1
|
Cui X, Liu P, Huang X, Yu Y, Qin X, Zhou H, Zheng Q, Liu Y. Enhancing coverage of annotated compounds in traditional Chinese medicine formulas: Integrating MS E and Fast-DDA molecular network with AntDAS-Case study of Xiao Jian Zhong Tang. J Chromatogr A 2024; 1738:465498. [PMID: 39504707 DOI: 10.1016/j.chroma.2024.465498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The chemical characterisation of traditional Chinese medicine formulas (TCMFs) using mass spectrometry poses notable challenges owing to their complex and diverse chemical compositions. While acquisition modes such as data-dependent acquisition (DDA) and data-independent acquisition (DIA) offer new insights, DDA's tendency to overlook low-abundance ions and DIA's complicated data processing, particularly in matching MS1 and MS2 information, limit the effective annotation of valuable compounds in TCMFs. Herein, we present a new integrated strategy to enhance the coverage of annotated compounds in TCMFs, using Xiao Jian Zhong Tang (XJZ) as a case study. First, we characterised the components of XJZ through UNIFI software in Fast-DDA and DIA modes. We then summarised the diagnostic ions and substituent information of the identified compounds based on the Fast-DDA data, integrating molecular networks and AntDAS to predict unknown components and uncover potential components. Ultimately, we characterised a total of 785 components in XJZ, including 43 that were unique to XJZ when compared to the individual herbs involved. The presence of these new components may result from the recombination of substituents during compatibility. In conclusion, this new integrated strategy facilitates more in-depth characterisation of components in TCMFs, providing a new direction for exploring the compatibility principles among TCMFs.
Collapse
Affiliation(s)
- Xiaojing Cui
- Zhengzhou Tobacco Research Institute of CNTC, Henan Zhengzhou 450001, PR China; Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Henan Zhengzhou 450001, PR China
| | - Xingyue Huang
- Zhengzhou Tobacco Research Institute of CNTC, Henan Zhengzhou 450001, PR China; Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China
| | - Yongjie Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of CNTC, Henan Zhengzhou 450001, PR China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Henan Zhengzhou 450001, PR China.
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| |
Collapse
|
2
|
Wang T, Liao H, Lin J, Zhang M, Chen B, Yin R, Sun J, Dai H, Liu H. Antidiabetic action of the Chinese formula Shouhuitongbian and the underlying mechanism associated with alteration of gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155575. [PMID: 38636179 DOI: 10.1016/j.phymed.2024.155575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The prevalence and incidence of type 2 diabetes mellitus (T2DM) have dramatically increased. The intestinal flora and its derived metabolites are demonstrated to play vital roles in the etiology and onset of T2DM. Shouhuitongbian (SHTB) is a traditional Chinese formula to treat constipation. SHTB is composed of seven herbs and components of Colla corii asini (CCA) that are obtained from the hide of Equus asinus L.. Some of herbs in SHTB such as Aloe vera (L.) Burm.f., Cassia obtusifolia L., fruits of Lycium barbarum L., and Citrus aurantium L. have shown to improve insulin resistance (IR) and T2DM in early reports. We hypothesized that SHTB composed of these herbs has antidiabetic effects. The antidiabetic efficacy and mechanism of action of SHTB have not been previously reported. HYPOTHESIS/PURPOSE To demonstrate the antidiabetic effect and elucidate the underlying mechanisms of SHTB from the perspective of gut microbiota. STUDY DESIGN The main compounds were identified and quantified by high-performance liquid chromatography (HPLC)-mass spectrometry analysis. High fat diet (HFD)-fed mice and db/db mice were used to assess the antidiabetic effects and the mechanism of SHTB. The underlying mechanisms were evaluated by enzyme-linked immunosorbent assay (ELISA), western blot analysis, quantitative real time polymerase chain reaction (qPCR) analysis, 16S rRNA high-throughput sequencing, and targeted metabolome analysis. METHODS HFD-fed mice and db/db mice were orally treated with the standard positive drug metformin (100 mg/kg/d) and with SHTB (200 and 100 mg/kg/d), which was chemically characterized according to the European Medicine Agency (EMA) guidelines. The beneficial effects of SHTB were studied by homeostasis model assessment of insulin resistance (HOMA-IR) index, oral glucose tolerance test (OGTT), insulin tolerance test (ITT), total cholesterol (T-CHO), triglyceride (TG), and inflammation. Subsequently, 16S rDNA-based high-throughput pyrosequencing and GC-MS-based targeted metabolomics profiling were performed to analyze the gut microbiota composition and metabolites profile in the gut, respectively. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) / insulin receptor substrate 1 (IRS-1) / phosphoinositide 3-kinase (PI3K) / protein kinase B (AKT) pathway was evaluated via qPCR and western blot. RESULTS Chemically characterized SHTB, in which six markers were quantified, effectively alleviated glucose intolerance and IR, ameliorated lipid metabolism dysfunction, and reduced inflammation. In addition, 16S rDNA sequencing found that SHTB reshaped the composition of intestinal flora, as indicated by the enrichment of Akkermansia and Parabacteroides in both HFD-fed and db/db mice. Moreover, SHTB enhanced the intestinal production of short-chain fatty acids (SCFAs) and branched short-chain fatty acids (BSCFAs), and reduced the levels of the fecal and circulating branched-chain amino acids (BCAAs). The IRS-1/PI3K/AKT signaling pathway was upregulated after treatment with SHTB. CONCLUSION Orally administration of SHTB effectively improved IR and reduced hyperglycemia in mice. Treatment with SHTB regulated the gut BCAAs-mTORC1/IRS-1/PI3K/AKT axis by enhancing the BCAAs catabolism in the gut, which attenuated the deleterious effect of BCAAs on the IRS-1 signaling pathway.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huan Liao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinghan Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Mingkai Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Mpofana N, Yalo M, Gqaleni N, Dlova NC, Hussein AA. Analysis of Three Species of Cassipourea Traditionally Used for Hypermelanosis in Selected Provinces in South Africa. Int J Mol Sci 2023; 25:237. [PMID: 38203415 PMCID: PMC10779010 DOI: 10.3390/ijms25010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
There is a growing demand and use of herbal cosmetics for skin purposes due to their perceived safety when applied to the skin. Three Cassipourea species commonly known as "ummemezi" are used interchangeably by women in rural areas of Eastern Cape and KwaZulu-Natal provinces to treat hypermelanosis as well as sun protection. We conducted a phytochemical comparison of three Cassipourea species; Cassipourea flanaganii (Schinz) Alston, Cassipourea gummiflua Tul. verticillata (N.E.Br.) J. Lewis and Cassipourea malosana (Baker) Alston by Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis in negative mode. The results obtained from the LC-MS/MS yielded a total number of twenty-four compounds of different chemical classes, including fatty acids, steroids, di- and tri-terpenoids, flavonoids, phenolic acids, and eighteen among them were tentatively identified. The LC-MS /MS analysis showed that the three studied Cassipourea extracts contain compounds that have anti-tyrosinase activity and consequently. The presence of these compounds, either in synergy or individually, can be attributed to the anti-tyrosinase effect. Although the traditional names of the species are used interchangeably, they are different, however, they possess similar skin-lightening properties. Despite the recent popularity of modern cosmetic products, plants continue to play an important role in the local cosmetics industry in South Africa's Eastern Cape and KwaZulu-Natal community provinces.
Collapse
Affiliation(s)
- Nomakhosi Mpofana
- Nelson R Mandela School of Medicine, Department of Dermatology, University of KwaZulu-Natal, Durban 4000, South Africa; (N.M.); (N.C.D.)
- Department of Somatology, Durban University of Technology, Durban 4000, South Africa
| | - Masande Yalo
- Department of Chemistry, Cape Peninsula University of Technology, Cape Town 8000, South Africa;
| | - Nceba Gqaleni
- Discipline of Traditional Medicine, University of KwaZulu-Natal, Durban 4000, South Africa;
- Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Ncoza Cordelia Dlova
- Nelson R Mandela School of Medicine, Department of Dermatology, University of KwaZulu-Natal, Durban 4000, South Africa; (N.M.); (N.C.D.)
| | - Ahmed A. Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Cape Town 8000, South Africa;
| |
Collapse
|
4
|
Hu G, Liu W, Li L. Identification and quantification of cucurbitacin in watermelon frost using molecular networking integrated with ultra-high-performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2023; 46:e2300019. [PMID: 37269211 DOI: 10.1002/jssc.202300019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Watermelon frost, a traditional Chinese medicine produced using watermelon and Glauber's salt, has been widely used for the therapy of oral and throat disorders. Watermelon contains various phytochemical compounds including cucurbitacins and their glycoside derivatives, which have attracted considerable attention because of their medicinal values. However, whether the composition of cucurbitacins existed in watermelon frost was rarely reported. In this study, three cucurbitacins including cucurbitacin B, isocucurbitacin B, and cucurbitacin E were found from watermelon frost extract assisted by ultra-high-performance liquid chromatography-tandem mass spectrometry and molecular networking guided strategy, and the compounds were verified using standard solutions. Furthermore, a quantification method for simultaneously targeted analysis of cucurbitacins was established using ultra-high-performance liquid chromatography-tandem mass spectrometry operating in the multiple reaction monitoring mode. Among them, cucurbitacin B and cucurbitacin E in watermelon frost samples were determined, and the concentrations were 3.78 ± 0.18 and 0.86 ± 0.19 ng/ml, respectively. While isocucurbitacin B was not detected due to the lower content possibly. In conclusion, ultra-high-performance liquid chromatography-tandem mass spectrometry combined with molecular networking is a very useful technique for the rapid identification of unknown cucurbitacin components in watermelon frost.
Collapse
Affiliation(s)
- Guizhou Hu
- Department of Pharmacy, Medical School, Huanghe Science and Technology University, Zhengzhou, P. R. China
| | - Wenya Liu
- Department of Chemical Engineering and Technology, School of Environmental and Bioengineering, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Liyan Li
- Department of Pharmacy, Medical School, Huanghe Science and Technology University, Zhengzhou, P. R. China
| |
Collapse
|
5
|
Li K, Yao Q, Zhang M, Li Q, Guo L, Li J, Yang J, Cai W. Exploring the effective components and potential mechanisms of Zukamu granules against acute upper respiratory tract infections by UHPLC-Q-Exactive Orbitrap-MS and network pharmacology analysis. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
6
|
Zhang X, Chu Y, Wang M, Shi Y, Zuo L, Li Z, Liu J, Kang J, Du S, Li B, Sun Z, Zhang X. Rapid and comprehensive identification of chemical constituents in Mai-Luo-Shu-Tong pill by UHPLC-Q-Orbitrap HRMS combined with a data mining strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4990-5000. [PMID: 36444489 DOI: 10.1039/d2ay01453j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mai-Luo-Shu-Tong pill is an effective traditional Chinese medicine formula for the treatment of superficial thrombophlebitis, but it was insufficiently chemically scrutinized. In this study, the mass spectral data of Mai-Luo-Shu-Tong pill were acquired by ultra-high performance liquid chromatography coupled with Q Exactive hybrid Quadrupole-Orbitrap high resolution mass spectrometry. Then, a data mining strategy combining multiple data processing methods was used to identify chemical constituents in Mai-Luo-Shu-Tong pill by constructing a database of precursor ions and summarizing the mass spectral fragmentation behaviors. As a result, a total of 211 compounds including 70 flavonoids, 56 terpenoids, 37 phenolic acids and 48 others were identified in positive and negative ion modes. Among them, 66 compounds have passed comparison verification with reference standards, 145 compounds were identified based on the data mining strategy combining the characteristic cleavage behaviour of homologous compounds and fragment ions and 4 compounds were potentially new compounds. This study provides a database for quality evaluation and further study of Mai-Luo-Shu-Tong pill in vivo. Moreover, it provides a reference for the characterization of the chemical constituents of other traditional Chinese medicine formulae.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Yaojuan Chu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Mengli Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Jiyun Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
| | - Bing Li
- State Key Laboratory of Common Technology of Traditional Chinese Medicine and Pharmaceuticals, Lunan Pharmaceutical Group Co., Ltd., Linyi, P. R. China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan Province, P. R. China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, P. R. China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, Zhengzhou, P. R. China
| |
Collapse
|
7
|
Wei J, Wang X, Dong Y, Zhong X, Ren X, Song R, Ma J, Yu A, Fan Q, Yao J, Shan D, Lv F, Zheng Y, Deng Q, Li X, He Y, Fan S, Zhao C, Wang X, Yuan R, She G. Curcumae Rhizoma - combined with Sparganii Rhizoma in the treatment of liver cancer: Chemical analysis using UPLC-LTQ-Orbitrap MS n, network analysis, and experimental assessment. Front Pharmacol 2022; 13:1027687. [PMID: 36561345 PMCID: PMC9764015 DOI: 10.3389/fphar.2022.1027687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/09/2022] [Indexed: 12/09/2022] Open
Abstract
Objective: Curcumae Rhizoma-Sparganii Rhizoma (CR-SR) is a traditional botanical drug pair that can promote blood circulation, remove blood stasis, and treat tumors in clinics. The aim of the present study was to investigate the therapeutic material basis and potential mechanisms of CR-SR, CR, and SR for the treatment of liver cancer. Method: The chemical profile analyses of CR-SR, CR, and SR were performed by molecular networking and UPLC-LTQ-Orbitrap MSn. The anti-liver cancer activities of CR-SR, CR, and SR were assessed by using a zebrafish xenograft model in vivo for the first time and detected by the HepG2 cell model in vitro. Combining the network analysis and molecular docking, real-time quantitative polymerase chain reaction (RT-qPCR) experiments were undertaken to further explore the mechanisms of CR-SR, CR, and SR for the treatment of liver cancer. Results: In total, 65 components were identified in CR-SR, CR, and SR. Based on the clusters of molecular networking, a total of 12 novel diarylheptanoids were identified from CR-SR and CR. By combining our results with information from the literature, 32 sesquiterpenoids and 21 cyclic dipeptides were identified from CR-SR, CR, and SR. The anti-liver cancer activities were observed in both the drug pair and the single botanical drugs in vitro and in vivo, and the order of activity was CR-SR > CR > SR. They could downregulate the expression of proto-oncogene tyrosine-protein kinase Src (SRC), epidermal growth factor receptor (EGFR), estrogen receptor-α (ESR1), prostaglandin endoperoxide synthase 2 (PTGS2), and amyloid precursor protein (APP). Conclusion: Taken together, the present study provided an experimental basis for the therapeutic material basis and potential molecular mechanisms of CR-SR, CR, and SR. This study provided a novel insight for objective clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Xiaoping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Xiangjian Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Dongjie Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Fang Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Shusheng Fan
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Chongjun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China,Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China,*Correspondence: Xiuhuan Wang, ; Ruijuan Yuan, ; Gaimei She,
| | - Ruijuan Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Xiuhuan Wang, ; Ruijuan Yuan, ; Gaimei She,
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing, China,*Correspondence: Xiuhuan Wang, ; Ruijuan Yuan, ; Gaimei She,
| |
Collapse
|
8
|
Fan S, Li B, Tian Y, Feng W, Niu L. Comprehensive characterization and identification of chemical constituents in Yangwei decoction using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Sep Sci 2021; 45:1006-1019. [PMID: 34962084 DOI: 10.1002/jssc.202100723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022]
Abstract
Yangwei decoction, a classical traditional Chinese medicine prescription, has been widely used to treat exogenous cold and internal injury with damp stagnation for many centuries. However, its systematic chemical profiling remains ambiguous, which has hampered the interpretation of pharmacology and the mechanism of its formula. In the present study, a ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry method was successfully established for the first time to separate and identify the complicated components of Yangwei decoction. The accurate mass data of the protonated molecules, deprotonated molecules, and fragment ions were detected in positive and negative ion modes. A total of 226 compounds in Yangwei decoction were tentatively identified and unambiguously characterized by comparing their retention times and mass spectrometry data with those of reference standards and literature, including 24 lignans, 18 alkaloids, 9 phenylpropanoid glycosides, 76 flavonoids, 59 triterpenoids, 17 organic acids, 7 gingerols, 8 lactones, and 8 other compounds. The present study provides a novel method of constituents characterization for well-known Chinese medicine prescriptions. The study aims to lay a robust foundation for future research, providing the holistic quality control and pharmacology of Yangwei decoction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuaishuai Fan
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China
| | - Baolin Li
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| | - Yurou Tian
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| | - Wei Feng
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| | - Liying Niu
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| |
Collapse
|
9
|
Fan Y, Wang Y, Yu S, Chang J, Yan Y, Wang Y, Bian Y. Natural products provide a new perspective for anti-complement treatment of severe COVID-19: a review. Chin Med 2021; 16:67. [PMID: 34321065 PMCID: PMC8318062 DOI: 10.1186/s13020-021-00478-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
Exaggerated immune response and cytokine storm are accounted for the severity of COVID-19, including organ dysfunction, especially progressive respiratory failure and generalized coagulopathy. Uncontrolled activation of complement contributes to acute and chronic inflammation, the generation of cytokine storm, intravascular coagulation and cell/tissue damage, which may be a favorable target for the treatment of multiple organ failure and reduction of mortality in critically ill patients with COVID-19. Cytokine storm suppression therapy can alleviate the symptoms of critically ill patients to some extent, but as a remedial etiological measure, its long-term efficacy is still questionable. Anti-complement therapy has undoubtedly become an important hotspot in the upstream regulation of cytokine storm. However, chemosynthetic complement inhibitors are expensive, and their drug resistance and long-term side effects require further investigation. New complement inhibitors with high efficiency and low toxicity can be obtained from natural products at low development cost. This paper puts forward some insights of the development of natural anti-complement products in traditional Chinese medicine, that may provide a bright perspective for suppressing cytokine storm in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Yadong Fan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Shuang Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Jun Chang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Yiqi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|