1
|
Deng MS, Huang STZ, Xu YN, Shao L, Wang ZG, Chen LJ, Huang WH. In vivo pharmacokinetics of ginsenoside compound K mediated by gut microbiota. PLoS One 2024; 19:e0307286. [PMID: 39178246 PMCID: PMC11343376 DOI: 10.1371/journal.pone.0307286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 08/25/2024] Open
Abstract
Ginsenoside Compound K (GCK) is the main metabolite of natural protopanaxadiol ginsenosides with diverse pharmacological effects. Gut microbiota contributes to the biotransformation of GCK, while the effect of gut microbiota on the pharmacokinetics of GCK in vivo remains unclear. To illustrate the role of gut microbiota in GCK metabolism in vivo, a systematic investigation of the pharmacokinetics of GCK in specific pathogen free (SPF) and pseudo-germ-free (pseudo-GF) rats were conducted. Pseudo-GF rats were treated with non-absorbable antibiotics. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was validated for the quantification of GCK in rat plasma. Compared with SPF rats, the plasma concentration of GCK significantly increased after the gut microbiota depleted. The results showed that GCK absorption slowed down, Tmax delayed by 3.5 h, AUC0-11 increased by 1.3 times, CLz/F decreased by 0.6 times in pseudo-GF rats, and Cmax was 1.6 times higher than that of normal rats. The data indicated that gut microbiota played an important role in the pharmacokinetics of GCK in vivo.
Collapse
Affiliation(s)
- Ming-Si Deng
- Department of Stomatology, the Third Xiangya Hospital of Central South University, Central South University, Changsha, China
- Department of Orthodontics, Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Su-tian-zi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Ni Xu
- Department of Orthodontics, Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zheng-Guang Wang
- Department of Spinal Surgery, the Third Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Liang-Jian Chen
- Department of Stomatology, the Third Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- FuRong Laboratory, Changsha, Hunan, China
| |
Collapse
|
2
|
Feng K, Jiang H, Yin C, Sun H. Gene regulatory network inference based on causal discovery integrating with graph neural network. QUANTITATIVE BIOLOGY 2023; 11:434-450. [DOI: 10.1002/qub2.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 01/06/2025]
Abstract
AbstractGene regulatory network (GRN) inference from gene expression data is a significant approach to understanding aspects of the biological system. Compared with generalized correlation‐based methods, causality‐inspired ones seem more rational to infer regulatory relationships. We propose GRINCD, a novel GRN inference framework empowered by graph representation learning and causal asymmetric learning, considering both linear and non‐linear regulatory relationships. First, high‐quality representation of each gene is generated using graph neural network. Then, we apply the additive noise model to predict the causal regulation of each regulator‐target pair. Additionally, we design two channels and finally assemble them for robust prediction. Through comprehensive comparisons of our framework with state‐of‐the‐art methods based on different principles on numerous datasets of diverse types and scales, the experimental results show that our framework achieves superior or comparable performance under various evaluation metrics. Our work provides a new clue for constructing GRNs, and our proposed framework GRINCD also shows potential in identifying key factors affecting cancer development.
Collapse
Affiliation(s)
- Ke Feng
- School of Artificial Intelligence Jilin University Changchun China
| | - Hongyang Jiang
- School of Artificial Intelligence Jilin University Changchun China
| | - Chaoyi Yin
- School of Artificial Intelligence Jilin University Changchun China
| | - Huiyan Sun
- School of Artificial Intelligence Jilin University Changchun China
- International Center of Future Science Jilin University Changchun China
- Engineering Research Center of Knowledge‐Driven Human‐Machine Intelligence Ministry of Education Changchun China
| |
Collapse
|
3
|
Huang S, Shao L, Chen M, Wang L, Liu J, Zhang W, Huang W. Biotransformation differences of ginsenoside compound K mediated by the gut microbiota from diabetic patients and healthy subjects. Chin J Nat Med 2023; 21:723-729. [PMID: 37879791 DOI: 10.1016/s1875-5364(23)60402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/27/2023]
Abstract
Many natural products can be bio-converted by the gut microbiota to influence pertinent efficiency. Ginsenoside compound K (GCK) is a potential anti-type 2 diabetes (T2D) saponin, which is mainly bio-transformed into protopanaxadiol (PPD) by the gut microbiota. Studies have shown that the gut microbiota between diabetic patients and healthy subjects are significantly different. Herein, we aimed to characterize the biotransformation of GCK mediated by the gut microbiota from diabetic patients and healthy subjects. Based on 16S rRNA gene sequencing, the results indicated the bacterial profiles were considerably different between the two groups, especially Alistipes and Parabacteroides that increased in healthy subjects. The quantitative analysis of GCK and PPD showed that gut microbiota from the diabetic patients metabolized GCK slower than healthy subjects through liquid chromatography tandem mass spectrometry (LC-MS/MS). The selected strain A. finegoldii and P. merdae exhibited a different metabolic capability of GCK. In conclusion, the different biotransformation capacity for GCK may impact its anti-diabetic potency.
Collapse
Affiliation(s)
- Sutianzi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China; The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Manyun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Lin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Jing Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China; The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China.
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China; The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
4
|
Alhhazmi AA, Alhamawi RM, Almisned RM, Almutairi HA, Jan AA, Kurdi SM, Almutawif YA, Mohammed-Saeid W. Gut Microbial and Associated Metabolite Markers for Colorectal Cancer Diagnosis. Microorganisms 2023; 11:2037. [PMID: 37630597 PMCID: PMC10457972 DOI: 10.3390/microorganisms11082037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Globally, colorectal cancer (CRC) is the second most common cause of mortality worldwide. Considerable evidence indicates that dysbiosis of the gut microbial community and its metabolite secretions play a fundamental role in advanced adenoma (ADA) and CRC development and progression. This study is a systematic review that aims to assess the clinical association between gut microbial markers and/or gut and circulating metabolites with ADA and CRC. Five electronic databases were searched by four independent reviewers. Only controlled trials that compared ADA and/or CRC with healthy control (HC) using either untargeted (16s rRNA gene or whole genome sequencing) or targeted (gene-based real-time PCR) identification methods for gut microbiome profile, or untargeted or targeted metabolite profiling approaches from the gut or serum/plasma, were eligible. Three independent reviewers evaluated the quality of the studies using the Cochrane Handbook for Systematic Reviews of Interventions. Twenty-four studies were eligible. We identified strong evidence of two microbial markers Fusobacterium and Porphyromonas for ADA vs. CRC, and nine microbial markers Lachnospiraceae-Lachnoclostridium, Ruminococcaceae-Ruminococcus, Parvimonas spp., Parvimonas micra, Enterobacteriaceae, Fusobacterium spp., Bacteroides, Peptostreptococcus-Peptostreptococcus stomatis, Clostridia spp.-Clostridium hylemonae, Clostridium symbiosum, and Porphyromonas-Porphyromonas asaccharolytica for CRC vs. HC. The remaining metabolite marker evidence between the various groups, including ADA vs. HC, ADA vs. HC, and CRC vs. HC, was not of sufficient quality to support additional findings. The identified gut microbial markers can be used in a panel for diagnosing ADA and/or CRC. Further research in the metabolite markers area is needed to evaluate the possibility to use in diagnostic or prognostic markers for colorectal cancer.
Collapse
Affiliation(s)
- Areej A. Alhhazmi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Renad M. Alhamawi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Reema M. Almisned
- Seha Polyclinic, P.O. Box 150, Al-Madinah Al-Munawarah 41311, Saudi Arabia;
| | - Hanouf A. Almutairi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), P.O. Box 6900, Thuwal 23955, Saudi Arabia;
| | - Ahdab A. Jan
- Abdulla Fouad Medical Supplies and Services (AFMS), P.O. Box 150, Al-Madinah Al-Munawarah 21414, Saudi Arabia;
| | - Shahad M. Kurdi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Yahya A. Almutawif
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia; (R.M.A.); (S.M.K.); (Y.A.A.)
| | - Waleed Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, P.O. Box 344, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
| |
Collapse
|
5
|
Xu J, Kang Y, Zhong Y, Ye W, Sheng T, Wang Q, Zheng J, Yang Q, Yi P, Li Z. Alteration of gut microbiome and correlated amino acid metabolism are associated with acute myelocytic leukemia carcinogenesis. Cancer Med 2023; 12:16431-16443. [PMID: 37409640 PMCID: PMC10469656 DOI: 10.1002/cam4.6283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the profiles of gut microbiota and metabolites in acute myelocytic leukemia (AML) patients treated with/without chemotherapy. METHODS Herein, high-throughput 16S rRNA gene sequencing was performed to analysis gut microbiota profiles, and liquid chromatography and mass spectrometry were performed to analysis metabolites profiles. The correlation between gut microbiota biomarkers identified by LEfSe and differentially expressed metabolites were determined by spearman association analysis. RESULTS The results showed the distinguished gut microbiota and metabolites profiles between AML patients and control individuals or AML patients treated with chemotherapy. Compared to normal populations, the ratio of Firmicutes to Bacteroidetes was increased at the phylum level than that in AML patients, and LEfSe analysis identified Collinsella and Coriobacteriaceae as biomarkers of AML patients. Differential metabolite analysis indicated that, compared to AML patients, numerous differential amino acids and analogs could be observed in control individuals and AML patients treated with chemotherapy. Interestingly, spearman association analysis demonstrated that plenty of bacteria biomarkers shows statistical correlations with differentially expressed amino acid metabolites. In addition, we found that both Collinsella and Coriobacteriaceae demonstrate remarkable positive correlation with hydroxyprolyl-hydroxyproline, prolyl-tyrosine, and tyrosyl-proline. CONCLUSION In conclusion, our present study investigated the role of the gut-microbiome-metabolome axis in AML and revealed the possibility of AML treatment by gut-microbiome-metabolome axis in the further.
Collapse
Affiliation(s)
- Jing Xu
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yong Kang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yan Zhong
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of General MedicineGanzhou People's hospitalGanzhouChina
| | - Wencan Ye
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Tianle Sheng
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qingming Wang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jifu Zheng
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qiuyue Yang
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Ping Yi
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Zhenjiang Li
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
6
|
Wang L, Shao L, Chen MY, Wang L, Zhang W, Tan FB, Huang WH. Effect of ginsenoside compound K on alleviating colitis via modulating gut microbiota. Chin Med 2022; 17:146. [PMID: 36578000 PMCID: PMC9795722 DOI: 10.1186/s13020-022-00701-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ginsenoside compound K (GC-K) potentially alleviates ulcerative colitis involved in gut microbiota, which is significantly associated with the occurrence and development of colitis. However, the effect and mechanism of GC-K on anti-colitis in relation to gut microbiota are not clear. This study focused on the prevention and mechanism of GC-K on Dextran sulfate sodium (DSS)-induced colitis of mice pertinent to gut microbiota. METHODS DSS was used to establish a chronic colitis mouse model. Body weight analysis, colon length measurement, HE staining, and inflammatory factors levels were processed in animal experiments. Flow cytometry was employed to analyze Th17/Treg cells in the mouse spleen and blood. 16S rRNA sequencing was utilized to analyze gut microbiota. Fecal microbiota transplantation (FMT) experiment was employed to verify the anti-colitis efficacy of GC-K by reshaping gut microbiota. RESULTS GC-K significantly relieved colitis-related symptoms due to decreased disease activity index (DAI) scores, spleen weight, and increased colon length. Additionally, the tight junction proteins were increased, and the pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β and IL-17, were decreased after GC-K treatment. Furthermore, Bacteroides spp. significantly increased after modeling. Moreover, FMT experiments confirmed that GC-K-driven gut microbiota greatly relieved DSS-induced colitis. CONCLUSION GC-K alleviated colitis via the modulation of gut microbiota.
Collapse
Affiliation(s)
- Li Wang
- grid.452223.00000 0004 1757 7615Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008 China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078 China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Li Shao
- grid.488482.a0000 0004 1765 5169Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410128 China
| | - Man-Yun Chen
- grid.452223.00000 0004 1757 7615Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008 China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078 China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Lin Wang
- grid.452223.00000 0004 1757 7615Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008 China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078 China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Wei Zhang
- grid.452223.00000 0004 1757 7615Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008 China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078 China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Feng-Bo Tan
- grid.452223.00000 0004 1757 7615Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Wei-Hua Huang
- grid.452223.00000 0004 1757 7615Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008 China ,grid.216417.70000 0001 0379 7164Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078 China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
7
|
Mahoney DE, Chalise P, Rahman F, Pierce JD. Influences of Gastrointestinal Microbiota Dysbiosis on Serum Proinflammatory Markers in Epithelial Ovarian Cancer Development and Progression. Cancers (Basel) 2022; 14:3022. [PMID: 35740687 PMCID: PMC9220985 DOI: 10.3390/cancers14123022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
GI microbiota has been implicated in producing the inflammatory tumor microenvironment of several cancers. Women with ovarian cancer often report GI-related symptoms at diagnosis although minimal is known about the possible GI bacteria that may trigger pro-tumorigenic immune responses in early EOC. The purpose of this study was to investigate the influences of GI microbiota dysbiosis on serum inflammatory markers during EOC utilizing a rodent model. This experimental design consisted of C57BL/6 mice randomly assigned to either the microbiota dysbiosis group (n = 6) or control group (n = 5). The CD7BL/6 mice assigned to the microbiota dysbiosis group were administered a mixture of broad-spectrum antibiotics (bacitracin and neomycin) for 2 weeks. Both groups were injected intraperitoneally with mouse ovarian epithelial cells that induce ovarian tumorigenesis. Levels of C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were assessed in the serum, and the composition of the GI microbiota in fecal samples was measured using 16S rRNA gene sequencing. Overall CRP serum levels were significantly lower and TNFα levels were significantly higher in the microbiota dysbiosis group compared to the control group. The abundances of microbiota that correlated with CRP serum levels in the combined groups were genus Parabacteroides, Roseburia, and Emergencia and species Ruminococcus faecis, Parabacteroides distasonis, Roseburia Faecis, and Emergencia timonensis. This study provides evidence to support for further investigation of the GI microbial profiles in patients at risk of EOC.
Collapse
Affiliation(s)
- Diane E. Mahoney
- School of Nursing, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Faith Rahman
- Clinical Trials Clinical Operations, University of Kansas Cancer Center, Kansas City, KS 66160, USA;
| | - Janet D. Pierce
- School of Nursing, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
8
|
Ginsenoside compound K inhibits the proliferation, migration and invasion of Eca109 cell via VEGF-A/Pi3k/Akt pathway. J Cardiothorac Surg 2022; 17:99. [PMID: 35505354 PMCID: PMC9066758 DOI: 10.1186/s13019-022-01846-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Esophageal cancer, one of the most common cancers in the upper digestive tract and is one of the leading cancer-related mortality worldwide. Accumulating studies found that Ginsenoside compound K (CK) has significantly anti-tumor effects, especially in the suppression of proliferation, migration, as well as invasion in various human cancers. While the effects of Ginsenoside CK in esophageal cancer have not been well studied. In our present study, we aim to explore the functions and mechanisms of Ginsenoside CK in the progression of esophageal cancer cells (Eca109). METHODS Cell Counting Kit-8 (CCK-8), wound healing, transwell and flow cytometry assays were applied to analyze the effects of Ginsenoside CK in the progression of Eca109 cell, western blot assay was used to investigate the potential downstream signaling pathway after Ginsenoside CK treatment. RESULTS Our study found that Ginsenoside CK can suppress cell proliferation, migration and invasion of Eca109 cell. Furthermore, the flow cytometry showed that Ginsenoside CK increased of apoptosis rates in Eca109 cell. The western blot results indicated that Ginsenoside CK decreased the expression of VEGF-A, P-Pi3k and P-Akt proteins. Moreover, the knockdown of VEGF-A gene could suppress cell proliferation, migration, invasion and induce apoptosis in Eca109 cell, and the expression of P-Pi3k and P-Akt proteins were significantly downregulated. CONCLUSIONS Our study suggests that Ginsenoside CK inhibits the proliferation, migration, invasion, and induced apoptosis of Eca109 cell by blocking VEGF-A/Pi3k/Akt signaling pathway.
Collapse
|