase and hydrolase activities. Firstly, the identified genes were primarily associated with certain granules such as specific granules and secretory granules in the aspect of cellular components. Enrichment analysis pointed out the potential pathways linked to the immune system, neutrophil degranulation, innate immunity, and immune response to tuberculosis. To examine interactions among DEGs, a complex protein-protein interaction (PPI) network was built, resulting in the identification of seven hub genes, CXCL8, ELANE, LCN2, MMP8, IFIT1, MX1, and ISG15. The study suggests that these elucidated hub genes might have high potential to be exploited as promising biomarkers and therapeutic targets in nephritis-osteoporosis. Taken together, this study provided deeper insights into the genetic and molecular basis for the comorbidity of nephritis and osteoporosis.
Collapse
Affiliation(s)
- Guangdi Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong, Jiangsu 226001, PR China
| | - Bo Li
- Department of Nephrology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong, Jiangsu 226001, PR China
| | - Yun Xia
- Department of Geriatrics, First People's Hospital of Nantong, No.666, Shengli Road, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
2
|
Shi M. The Efficacy of Ganoderma lucidum Extracts on Treating Endometrial Cancer: A Network Pharmacology Approach. Reprod Sci 2024; 31:1881-1894. [PMID: 38448739 PMCID: PMC11217070 DOI: 10.1007/s43032-024-01500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Ganoderma lucidum (GL) is a prominent medicinal mushroom in traditional Chinese medicine, known for its potent antitumor properties. This study aimed to illustrate the efficacy of GL extracts (GLE) on treating endometrial cancer (EC) and explore the underlying mechanisms via network pharmacology and experimental validation. Network pharmacological analysis was conducted to explore the therapeutic efficacy and mechanisms of GL on EC. In vitro experimental validation was performed on human endometrial cancer cell lines HEC-1-A and KLE. Network pharmacology revealed that key targets of GL against EC were primarily associated with the Rap1 signaling pathway. In in vitro experiments, GLE or GGTI-298 (a GTPase inhibitor) treatment inhibited cell proliferation and migration, promoted cell apoptosis, increased caspase-3 level, and arrested cell cycle in G1 phase in HEC-1-A and KLE cells. GLE increased the protein expression of Rap1-GTP, p-AKT, and p-ERK2 in HEC-1-A and KLE cells. Moreover, GGTI-298 enhanced the effects of GLE on suppressing the malignant progression of EC cells and on activating Rap1 signaling pathway. GLE inhibited the malignant progression of EC cells probably via activating the Rap1 signaling pathway.
Collapse
Affiliation(s)
- Min Shi
- Department of Medical Oncology, Zhejiang Putuo Hospital, Zhoushan, 316100, Zhejiang Province, China.
| |
Collapse
|
3
|
Yuan S, Cao Y, Jiang J, Chen J, Huang X, Li X, Zhou J, Zhou Y, Zhou J. Xuebijing injection and its bioactive components alleviate nephrotic syndrome by inhibiting podocyte inflammatory injury. Eur J Pharm Sci 2024; 196:106759. [PMID: 38570053 DOI: 10.1016/j.ejps.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Xuebijing injection (XBJ) is widely used to treat nephrotic syndrome (NS) in clinic, but its bioactive components and therapeutic mechanism are still unclear. In this study, the bioactive components of XBJ were determined by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS). The therapeutic effect of XBJ on NS was evaluated in BALB/c mice induced by adriamycin (ADR, 10 mg/kg) via a single tail vein. The protective effect of XBJ and its bioactive components on podocytes was demonstrated using mouse podocytes (MPC-5) induced by lipopolysaccharide (LPS, 4 μg/mL). The results show that 33 components of XBJ were identified. Furthermore, 12 bioactive components were detected in blood, including protocatechuic acid, salvianolic acid C, benzoyloxypaeoniflorin, danshensu, salvianolic acid A, salvianolic acid B, catechin, caffeic acid, galloylpaeoniflorin, oxypaeoniflorin, hydroxysafflor yellow A, rosmarinic acid. The relative content (%) of the bioactive components were 59.32, 16.01, 9.97, 9.73, 8.72, 8.31, 7.92, 6.54, 1.54, 1.30, 0.68 and 0.59 in this order. After XBJ treatment, the renal function, hyperlipidemia and renal pathological damage were improved in NS model mice. Moreover, the levels of nephrin and desmin which are functional proteins in podocytes were reversed, and the levels of pro-inflammatory factors were reduced by XBJ. Interestingly, protocatechuic acid and salvianolic acid C also showed good protective effects on podocyte function and reduced the level of inflammation in LPS-induced MPC-5. The study is the first time to elucidate the bioactive components of XBJ and its potential therapeutic mechanism for treating NS by protecting podocyte function.
Collapse
Affiliation(s)
- Shengliang Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Affiliated Gaozhou People's Hospital, Guangdong Medical University, Gaozhou 525200, China
| | - Yiwen Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiaying Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Junqi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiuye Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaojie Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiuyao Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
4
|
Yufang W, Mingfang L, Nan H, Tingting W. Quercetin-targeted AKT1 regulates the Raf/MEK/ERK signaling pathway to protect against doxorubicin-induced nephropathy in mice. Tissue Cell 2023; 85:102229. [PMID: 37812949 DOI: 10.1016/j.tice.2023.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Doxorubicin is an anthracycline antitumor agent commonly used in clinical practice, which has some nephrotoxicity and is often used to establish mouse models of kidney injury for basic medical research. This study will investigate the protective effect of quercetin on renal function in doxorubicin-induced nephropathy mice. METHODS C57BL/6 mice were divided into control, model, and quercetin low-, and high-dose groups. Serum and urine were collected to analyze markers of kidney function. H&E staining was used to detect pathological changes in renal tissues. Transmission electron microscopy was performed to observe the ultrastructural changes in renal tissues. Immunohistochemistry was performed to detect the changes of Ang II. RT-qPCR was performed to detect the changes of cytokines. ELISA was used to detect changes in serum inflammatory factors. Molecular docking was performed to verify the targeting relationship between quercetin and AKT1. Western blot was performed to detect Bax, Bcl-2, Cyt-c, AKT1, Raf, MEK, and ERK proteins. RESULTS Quercetin could induce the recovery of kidney function in kidney-injured mice; H&E results showed that kidney tissue damage and tissue fibrosis were reduced in kidney-injured mice under quercetin. The mitochondrial swollen structure was destroyed by doxorubicin, while the mitochondrial structure was restored under quercetin. The levels of abnormal apoptotic proteins Bax and Bcl-2 were regulated to normal by quercetin. The high expression of Ang II caused by doxorubicin was down-regulated by quercetin. Abnormal inflammatory factors caused by doxorubicin were reversed by quercetin. Western blot experiments showed that quercetin regulated the protein levels of AKT1 and Raf/MEK/ERK and inhibited the detrimental effects of doxorubicin. CONCLUSION Quercetin may mitigate doxorubicin-induced kidney injury in mice by regulating renal cell inflammatory factors and Raf/MEK/ERK signaling pathway through AKT1 to promote recovery of renal function.
Collapse
Affiliation(s)
- Wang Yufang
- Department of Medical Laboratory Diagnosis Lecturer, Quanzhou Medical College, Quanzhou, Fujian Province, China.
| | - Liu Mingfang
- The Second Attached Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Huang Nan
- Department of Medical Laboratory Diagnosis Lecturer, Quanzhou Medical College, Quanzhou, Fujian Province, China
| | - Wang Tingting
- Department of Medical Laboratory Diagnosis Lecturer, Quanzhou Medical College, Quanzhou, Fujian Province, China
| |
Collapse
|
5
|
Dagar N, Kale A, Jadhav HR, Gaikwad AB. Nutraceuticals and network pharmacology approach for acute kidney injury: A review from the drug discovery aspect. Fitoterapia 2023; 168:105563. [PMID: 37295755 DOI: 10.1016/j.fitote.2023.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Acute kidney injury (AKI) has become a global health issue, with ~12 million reports yearly, resulting in a persistent increase in morbidity and mortality rates. AKI pathophysiology is multifactorial involving oxidative stress, mitochondrial dysfunction, epigenetic modifications, inflammation, and eventually, cell death. Hence, therapies able to target multiple pathomechanisms can aid in AKI management. To change the drug discovery framework from "one drug, one target" to "multicomponent, multitarget," network pharmacology is evolving as a next-generation research approach. Researchers have used the network pharmacology approach to predict the role of nutraceuticals against different ailments including AKI. Nutraceuticals (herbal products, isolated nutrients, and dietary supplements) belong to the pioneering category of natural products and have shown protective action against AKI. Nutraceuticals have recently drawn attention because of their ability to provide physiological benefits with less toxic effects. This review emphasizes the nutraceuticals that exhibited renoprotection against AKI and can be used either as monotherapy or adjuvant with conventional therapies to boost their effectiveness and lessen the adverse effects. Additionally, the study sheds light on the application of network pharmacology as a cost-effective and time-saving approach for the therapeutic target prediction of nutraceuticals against AKI.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ajinath Kale
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
6
|
Hu E, Li Z, Li T, Yang X, Ding R, Jiang H, Su H, Cheng M, Yu Z, Li H, Tang T, Wang Y. A novel microbial and hepatic biotransformation-integrated network pharmacology strategy explores the therapeutic mechanisms of bioactive herbal products in neurological diseases: the effects of Astragaloside IV on intracerebral hemorrhage as an example. Chin Med 2023; 18:40. [PMID: 37069580 PMCID: PMC10108474 DOI: 10.1186/s13020-023-00745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The oral bioavailability and blood-brain barrier permeability of many herbal products are too low to explain the significant efficacy fully. Gut microbiota and liver can metabolize herbal ingredients to more absorbable forms. The current study aims to evaluate the ability of a novel biotransformation-integrated network pharmacology strategy to discover the therapeutic mechanisms of low-bioavailability herbal products in neurological diseases. METHODS A study on the mechanisms of Astragaloside IV (ASIV) in treating intracerebral hemorrhage (ICH) was selected as an example. Firstly, the absorbed ASIV metabolites were collected by a literature search. Next, the ADMET properties and the ICH-associated targets of ASIV and its metabolites were compared. Finally, the biotransformation-increased targets and biological processes were screened out and verified by molecular docking, molecular dynamics simulation, and cell and animal experiments. RESULTS The metabolites (3-epi-cycloastragenol and cycloastragenol) showed higher bioavailability and blood-brain barrier permeability than ASIV. Biotransformation added the targets ASIV in ICH, including PTK2, CDC42, CSF1R, and TNF. The increased targets were primarily enriched in microglia and involved in cell migration, proliferation, and inflammation. The computer simulations revealed that 3-epi-cycloastragenol bound CSF1R and cycloastragenol bound PTK2 and CDC42 stably. The In vivo and in vitro studies confirmed that the ASIV-derived metabolites suppressed CDC42 and CSF1R expression and inhibited microglia migration, proliferation, and TNF-α secretion. CONCLUSION ASIV inhibits post-ICH microglia/macrophage proliferation and migration, probably through its transformed products to bind CDC42, PTK2, and CSF1R. The integrated strategy can be used to discover novel mechanisms of herbal products or traditional Chinses medicine in treating diseases.
Collapse
Affiliation(s)
- En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Zhilin Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Xueping Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Ruoqi Ding
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Haoying Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Hong Su
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Menghan Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Zhe Yu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, People's Republic of China, 410219
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
| |
Collapse
|
7
|
Network Pharmacology and In Vivo Experimental Validation to Uncover the Renoprotective Mechanisms of Fangji Huangqi Decoction on Nephrotic Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4223729. [PMID: 35722158 PMCID: PMC9200505 DOI: 10.1155/2022/4223729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
Abstract
Background Fangji Huangqi decoction (FHD) is a traditional Chinese medicine formula that has the potential efficacy for nephrotic syndrome (NS) treatment. This study aims to explore the effects and underlying mechanisms of FHD against NS via network pharmacology and in vivo experiments. Methods The bioactive compounds and targets of FHD were retrieved from the TCMSP database. NS-related targets were collected from GeneCards and DisGeNET databases. The compound-target and protein-protein interaction networks were constructed by Cytoscape 3.8 and BisoGenet, respectively. GO and KEGG analyses were performed by the DAVID online tool. The interactions between active compounds and hub genes were revealed by molecular docking. An NS rat model was established to validate the renoprotective effects and molecular mechanisms of FHD against NS in vivo. Results A total of 32 hub genes were predicted to play essential roles in FHD treating NS. Eight main bioactive compounds of FHD had the good affinity with 9 hub targets (CCL2, IL-10, PTGS2, TNF, MAPK1, IL-6, CXCL8, TP53, and VEGFA). The therapeutic effect of FHD on NS was closely involved in the regulation of inflammation and PI3K-Akt pathway. In vivo experiments confirmed the renoprotective effect of FHD on NS, evidenced by reducing the levels of proteinuria, serum creatinine, blood urea nitrogen, and inflammatory factors in NS rats. The PI3K activator 740Y-P weakened the effects of FHD against NS. Furthermore, FHD downregulated the levels of PTGS2, MAPK1, IL-6, and p-Akt in NS rats. Conclusions FHD alleviates kidney injury and inflammation in NS by targeting PTGS2, MAPK1, IL-6, and PI3K-Akt pathway.
Collapse
|
8
|
Li K, Shi G, Lei X, Huang Y, Li X, Bai L, Qin C. Age-related alteration in characteristics, function, and transcription features of ADSCs. Stem Cell Res Ther 2021; 12:473. [PMID: 34425900 PMCID: PMC8383427 DOI: 10.1186/s13287-021-02509-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Adipose tissue-derived stem cells (ADSCs) autologous transplantation has been a promising strategy for aging-related disorders. However, the relationship between ADSCs senescence and organismal aging has not been clearly established. Therefore, we aimed at evaluating senescence properties of ADSCs from different age donors and to verify the influence of organismal aging on the proliferation and function of ADSCs in vitro, providing the theoretical basis for the clinical application of autologous ADSCs transplantation. METHODS AND RESULTS The ADSCs were obtained from 1-month-old and 20-month-old mice. The cells characteristics, functions, gene expression levels, apoptosis proportion, cell cycle, SA-β-gal staining, and transcription features were evaluated. Compared to ADSCs from 1-month-old mice, ADSCs from 20-month-old mice exhibited some senescence-associated changes, including inhibited abilities to proliferate. Moreover, differentiation abilities, cell surface markers, and cytokines secreting differed between 1M and 20M ADSCs. SA-β-Gal staining did not reveal differences between the two donor groups, while cells exhibited more remarkable age-related changes through continuous passages. Based on transcriptome analysis and further detection, the CCL7-CCL2-CCR2 axis is the most probable mechanism for the differences. CONCLUSIONS ADSCs from old donors have some age-related alterations. The CCL7-CCL2-CCR2 axis is a potential target for gene therapy to reduce the harmful effects of ADSCs from old donors. To improve on autologous transplantation, we would recommend that ADSCs should be cryopreserved in youth with a minimum number of passages or block CCL7-CCL2-CCR2 to abolish the effects of age-related alterations in ADSCs through the Chemokine signaling pathway.
Collapse
Affiliation(s)
- Keya Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Guiying Shi
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Xuepei Lei
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yiying Huang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Xinyue Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Lin Bai
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
9
|
Tu P, Tian R, Lu Y, Zhang Y, Zhu H, Ling L, Li H, Chen D. Beneficial effect of Indigo Naturalis on acute lung injury induced by influenza A virus. Chin Med 2020; 15:128. [PMID: 33349263 PMCID: PMC7750395 DOI: 10.1186/s13020-020-00415-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Background Infections induced by influenza viruses, as well as coronavirus disease 19 (COVID-19) pandemic induced by severe acute respiratory coronavirus 2 (SARS-CoV-2) led to acute lung injury (ALI) and multi organ failure, during which traditional Chinese medicine (TCM) played an important role in treatment of the pandemic. The study aimed to investigate the effect of Indigo Naturalis on ALI induced by influenza A virus (IAV) in mice. Method The anti-influenza and anti-inflammatory properties of aqueous extract of Indigo Naturalis (INAE) were evaluated in vitro. BALB/c mice inoculated intranasally with IAV (H1N1) were treated intragastrically with INAE (40, 80 and 160 mg/kg/day) 2 h later for 4 or 7 days. Animal lifespan and mortality were recorded. Expression of high mobility group box-1 protein (HMGB-1) and toll-like receptor 4 (TLR4) were evaluated through immunohistological staining. Inflammatory cytokines were also monitored by ELISA. Result INAE inhibited virus replication on Madin-Darby canine kidney (MDCK) cells and decreased nitric oxide (NO) production from lipopolysaccharide (LPS)-stimulated peritoneal macrophages in vitro. The results showed that oral administration of 160 mg/kg of INAE significantly improved the lifespan (P < 0.01) and survival rate of IAV infected mice, improved lung injury and lowered viral replication in lung tissue (P < 0.01). Treatment with INAE (40, 80 and 160 mg/kg) significantly increased liver weight and liver index (P < 0.05), as well as weight and organ index of thymus and spleen at 160 mg/kg (P < 0.05). Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels were reduced by INAE administration (P < 0.05). The expression of HMGB-1 and TLR4 in lung tissue were also suppressed. The increased production of myeloperoxidase (MPO) and methylene dioxyamphetamine (MDA) in lung tissue were inhibited by INAE treatment (P < 0.05). Treatment with INAE reduced the high levels of interferon α (IFN-α), interferon β (IFN-β), monocyte chemoattractant protein-1 (MCP-1), regulated upon activation normal T cell expressed and secreted factor (RANTES), interferon induced protein-10 (IP-10), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) (P < 0.05), with increased production of interferon γ (IFN-γ) and interleukin-10 (IL-10) (P < 0.05). Conclusion The results showed that INAE alleviated IAV induced ALI in mice. The mechanisms of INAE were associated with its anti-influenza, anti-inflammatory and anti-oxidation properties. Indigo Naturalis might have clinical potential to treat ALI induced by IAV.
Collapse
Affiliation(s)
- Peng Tu
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Rong Tian
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Haiyan Zhu
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Lijun Ling
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, No. 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|