1
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Rouyer A, Tard C, Dessein A, Spinazzi M, Bédat‐Millet A, Dimitri‐Boulos D, Nadaj‐Pakleza A, Chanson J, Nicolas G, Douillard C, Laforêt P. Long-term prognosis of fatty-acid oxidation disorders in adults: Optimism despite the limited effective therapies available. Eur J Neurol 2024; 31:e16138. [PMID: 38015438 PMCID: PMC11235989 DOI: 10.1111/ene.16138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Fatty-acid oxidation disorders (FAODs) are recessive genetic diseases. MATERIALS AND METHODS We report here clinical and paraclinical data from a retrospective study of 44 adults with muscular FAODs from six French reference centers for neuromuscular or metabolic diseases. RESULTS The study cohort consisted of 44 adult patients: 14 with carnitine palmitoyl transferase 2 deficiency (32%), nine with multiple acyl-CoA deficiency (20%), 13 with very long-chain acyl-CoA dehydrogenase deficiency (30%), three with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (7%), and five with short-chain acyl-CoA dehydrogenase deficiency (11%). Disease onset occurred during childhood in the majority of patients (59%), with a mean age at onset of 15 years (range = 0.5-35) and a mean of 12.6 years (range = 0-58) from disease onset to diagnosis. The principal symptoms were acute muscle manifestations (rhabdomyolysis, exercise intolerance, myalgia), sometimes associated with permanent muscle weakness. Episodes of rhabdomyolysis were frequent (84%), with a mean creatinine kinase level of 68,958 U/L (range = 660-300,000). General metabolic complications were observed in 58% of patients, respiratory manifestations in 18% of cases, and cardiological manifestations in 9% of cases. Fasting acylcarnitine profile was used to orient genetic explorations in 65% of cases. After a mean follow-up of 10 years, 33% of patients were asymptomatic and 56% continued to display symptoms after exercise. The frequency of rhabdomyolysis decreased after diagnosis in 64% of cases. CONCLUSION A standardized register would complete this cohort description of muscular forms of FAODs with exhaustive data, making it possible to assess the efficacy of therapeutic protocols in real-life conditions and during the long-term follow-up of patients.
Collapse
Affiliation(s)
- Alice Rouyer
- Neurology DepartmentRaymond Poincaré University Hospital, Assitance Publique des Hopitaux de ParisGarchesFrance
| | - Céline Tard
- Neurology Department, University of Lille, Inserm, Centre Hospialo‐Niversitaire Lille, U1172–LilNCog (JPARC)–Lille Neuroscience and CognitionNord‐Est‐Ile‐de‐France Neuromuscular Reference Center, Cognitive‐Motor Unit of Expertise, Centre Hospitalo‐Régional Universitaire LilleLilleFrance
| | - Anne‐Frédérique Dessein
- Institute of Biochemistry, Biology, and Pathology Center, Metabolism Department and Medical Reference Center for Inherited Metabolic DiseasesLille University HospitalLilleFrance
| | - Marco Spinazzi
- Department of Neurology, Neuromuscular Reference Center Atlantique Occitanie CaraïbeUniversity HospitalAngersFrance
| | | | - Dalia Dimitri‐Boulos
- Internal Medicine DepartmentQuinze‐Vingts National Ophthalmology HospitalParisFrance
| | - Aleksandra Nadaj‐Pakleza
- Department of Neurology, Reference Center for Neuromuscular Disorders Nord‐Est‐Ile‐de‐France, European Reference Network for Rare Neuromuscular DiseasesUniversity Hospital of StrasbourgStrasbourgFrance
| | - Jean‐Baptiste Chanson
- Department of Neurology, Reference Center for Neuromuscular Disorders Nord‐Est‐Ile‐de‐France, European Reference Network for Rare Neuromuscular DiseasesUniversity Hospital of StrasbourgStrasbourgFrance
| | - Guillaume Nicolas
- Neurology DepartmentRaymond Poincaré University Hospital, Assitance Publique des Hopitaux de ParisGarchesFrance
- Nord‐Est‐Ile‐de‐France Neuromuscular Reference CenterFédération Hospitalo‐Universitaire PHENIXGarchesFrance
- U 1179 INSERMParis‐Saclay UniversityMontigny‐le‐BretonneuxFrance
| | - Claire Douillard
- Endocrinology–Diabetology–Metabolism Department and Medical Reference Center for Inherited Metabolic Diseases Jeanne de Flandre Hospital, Centre Hospitalo‐Régional Universitaire LilleLilleFrance
| | - Pascal Laforêt
- Neurology DepartmentRaymond Poincaré University Hospital, Assitance Publique des Hopitaux de ParisGarchesFrance
- Nord‐Est‐Ile‐de‐France Neuromuscular Reference CenterFédération Hospitalo‐Universitaire PHENIXGarchesFrance
- U 1179 INSERMParis‐Saclay UniversityMontigny‐le‐BretonneuxFrance
| |
Collapse
|
3
|
Souter V, Prigmore B, Becraft E, Repass E, Smart T, Sanapareddy N, Schweitzer M, Ortiz JB, Wang Y, Benn P. Reproductive Carrier Screening Results With Maternal Health Implications During Pregnancy. Obstet Gynecol 2023; 142:1208-1216. [PMID: 37562044 DOI: 10.1097/aog.0000000000005318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE To identify conditions on a reproductive carrier screening panel with the potential for carrier manifestations during pregnancy and review the implications for obstetric care. METHODS This was a retrospective cross-sectional study of consecutive samples from female patients aged 18-55 years submitted to a commercial laboratory for a 274-gene carrier screening panel (January 2020 to September 2022). A literature review was performed to identify genes on the panel with potential for pregnancy complications in carriers. Carrier expression and published recommendations for clinical management were reviewed. RESULTS We identified 12 genes with potential for carrier manifestations during pregnancy based on reports in the literature: nine with manifestations irrespective of the fetal genetic status ( ABCB11 , COL4A3 , COL4A4 , COL4A5 , DMD , F9 , F11 , GLA , and OTC ) and three ( CPT1A , CYP19A1 , and HADHA ) with manifestations only if the fetus is affected by the condition. Manifestations included cardiomyopathy, hemorrhage, gestational hypertensive disorders, cholestasis of pregnancy, acute fatty liver, hyperammonemic crisis, and maternal virilization. Published recommendations for carrier management were identified for 11 of the 12 genes. Of 91,637 tests performed during the study period, a pathogenic or likely pathogenic variant was identified in 2,139 (2.3%), giving a carrier frequency for any of the 12 genes of 1 in 43 (95% CI 1/41-45) 1,826 (2.0%) of the study population were identified as carriers for one of the nine genes with the potential for carrier manifestations irrespective of an affected or unaffected fetus. CONCLUSION Approximately 1 in 40 female patients were identified as carriers for a condition with potential for maternal manifestations in pregnancy, including some serious or even life-threatening complications. Obstetric care professionals should be aware of the possibility of pregnancy complications among carriers and the available recommendations for management. FUNDING SOURCE This study was funded by Natera, Inc.
Collapse
Affiliation(s)
- Vivienne Souter
- Natera, Inc., Austin, Texas; and the University of Connecticut Health Center, Farmington, Connecticut
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
5
|
Flitcroft I, Ainsworth J, Chia A, Cotter S, Harb E, Jin ZB, Klaver CCW, Moore AT, Nischal KK, Ohno-Matsui K, Paysse EA, Repka MX, Smirnova IY, Snead M, Verhoeven VJM, Verkicharla PK. IMI-Management and Investigation of High Myopia in Infants and Young Children. Invest Ophthalmol Vis Sci 2023; 64:3. [PMID: 37126360 PMCID: PMC10153576 DOI: 10.1167/iovs.64.6.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Purpose The purpose of this study was to evaluate the epidemiology, etiology, clinical assessment, investigation, management, and visual consequences of high myopia (≤-6 diopters [D]) in infants and young children. Findings High myopia is rare in pre-school children with a prevalence less than 1%. The etiology of myopia in such children is different than in older children, with a high rate of secondary myopia associated with prematurity or genetic causes. The priority following the diagnosis of high myopia in childhood is to determine whether there is an associated medical diagnosis that may be of greater overall importance to the health of the child through a clinical evaluation that targets the commonest features associated with syndromic forms of myopia. Biometric evaluation (including axial length and corneal curvature) is important to distinguishing axial myopia from refractive myopia associated with abnormal development of the anterior segment. Additional investigation includes ocular imaging, electrophysiological tests, genetic testing, and involvement of pediatricians and clinical geneticists is often warranted. Following investigation, optical correction is essential, but this may be more challenging and complex than in older children. Application of myopia control interventions in this group of children requires a case-by-case approach due to the lack of evidence of efficacy and clinical heterogeneity of high myopia in young children. Conclusions High myopia in infants and young children is a rare condition with a different pattern of etiology to that seen in older children. The clinical management of such children, in terms of investigation, optical correction, and use of myopia control treatments, is a complex and often multidisciplinary process.
Collapse
Affiliation(s)
- Ian Flitcroft
- Children's Health Ireland (CHI) at Temple Street, Dublin, Ireland
- Centre for Eye Research Ireland, Technological University of Dublin, Dublin, Ireland
| | - John Ainsworth
- Birmingham Children's Hospital, Steelhouse Lane Birmingham, United Kingdom
| | | | - Susan Cotter
- Southern California College of Optometry, Marshall B Ketchum University, Fullerton, California, United States
| | - Elise Harb
- Wertheim School Optometry and Vision Science, Berkeley, California, United States
- University of California - San Francisco, School of Medicine, San Francisco, California, United States
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Anthony T Moore
- University of California - San Francisco, School of Medicine, San Francisco, California, United States
| | - Ken K Nischal
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | | - Evelyn A Paysse
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, United States
| | - Michael X Repka
- Wilmer Eye Institute, The John Hopkins University School of Medicine, Baltimore, Maryland, United States
| | | | - Martin Snead
- Department of Vitreoretinal Research, John van Geest Centre for Brain Repair, University of Cambridge, United Kingdom
| | - Virginie J M Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
6
|
Metzler M, Burns W, Mitchell C, Napolitano S, Chaudhari BP. A case report of necrotizing enterocolitis in a moderately preterm neonate with LCHADD-A call to focus on the basics while utilizing advanced new therapies. Front Pediatr 2023; 11:1081802. [PMID: 36861082 PMCID: PMC9969157 DOI: 10.3389/fped.2023.1081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is an autosomal recessive condition of impaired beta-oxidation. Traditionally, treatment included restriction of dietary long-chain fatty acids via a low-fat diet and supplementation of medium chain triglycerides. In 2020, triheptanoin received FDA approval as an alternative source of medium chain fatty acids for individuals with long-chain fatty acid oxidation disorders (LC-FAOD). We present a case of a moderately preterm neonate born at 33 2/7 weeks gestational age with LCHADD who received triheptanoin and developed necrotizing enterocolitis (NEC). Prematurity is known as a major risk factor for NEC, with risk increasing with decreasing gestational age. To our knowledge, NEC has not previously been reported in patients with LCHADD or with triheptanoin use. While metabolic formula is part of the standard of care for LC-FAOD in early life, preterm neonates may benefit from more aggressive attempts to use skimmed human milk to minimize exposure to formula during the risk period for NEC during feed advancement. This risk period may be longer in neonates with LC-FAOD compared to otherwise healthy premature neonates.
Collapse
Affiliation(s)
- Marina Metzler
- Pediatric Residency, Nationwide Children's Hospital, Columbus, OH, United States
| | - William Burns
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Carly Mitchell
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Stephanie Napolitano
- Division of Neonatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Bimal P Chaudhari
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Neonatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, United States.,Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
7
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
8
|
Shakerdi LA, McNulty J, Gillman B, McCarthy CM, Ivory J, Sheerin A, O'Byrne JJ, Donnelly JC, Treacy EP. Management of pregnancy in a patient with long-chain 3-hydroxyacyl CoA dehydrogenase deficiency. JIMD Rep 2022; 63:265-270. [PMID: 35822088 PMCID: PMC9259390 DOI: 10.1002/jmd2.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is a rare mitochondrial defect of β-oxidation of long-chain fatty acids. Patients may present with muscle pain, hypotonia, peripheral neuropathy, cardiomyopathy, recurrent rhabdomyolysis and sudden death. Dietary management of LCHADD aims at preventing prolonged fasting and decreasing energy production from long-chain fatty acids compensated by an increase in medium-chain triglyceride fat. Herein, we present medical and dietetic management of a successful pregnancy in a LCHADD female patient and the delivery of a healthy baby boy.
Collapse
Affiliation(s)
- Loai A. Shakerdi
- National Centre for Inherited Metabolic DisordersMater Misericordiae University HospitalDublinIreland
| | - Jenny McNulty
- National Centre for Inherited Metabolic DisordersChildren's Health Ireland (CHI)DublinIreland
| | - Barbara Gillman
- National Centre for Inherited Metabolic DisordersMater Misericordiae University HospitalDublinIreland
| | | | - Jessica Ivory
- National Centre for Inherited Metabolic DisordersMater Misericordiae University HospitalDublinIreland
| | - Alison Sheerin
- National Centre for Inherited Metabolic DisordersMater Misericordiae University HospitalDublinIreland
| | - James J. O'Byrne
- National Centre for Inherited Metabolic DisordersMater Misericordiae University HospitalDublinIreland
| | | | - Eileen P. Treacy
- National Centre for Inherited Metabolic DisordersMater Misericordiae University HospitalDublinIreland
| |
Collapse
|
9
|
Striano P, Auvin S, Collins A, Horvath R, Scheffer IE, Tzadok M, Miller I, Koenig MK, Lacy A, Davis R, Garcia-Cazorla A, Saneto RP, Brandabur M, Blair S, Koutsoukos T, De Vivo D. A randomized, double-blind trial of triheptanoin for drug-resistant epilepsy in glucose transporter I deficiency syndrome (Glut1DS). Epilepsia 2022; 63:1748-1760. [PMID: 35441706 PMCID: PMC9546029 DOI: 10.1111/epi.17263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Evaluate efficacy and long-term safety of triheptanoin in patients >1 year old, not on a ketogenic diet, with drug-resistant seizures associated with Glucose Transporter Type 1 Deficiency Syndrome (Glut1DS). METHODS UX007G-CL201 was a randomized, double-blind, placebo-controlled trial. Following a 6-week baseline period, eligible patients were randomized 3:1 to triheptanoin or placebo. Dosing was titrated to 35% total daily calories over 2 weeks. After an 8-week placebo-controlled period, all patients received open-label triheptanoin through Week 52. RESULTS The study included 36 patients (15 children; 13 adolescents; 8 adults). A median 12.6% reduction in overall seizure frequency was observed in the triheptanoin arm relative to baseline and a 13.5% difference was observed relative to placebo (p = .58). In patients with absence seizures only (n = 9), a median 62.2% reduction in seizure frequency was observed in the triheptanoin arm relative to baseline. Only one patient with absence seizures only was present in the control group, preventing comparison. No statistically significant differences in seizure frequency were observed. Common treatment-emergent adverse events (TEAEs) included diarrhea, vomiting, abdominal pain, and nausea, most mild or moderate in severity. No serious AEs were considered treatment related. One patient discontinued due to status epilepticus. SIGNIFICANCE Triheptanoin did not significantly reduce seizure frequency in patients with Glut1DS not on the ketogenic diet. Treatment was associated with mild to moderate GI treatment-related events; most resolved following dose reduction or interruption and/or medication for treatment. Triheptanoin was not associated with any long-term safety concerns when administered at dose levels up to 35% total daily caloric intake for up to one year.
Collapse
Affiliation(s)
- Pasquale Striano
- IRCCS Istituto 'G. Gaslini', Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Stéphane Auvin
- Robert-Debré University Hospital and Université de Paris, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | | | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ingrid E Scheffer
- Austin and Royal Children's Hospital, Florey and Murdoch Institutes, University of Melbourne, Melbourne, Vic., Australia
| | - Michal Tzadok
- Pediatric Neurology Units, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Ramat Gan, Israel
| | - Ian Miller
- Miami Children's Research Institute, Miami, Florida, USA
| | | | - Adrian Lacy
- Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Ronald Davis
- Neurology & Epilepsy Research Center, DBO Pediatric Neurology, P.A., Orlando, Florida, USA
| | | | - Russell P Saneto
- Department of Neurology, Division of Pediatric Neurology, University of Washington/ Seattle Children's Hospital, Seattle, Washington, USA
| | | | - Susan Blair
- Ultragenyx Pharmaceutical Inc., Novato, California, USA
| | | | - Darryl De Vivo
- Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Morrison MA, Chung Y, Heneghan MA. Managing hepatic complications of pregnancy: practical strategies for clinicians. BMJ Open Gastroenterol 2022; 9:e000624. [PMID: 35292523 PMCID: PMC8928321 DOI: 10.1136/bmjgast-2021-000624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Liver disorders specific to pregnancy are rare but can have potentially serious consequences for mother and fetus. Pregnancy-related liver disorders are the most common cause of liver disease in otherwise healthy pregnant women and pose a challenge to physicians because of the need to take into account both maternal and fetal health. A good knowledge of these disorders is necessary as prompt diagnosis and appropriate management results in improved maternal and fetal outcomes. This review will focus on pregnancy-specific disorders and will aim to serve as a guide for physicians in their diagnosis, management and subsequent monitoring.
Collapse
Affiliation(s)
| | - Yooyun Chung
- Institute of Liver Studies, King's College Hospital, London, UK
| | | |
Collapse
|
11
|
Martín‐Rivada Á, Palomino Pérez L, Ruiz‐Sala P, Navarrete R, Cambra Conejero A, Quijada Fraile P, Moráis López A, Belanger‐Quintana A, Martín‐Hernández E, Bellusci M, Cañedo Villaroya E, Chumillas Calzada S, García Silva MT, Bergua Martínez A, Stanescu S, Martínez‐Pardo Casanova M, Ruano MLF, Ugarte M, Pérez B, Pedrón‐Giner C. Diagnosis of inborn errors of metabolism within the expanded newborn screening in the Madrid region. JIMD Rep 2022; 63:146-161. [PMID: 35281663 PMCID: PMC8898721 DOI: 10.1002/jmd2.12265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
We present the results of our experience in the diagnosis of inborn errors of metabolism (IEM) since the Expanded Newborn Screening was implemented in our Region. Dried blood samples were collected 48 h after birth. Amino acids and acylcarnitines were quantitated by mass spectrometry (MS)/MS. Newborns with alterations were referred to the clinical centers for follow-up. Biochemical and molecular genetic studies for confirmation of a disease were performed. In the period 2011 to 2019, 592 822 children were screened: 902 of them were referred for abnormal results. An IEM was confirmed in 222 (1/2670): aminoacidopathies: 89 hyperphenylalaninemia (HPA) (51 benign HPA, 32 phenylketonuria, 4 DNAJC12 defect, and 2 primapterinuria), 6 hypermethioninemia, 3 tyrosinemia type 1 (TYR-1), 1 TYR-3, 4 maple syrup urine disease (MSUD), 2 branched-chain amino acid transferase 2 deficiency, 2 homocystinuria, 1 cystinuria, 2 ornithine transcarbamylase (OTC) deficiency, 2 citrullinemia type I (CTLN1); FAO defects: 43 medium-chain acyl-CoA dehydrogenase deficiency (MCADD), 13 very long-chain acyl-CoA dehydrogenase deficiency, 2 long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), 1 multiple acyl-coA dehydrogenation deficiency, 11 systemic primary carnitine deficiency, 2 carnitine palmitoyltransferase type 2 (CPT-II) deficiency, 1 CPT-I deficiency; organic acidurias: 12 glutaric aciduria type 1 (GA-1), 4 methylmalonic acidemia (MMA), 7 MMA including combined cases with homocystinuria (MMAHC), 6 propionic acidemia (PA), 7 3-methylcrotonyl-CoA carboxylase, 1 3-hydroxy-3-methylglutaryl-CoA lyase deficiency lyase deficiency. Only 19 infants (8.5%) were symptomatic at newborn screening result (1 LCHADD, 5 PA, 1 CPT-II deficiency, 1 MMA, 3 MMAHC, 2 MSUD, 2 OTC deficiency, 1 CTLN1, 1 MCADD, 2 TYR-1). No false negative cases were identified. Genetic diagnosis was conclusive in all biochemically confirmed cases, except for two infants with HPA, identifying pathogenic variants in 32 different genes. The conditions with the highest incidence were HPA (1/6661) and MCAD deficiencies (1/13 787).
Collapse
Affiliation(s)
- Álvaro Martín‐Rivada
- Sección de Gastroenterología y NutriciónHospital Infantil Universitario Niño JesúsMadridSpain
| | - Laura Palomino Pérez
- Sección de Gastroenterología y NutriciónHospital Infantil Universitario Niño JesúsMadridSpain
| | - Pedro Ruiz‐Sala
- Centro de Diagnóstico de Enfermedades MolecularesUniversidad Autónoma de Madrid, IdiPAZ, CIBERERMadridSpain
| | - Rosa Navarrete
- Centro de Diagnóstico de Enfermedades MolecularesUniversidad Autónoma de Madrid, IdiPAZ, CIBERERMadridSpain
| | - Ana Cambra Conejero
- Laboratorio de Cribado Neonatal de la Comunidad de MadridServicio de Bioquímica Clínica, Hospital General Universitario Gregorio MarañónMadridSpain
| | - Pilar Quijada Fraile
- Unidad de Enfermedades Mitocondriales‐Metabólicas HereditariasCentro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de OctubreMadridSpain
| | - Ana Moráis López
- Unidad de Nutrición Infantil y Enfermedades MetabólicasHospital Universitario La PazMadridSpain
| | - Amaya Belanger‐Quintana
- Centro de Referencia Nacional (CSUR) en Enfermedades MetabólicasHospital Universitario Ramón y CajalMadridSpain
| | - Elena Martín‐Hernández
- Unidad de Enfermedades Mitocondriales‐Metabólicas HereditariasCentro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de OctubreMadridSpain
| | - Marcello Bellusci
- Unidad de Enfermedades Mitocondriales‐Metabólicas HereditariasCentro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de OctubreMadridSpain
| | - Elvira Cañedo Villaroya
- Sección de Gastroenterología y NutriciónHospital Infantil Universitario Niño JesúsMadridSpain
| | - Silvia Chumillas Calzada
- Unidad de Enfermedades Mitocondriales‐Metabólicas HereditariasCentro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de OctubreMadridSpain
| | - María Teresa García Silva
- Unidad de Enfermedades Mitocondriales‐Metabólicas HereditariasCentro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de OctubreMadridSpain
| | - Ana Bergua Martínez
- Unidad de Nutrición Infantil y Enfermedades MetabólicasHospital Universitario La PazMadridSpain
| | - Sinziana Stanescu
- Centro de Referencia Nacional (CSUR) en Enfermedades MetabólicasHospital Universitario Ramón y CajalMadridSpain
| | | | - Miguel L. F. Ruano
- Laboratorio de Cribado Neonatal de la Comunidad de MadridServicio de Bioquímica Clínica, Hospital General Universitario Gregorio MarañónMadridSpain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades MolecularesUniversidad Autónoma de Madrid, IdiPAZ, CIBERERMadridSpain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades MolecularesUniversidad Autónoma de Madrid, IdiPAZ, CIBERERMadridSpain
| | - Consuelo Pedrón‐Giner
- Sección de Gastroenterología y NutriciónHospital Infantil Universitario Niño JesúsMadridSpain
| |
Collapse
|
12
|
Yang J, Yuan D, Tan X, Zeng Y, Tang N, Chen D, Tan J, Cai R, Huang J, Yan T. Analysis of a family with mitochondrial trifunctional protein deficiency caused by HADHA gene mutations. Mol Med Rep 2021; 25:47. [PMID: 34878152 PMCID: PMC8674702 DOI: 10.3892/mmr.2021.12563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial trifunctional protein (MTP) deficiency (MTPD; MIM 609015) is a metabolic disease of fatty acid oxidation. MTPD is an autosomal recessive disorder caused by mutations in the HADHA gene, encoding the α-subunit of a trifunctional protease, or in the HADHB gene, encoding the β-subunit of a trifunctional protease. To the best of our knowledge, only two cases of families with MTPD due to HADHB gene mutations have been reported in China, and the HADHA gene mutation has not been reported in a Chinese family with MTPD. The present study reported the clinical characteristics and compound heterozygous HADHA gene mutations of two patients with MTPD in the Chinese population. The medical history, routine examination data, blood acyl-carnitine analysis results, results of pathological examination after autopsy and family pedigree map were collected for patients with MTPD. The HADHA gene was analyzed by Sanger sequencing or high-throughput sequencing, the pathogenicity of the newly discovered variant was interpreted by bioinformatics analysis, and the function of the mutated protein was modeled and analyzed according to 3D structure. The two patients with MTPD experienced metabolic crises and died following an infectious disease. Lactate dehydrogenase, creatine kinase (CK), CK-MB and liver enzyme abnormalities were observed in routine examinations. Tandem mass spectrometry revealed that long-chain acyl-carnitine was markedly elevated in blood samples from the patients with MTPD. The autopsy results for one child revealed fat accumulation in the liver and heart. Next-generation sequencing detected compound heterozygous c.703C>T (p.R235W) and c.2107G>A (p.G703R) mutations in the HADHA gene. The mother did not have acute fatty liver during pregnancy with the two patients. Using amniotic fluid prenatal diagnostic testing, the unborn child was confirmed to carry only c.2107G>A (p.G703R). Molecular mechanistic analysis indicated that the two variants affected the conformation of the α-subunit of the MTP enzyme complex, and consequently affected the stability and function of the enzyme complex. The present study comprehensively analyzed the cases, including exome sequencing and protein structure analysis and, to the best of our knowledge, describes the first observation of compound heterozygous mutations in the HADHA gene underlying this disorder in China. The clinical phenotypes of the two heterozygous variants of the HADHA gene are non-lethal. The present study may improve understanding of the HADHA gene mutation spectrum and clinical phenotype in the Chinese population.
Collapse
Affiliation(s)
- Jinling Yang
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Dejian Yuan
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Xiaohui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yexi Zeng
- Newborn Screening Center, Huizhou Second Maternity and Child Health Care Hospital, Huizhou, Guangdong 516001, P.R. China
| | - Ning Tang
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Dayu Chen
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Jianqiang Tan
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Ren Cai
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Jun Huang
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Tizhen Yan
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| |
Collapse
|
13
|
Rücklová K, Hrubá E, Pavlíková M, Hanák P, Farolfi M, Chrastina P, Vlášková H, Kousal B, Smolka V, Foltenová H, Adam T, Friedecký D, Ješina P, Zeman J, Kožich V, Honzík T. Impact of Newborn Screening and Early Dietary Management on Clinical Outcome of Patients with Long Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency and Medium Chain Acyl-CoA Dehydrogenase Deficiency-A Retrospective Nationwide Study. Nutrients 2021; 13:nu13092925. [PMID: 34578803 PMCID: PMC8469775 DOI: 10.3390/nu13092925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD/MTPD) and medium chain acyl-CoA dehydrogenase deficiency (MCADD) were included in the expanded neonatal screening program (ENBS) in Czechia in 2009, allowing for the presymptomatic diagnosis and nutritional management of these patients. The aim of our study was to assess the nationwide impact of ENBS on clinical outcome. This retrospective study analysed acute events and chronic complications and their severity in pre-ENBS and post-ENBS cohorts. In total, 28 children (12 before, 16 after ENBS) were diagnosed with LCHADD/MTPD (incidence 0.8/100,000 before and 1.2/100,000 after ENBS). In the subgroup detected by ENBS, a significantly longer interval from birth to first acute encephalopathy was observed. In addition, improvement in neuropathy and cardiomyopathy (although statistically non-significant) was demonstrated in the post-ENBS subgroup. In the MCADD cohort, we included 69 patients (15 before, 54 after ENBS). The estimated incidence rose from 0.7/100,000 before to 4.3/100,000 after ENBS. We confirmed a significant decrease in the number of episodes of acute encephalopathy and lower proportion of intellectual disability after ENBS (p < 0.0001). The genotype-phenotype correlations suggest a new association between homozygosity for the c.1528C > G variant and more severe heart involvement in LCHADD patients.
Collapse
Affiliation(s)
- Kristina Rücklová
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
- Department of Paediatrics, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 34 Prague, Czech Republic
- Correspondence: (K.R.); (T.H.)
| | - Eva Hrubá
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Markéta Pavlíková
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic;
| | - Petr Hanák
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Martina Farolfi
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Petr Chrastina
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Hana Vlášková
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Bohdan Kousal
- Department of Ophthalmology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic;
| | - Vratislav Smolka
- Department of Paediatrics, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, 779 00 Olomouc, Czech Republic; (V.S.); (H.F.)
| | - Hana Foltenová
- Department of Paediatrics, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, 779 00 Olomouc, Czech Republic; (V.S.); (H.F.)
| | - Tomáš Adam
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (T.A.); (D.F.)
| | - David Friedecký
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (T.A.); (D.F.)
| | - Pavel Ješina
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Jiří Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Viktor Kožich
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
- Correspondence: (K.R.); (T.H.)
| |
Collapse
|
14
|
Grünert SC, Eckenweiler M, Haas D, Lindner M, Tsiakas K, Santer R, Tucci S, Spiekerkoetter U. The spectrum of peripheral neuropathy in disorders of the mitochondrial trifunctional protein. J Inherit Metab Dis 2021; 44:893-902. [PMID: 33638202 DOI: 10.1002/jimd.12372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
Peripheral neuropathy is a known irreversible long-term complication of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MTPD), two inherited disorders of mitochondrial long-chain fatty acid oxidation. The underlying pathophysiology of neuropathy is still not fully understood. We report electrophysiological studies and neurological findings in a series of 8 LCHAD-deficient and 11 MTP-deficient patients. The median age at time of the study was 8.0 years (0.5-25 years). The overall prevalence of neuropathy was 58% with neuropathic symptoms being slightly more common in MTPD compared to LCHADD (70% vs 50%, respectively). Onset of neuropathy was significantly earlier in MTPD patients compared to LCHADD patients (median age at onset 4.7 vs 15.3 years, respectively, P = .047). In four patients, isolated peripheral neuropathy was the first and only presenting symptom, and in all four the diagnosis was missed by newborn screening. About half of the patients (45.5%) had a sensorimotor neuropathy, while 27.3% showed a pure motor form and another 27.3% an isolated sensory form. Despite early diagnosis by newborn screening and early initiation of therapy, peripheral neuropathy cannot be prevented in all patients with LCHADD/MTPD and has severe impact on the life of affected patients. Electrophysiology classifies LCHADD/MTPD neuropathy as axonal with secondary demyelination. A novel observation is that in patients with acute, fulminant onset of neuropathy, symptoms can be partly reversible. Further studies are needed to elucidate the underlying pathophysiology of axonal damage and possible therapeutic targets.
Collapse
Affiliation(s)
- Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dorothea Haas
- Department of Neuropediatrics and Pediatric Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Lindner
- Department of Pediatric Neurology, University Children's Hospital, Frankfurt/Main, Germany
| | | | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Sara Tucci
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
15
|
Marsden D, Bedrosian CL, Vockley J. Impact of newborn screening on the reported incidence and clinical outcomes associated with medium- and long-chain fatty acid oxidation disorders. Genet Med 2021; 23:816-829. [PMID: 33495527 PMCID: PMC8105167 DOI: 10.1038/s41436-020-01070-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty acid oxidation disorders (FAODs) are potentially fatal inherited disorders for which management focuses on early disease detection and dietary intervention to reduce the impact of metabolic crises and associated spectrum of clinical symptoms. They can be divided functionally into long-chain (LC-FAODs) and medium-chain disorders (almost exclusively deficiency of medium-chain acyl-coenzyme A dehydrogenase). Newborn screening (NBS) allows prompt identification and management. FAOD detection rates have increased following the addition of FAODs to NBS programs in the United States and many developed countries. NBS-identified neonates with FAODs may remain asymptomatic with dietary management. Evidence from numerous studies suggests that NBS-identified patients have improved outcomes compared with clinically diagnosed patients, including reduced rates of symptomatic manifestations, neurodevelopmental impairment, and death. The limitations of NBS include the potential for false-negative and false-positive results, and the need for confirmatory testing. Although NBS alone does not predict the consequences of disease, outcomes, or management needs, subsequent genetic analyses may have predictive value. Genotyping can provide valuable information on the nature and frequency of pathogenic variants involved with FAODs and their association with specific phenotypes. Long-term follow-up to fully understand the clinical spectrum of NBS-identified patients and the effect of different management strategies is needed.
Collapse
Affiliation(s)
| | | | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Zöggeler T, Stock K, Jörg-Streller M, Spenger J, Konstantopoulou V, Hufgard-Leitner M, Scholl-Bürgi S, Karall D. Long-term experience with triheptanoin in 12 Austrian patients with long-chain fatty acid oxidation disorders. Orphanet J Rare Dis 2021; 16:28. [PMID: 33446227 PMCID: PMC7807521 DOI: 10.1186/s13023-020-01635-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022] Open
Abstract
Background Long-chain fatty acid oxidation disorders (LC-FAOD) are a group of rare inborn errors of metabolism with autosomal recessive inheritance that may cause life-threatening events.
Treatment with triheptanoin, a synthetic seven-carbon fatty acid triglyceride compound with an anaplerotic effect, seems beneficial, but clinical experience is limited. We report our long-term experience in an Austrian cohort of LC-FAOD patients. Methods We retrospectively assessed clinical outcome and total hospitalization days per year before and after start with triheptanoin by reviewing medical records of 12 Austrian LC-FAOD patients Results For 12 Austrian LC-FAOD patients at three metabolic centers, triheptanoin was started shortly after birth in 3/12, and between 7.34 and 353.3 (median 44.5; mean 81.1) months of age in 9/12 patients. For 11 pediatric patients, mean duration of triheptanoin intake was 5.3 (median 3.9, range 1.2–15.7) years, 10/11 pediatric patients have an ongoing intake of triheptanoin. One patient quit therapy due to reported side effects. Total hospitalization days per year compared to before triheptanoin treatment decreased by 82.3% from 27.1 (range 11–65) days per year to 4.8 (range 0–13) days per year, and hospitalization days in the one year pre- compared to the one year post-triheptanoin decreased by 69.8% from 27.1 (range 4–75) days to 8.2 (range 0–25) days. All patients are in good clinical condition, show normal psychomotor development and no impairment in daily life activities. Conclusion In this retrospective observational study in an Austrian LC-FAOD cohort, triheptanoin data show improvement in disease course. Triheptanoin appears to be a safe and beneficial treatment option in LC-FAOD. For further clarification, additional prospective randomized controlled trials are needed.
Collapse
Affiliation(s)
- Thomas Zöggeler
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Katharina Stock
- Department of Pediatrics III (Cardiology), Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Jörg-Streller
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Johannes Spenger
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | | | - Miriam Hufgard-Leitner
- Department of Internal Medicine III (Clinical Division of Endocrinology and Inherited Metabolic Disorders), Medical University of Vienna, Vienna, Austria
| | - Sabine Scholl-Bürgi
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Daniela Karall
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
17
|
Bérat CM, Roda C, Brassier A, Bouchereau J, Wicker C, Servais A, Dubois S, Assoun M, Belloche C, Barbier V, Leboeuf V, Petit FM, Gaignard P, Lebigot E, Bérat PJ, Pontoizeau C, Touati G, Talbotec C, Campeotto F, Ottolenghi C, Arnoux JB, de Lonlay Pascale P. Enteral tube feeding in patients receiving dietary treatment for metabolic diseases: A retrospective analysis in a large French cohort. Mol Genet Metab Rep 2021; 26:100655. [PMID: 33473351 PMCID: PMC7803652 DOI: 10.1016/j.ymgmr.2020.100655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Context A strictly controlled diet (often involving enteral tube feeding (ETF)) is part of the treatment of many inherited metabolic diseases (IMDs). Objective To describe the use of ETF in a large cohort of patients with IMDs. Design A retrospective analysis of ETF in patients with urea cycle disorders (UCDs), organic aciduria (OA), maple syrup disease (MSUD), glycogen storage diseases (GSDs) or fatty acid oxidation disorders (FAODs) diagnosed before the age of 12 months. Setting The reference center for IMDs at Necker Hospital (Paris, France). Results 190 patients born between January 1991 and August 2017 were being treated for OA (n = 60), UCDs (n = 55), MSUD (n = 32), GSDs (n = 26) or FAODs (n = 17). Ninety-eight of these patients (52%) received ETF (OA subgroup: n = 40 (67%); UCDs: n = 12 (22%); MSUD: n = 9 (28%); GSDs: n = 23 (88%); FAODs: n = 14 (82%)). Indications for ETF were feeding difficulties in 64 (65%) patients, cessation of fasting in 39 (40%), and recurrent metabolic decompensation in 14 (14%). Complications of ETF were recorded in 48% of cases, more frequently with nasogastric tube (NGT) than with gastrostomy. Among patients in whom ETF was withdrawn, the mean duration of ETF was 5.9 (SD: 4.8) years (range: 0.6–19.8 years). The duration of ETF was found to vary from one disease subgroup to another (p = 0.051). While the longest median duration was found in the GSD subgroup (6.8 years), the shortest one was found in the UCD subgroup (0.9 years). Conclusion ETF is an integral part of the dietary management of IMDs. The long duration of ETF and the specific risks of NGT highlights the potential value of gastrostomy. In this study at a French tertiary hospital, we documented the indications, modalities, duration and complications of enteral tube feeding in a cohort of patients with inherited metabolic diseases.
Collapse
Affiliation(s)
- Claire-Marine Bérat
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Célina Roda
- Université de Paris, CRESS, HERA team, INSERM, INRAE, F-75004 Paris, France
| | - Anais Brassier
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Juliette Bouchereau
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Camille Wicker
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Aude Servais
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Sandrine Dubois
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Murielle Assoun
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Claire Belloche
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Valérie Barbier
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Virginie Leboeuf
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - François M Petit
- Department of Molecular Genetics, Antoine Béclère Hospital, APHP, Université Paris Saclay, 92141 Clamart, Cedex, France
| | - Pauline Gaignard
- Department of Biochemistry, Bicêtre Hospital, APHP, Le Kremlin Bicêtre, France
| | - Elise Lebigot
- Department of Biochemistry, Bicêtre Hospital, APHP, Le Kremlin Bicêtre, France
| | - Pierre-Jean Bérat
- Department of Odontology, Louis Mourier Hospital, APHP, University Paris Descartes University, Paris, France
| | - Clément Pontoizeau
- Department of Biochemistry, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, metabERN, Paris Descartes University, Paris, France
| | - Guy Touati
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Cécile Talbotec
- Department of Gastroenterology, Hospital Necker Enfants Malades, APHP, Paris, France
| | - Florence Campeotto
- Department of Gastroenterology, Hospital Necker Enfants Malades, APHP, Paris, France
| | - Chris Ottolenghi
- Department of Biochemistry, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, metabERN, Paris Descartes University, Paris, France
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Pascale de Lonlay Pascale
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| |
Collapse
|
18
|
Stinton C, Fraser H, Geppert J, Johnson R, Connock M, Johnson S, Clarke A, Taylor-Phillips S. Newborn Screening for Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase and Mitochondrial Trifunctional Protein Deficiencies Using Acylcarnitines Measurement in Dried Blood Spots-A Systematic Review of Test Accuracy. Front Pediatr 2021; 9:606194. [PMID: 33816395 PMCID: PMC8017228 DOI: 10.3389/fped.2021.606194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare autosomal recessive fatty acid β-oxidation disorders. Their clinical presentations are variable, and premature death is common. They are included in newborn blood spot screening programs in many countries around the world. The current process of screening, through the measurement of acylcarnitines (a metabolic by-product) in dried blood spots with tandem mass spectrometry, is subject to uncertainty regarding test accuracy. Methods: We conducted a systematic review of literature published up to 19th June 2018. We included studies that investigated newborn screening for LCHAD or MTP deficiencies by tandem mass spectrometry of acylcarnitines in dried blood spots. The reference standards were urine organic acids, blood acylcarnitine profiles, enzyme analysis in cultured fibroblasts or lymphocytes, mutation analysis, or at least 10-year follow-up. The outcomes of interest were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Assessment of titles, abstracts, and full-text papers and quality appraisal were carried out independently by two reviewers. One reviewer extracted study data. This was checked by a second reviewer. Results: Ten studies provided data on test accuracy. LCHAD or MTP deficiencies were identified in 23 babies. No cases of LCHAD/MTP deficiencies were identified in four studies. PPV ranged from 0% (zero true positives and 28 false positives from 276,565 babies screened) to 100% (13 true positives and zero false positives from 2,037,824 babies screened). Sensitivity, specificity, and NPV could not be calculated as there was no systematic follow-up of babies who screened negative. Conclusions: Test accuracy estimates of screening for LCHAD and MTP deficiencies with tandem mass spectrometry measurement of acylcarnitines in dried blood were variable in terms of PPVs. Screening methods (including markers and thresholds) varied between studies, and sensitivity, specificity, and NPVs are unknown.
Collapse
Affiliation(s)
- Chris Stinton
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Hannah Fraser
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Julia Geppert
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rebecca Johnson
- School of Nursing, Midwifery and Health, Coventry University, Coventry, United Kingdom
| | - Martin Connock
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Samantha Johnson
- Warwick Library, University of Warwick, Coventry, United Kingdom
| | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
19
|
Vockley J, Burton B, Berry G, Longo N, Phillips J, Sanchez‐Valle A, Chapman K, Tanpaiboon P, Grunewald S, Murphy E, Lu X, Cataldo J. Effects of triheptanoin (UX007) in patients with long-chain fatty acid oxidation disorders: Results from an open-label, long-term extension study. J Inherit Metab Dis 2021; 44:253-263. [PMID: 32885845 PMCID: PMC7891391 DOI: 10.1002/jimd.12313] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
Long-chain fatty acid oxidation disorders (LC-FAOD) are autosomal recessive conditions that impair conversion of long-chain fatty acids into energy, leading to significant clinical symptoms. Triheptanoin is a highly purified, 7-carbon chain triglyceride approved in the United States as a source of calories and fatty acids for treatment of pediatric and adult patients with molecularly confirmed LC-FAOD. CL202 is an open-label, long-term extension study evaluating triheptanoin (Dojolvi) safety and efficacy in patients with LC-FAOD. Patients rolled over from the CL201 triheptanoin clinical trial (rollover); were triheptanoin-naïve (naïve); or had participated in investigator-sponsored trials/expanded access programs (IST/other). Results focus on rollover and naïve groups, as pretreatment data allow comparison. Primary outcomes were annual rate and duration of major clinical events (MCEs; rhabdomyolysis, hypoglycemia, and cardiomyopathy events). Seventy-five patients were enrolled (24 rollover, 20 naïve, 31 IST/other). Mean study duration was 23.0 months for rollover, 15.7 months for naïve, and 34.7 months for IST/other. In the rollover group, mean annualized MCE rate decreased from 1.76 events/year pre-triheptanoin to 0.96 events/year with triheptanoin (P = .0319). Median MCE duration was reduced by 66%. In the naïve group, median annualized MCE rate decreased from 2.33 events/year pre-triheptanoin to 0.71 events/year with triheptanoin (P = .1072). Median MCE duration was reduced by 80%. The most common related adverse events (AEs) were diarrhea, abdominal pain/discomfort, and vomiting, most mild to moderate. Three patients had serious AEs (diverticulitis, ileus, rhabdomyolysis) possibly related to drug; all resolved. Two patients had AEs leading to death; neither drug related. Triheptanoin reduced rate and duration of MCEs. Safety was consistent with previous observations.
Collapse
Affiliation(s)
| | - Barbara Burton
- Ann & Robert H. Lurie Children's HospitalChicagoIllinoisUSA
| | - Gerard Berry
- Boston Children's HospitalBostonMassachusettsUSA
| | | | - John Phillips
- Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Kimberly Chapman
- Children's National Health SystemWashingtonDistrict of ColumbiaUSA
| | | | - Stephanie Grunewald
- Great Ormond Street Hospital and Institute of Child HealthNIHR Biomedical Research Center (BRC), UCLLondonUK
| | - Elaine Murphy
- National Hospital for Neurology and NeurosurgeryLondonUK
| | - Xiaoxiao Lu
- Ultragenyx Pharmaceutical Inc.NovatoCaliforniaUSA
| | | |
Collapse
|
20
|
Amaral AU, Wajner M. Recent Advances in the Pathophysiology of Fatty Acid Oxidation Defects: Secondary Alterations of Bioenergetics and Mitochondrial Calcium Homeostasis Caused by the Accumulating Fatty Acids. Front Genet 2020; 11:598976. [PMID: 33329744 PMCID: PMC7729159 DOI: 10.3389/fgene.2020.598976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Deficiencies of medium-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein, isolated long-chain 3-hydroxyacyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase activities are considered the most frequent fatty acid oxidation defects (FAOD). They are biochemically characterized by the accumulation of medium-chain, long-chain hydroxyl, and long-chain fatty acids and derivatives, respectively, in tissues and biological fluids of the affected patients. Clinical manifestations commonly include hypoglycemia, cardiomyopathy, and recurrent rhabdomyolysis. Although the pathogenesis of these diseases is still poorly understood, energy deprivation secondary to blockage of fatty acid degradation seems to play an important role. However, recent evidence indicates that the predominant fatty acids accumulating in these disorders disrupt mitochondrial functions and are involved in their pathophysiology, possibly explaining the lactic acidosis, mitochondrial morphological alterations, and altered mitochondrial biochemical parameters found in tissues and cultured fibroblasts from some affected patients and also in animal models of these diseases. In this review, we will update the present knowledge on disturbances of mitochondrial bioenergetics, calcium homeostasis, uncoupling of oxidative phosphorylation, and mitochondrial permeability transition induction provoked by the major fatty acids accumulating in prevalent FAOD. It is emphasized that further in vivo studies carried out in tissues from affected patients and from animal genetic models of these disorders are necessary to confirm the present evidence mostly achieved from in vitro experiments.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
21
|
Mütze U, Garbade SF, Gramer G, Lindner M, Freisinger P, Grünert SC, Hennermann J, Ensenauer R, Thimm E, Zirnbauer J, Leichsenring M, Gleich F, Hörster F, Grohmann-Held K, Boy N, Fang-Hoffmann J, Burgard P, Walter M, Hoffmann GF, Kölker S. Long-term Outcomes of Individuals With Metabolic Diseases Identified Through Newborn Screening. Pediatrics 2020; 146:peds.2020-0444. [PMID: 33051224 DOI: 10.1542/peds.2020-0444] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although extended newborn screening (NBS) programs have been introduced more than 20 years ago, their impact on the long-term clinical outcome of individuals with inherited metabolic diseases (IMDs) is still rarely investigated. METHODS We studied the clinical outcomes of individuals with IMDs identified by NBS between 1999 and 2016 in a prospective multicenter observational study. RESULTS In total, 306 screened individuals with IMDs (115 with phenylketonuria and 191 with other IMDs with a lifelong risk for metabolic decompensation) were followed for a median time of 6.2 years. Although the risk for metabolic decompensation was disease-specific and NBS could not prevent decompensations in every individual at risk (n = 49), the majority did not develop permanent disease-specific signs (75.9%), showed normal development (95.6%) and normal cognitive outcome (87.7%; mean IQ: 100.4), and mostly attended regular kindergarten (95.2%) and primary school (95.2%). This demonstrates that not only individuals with phenylketonuria, serving as a benchmark, but also those with lifelong risk for metabolic decompensation had a favorable long-term outcome. High NBS process quality is the prerequisite of this favorable outcome. This is supported by 28 individuals presenting with first symptoms at a median age of 3.5 days before NBS results were available, by the absence of neonatal decompensations after the report of NBS results, and by the challenge of keeping relevant process parameters at a constantly high level. CONCLUSIONS NBS for IMDs, although not completely preventing clinical presentations in all individuals, can be considered a highly successful program of secondary prevention.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany;
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Gwendolyn Gramer
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Lindner
- Division of Pediatric Neurology, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg Reutlingen, Reutlingen, Germany
| | - Sarah Catharina Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Julia Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Regina Ensenauer
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Child Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Judith Zirnbauer
- Department of Pediatric and Adolescent Medicine, Medical School, Ulm University, Ulm, Germany; and
| | - Michael Leichsenring
- Department of Pediatric and Adolescent Medicine, Medical School, Ulm University, Ulm, Germany; and
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Friederike Hörster
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Karina Grohmann-Held
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Center for Child and Adolescent Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Junmin Fang-Hoffmann
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Burgard
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Magdalena Walter
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Fraser H, Geppert J, Johnson R, Johnson S, Connock M, Clarke A, Taylor-Phillips S, Stinton C. Evaluation of earlier versus later dietary management in long-chain 3-hydroxyacyl-CoA dehydrogenase or mitochondrial trifunctional protein deficiency: a systematic review. Orphanet J Rare Dis 2019; 14:258. [PMID: 31730477 PMCID: PMC6858661 DOI: 10.1186/s13023-019-1226-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies are rare fatty acid β-oxidation disorders. Without dietary management the conditions are life-threatening. We conducted a systematic review to investigate whether pre-symptomatic dietary management following newborn screening provides better outcomes than treatment following symptomatic detection. Methods We searched Web of Science, Medline, Pre-Medline, Embase and the Cochrane Library up to 23rd April 2018. Two reviewers independently screened titles, abstracts and full texts for eligibility and quality appraised the studies. Data extraction was performed by one reviewer and checked by another. Results We included 13 articles out of 7483 unique records. The 13 articles reported on 11 patient groups, including 174 people with LCHAD deficiency, 18 people with MTP deficiency and 12 people with undifferentiated LCHAD/MTP deficiency. Study quality was moderate to weak in all studies. Included studies suggested fewer heart and liver problems in screen-detected patients, but inconsistent results for mortality. Follow up analyses compared long-term outcomes of (1) pre-symptomatically versus symptomatically treated patients, (2) screened versus unscreened patients, and (3) asymptomatic screen-detected, symptomatic screen-detected, and clinically diagnosed patients in each study. For follow up analyses 1 and 2, we found few statistically significant differences in the long-term outcomes. For follow up analysis 3 we found a significant difference for only one comparison, in the incidence of cardiomyopathy between the three groups. Conclusions There is some evidence that dietary management following screen-detection might be associated with a lower incidence of some LCHAD and MTP deficiency-related complications. However, the evidence base is limited by small study sizes, quality issues and risk of confounding. An internationally collaborative research effort is needed to fully examine the risks and the benefits to pre-emptive dietary management with particular attention paid to disease severity and treatment group.
Collapse
Affiliation(s)
- Hannah Fraser
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| | - Julia Geppert
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Rebecca Johnson
- Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5RW, UK
| | | | - Martin Connock
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Chris Stinton
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
23
|
Gillingham MB, Elizondo G, Behrend A, Matern D, Schoeller DA, Harding CO, Purnell JQ. Higher dietary protein intake preserves lean body mass, lowers liver lipid deposition, and maintains metabolic control in participants with long-chain fatty acid oxidation disorders. J Inherit Metab Dis 2019; 42:857-869. [PMID: 31295363 PMCID: PMC7452215 DOI: 10.1002/jimd.12155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
Medical nutrition therapy for long-chain fatty acid oxidation disorders (LC-FAODs) currently emphasizes fasting avoidance, restricted dietary long-chain fatty acid intake, supplementation with medium chain triglycerides, and increased carbohydrate intake. We hypothesize that increasing dietary protein intake relative to carbohydrate intake would preserve metabolic control yet induce physical benefits including reduced hepatic lipogenesis. Therefore, we compared two dietary approaches with similar fat intake but different carbohydrate to protein ratios in participants diagnosed with LC-FAODs. Thirteen participants were enrolled and randomized into either a high-protein (PRO) or a high-carbohydrate (CHO) diet for 4 months. Baseline and 4-month assessments included body composition, ectopic lipid deposition, and resting energy expenditure. End of study assessments also included total energy expenditure, metabolic responses to oral feedings, and whole-body fatty acid oxidation capacity. At the end of the dietary intervention, both groups had similar energy expenditure, fat and glucose oxidation rates, and glucolipid responses to mixed meal and oral glucose loads. Neither dietary group experienced worsening symptoms related to their LC-FAOD. Compared to the CHO group, the PRO group exhibited increased blood levels of short-chain acylcarnitines, reduced intrahepatic lipid content, and maintained lean body mass while the CHO group lost lean mass. In patients with LC-FAODs, increasing protein intake maintained metabolic control, reduced liver fat without risk of metabolic decompensation, and helped preserve lean body mass. We propose that a modest increase in dietary protein along with fasting avoidance and fat restriction may improve body composition and energy expenditure in patients with LC-FAODs.
Collapse
Affiliation(s)
- Melanie B. Gillingham
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
- Graduate Programs in Human Nutrition, Oregon Health and Science University, Portland, Oregon
| | - Gabriela Elizondo
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Annie Behrend
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
- Graduate Programs in Human Nutrition, Oregon Health and Science University, Portland, Oregon
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Dale A. Schoeller
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Jonathan Q. Purnell
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
24
|
Suganuma H, McPhee AJ, Bratkovic D, Gibson RA, Andersen CC. Serial fatty acid profiles in a preterm infant with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Int 2019; 61:415-416. [PMID: 31025818 DOI: 10.1111/ped.13802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroki Suganuma
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrew J McPhee
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Neonatal Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Drago Bratkovic
- Metabolic Unit, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Robert A Gibson
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Chad C Andersen
- Neonatal Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
Diebold I, Schön U, Horvath R, Schwartz O, Holinski-Feder E, Kölbel H, Abicht A. HADHA and HADHB gene associated phenotypes - Identification of rare variants in a patient cohort by Next Generation Sequencing. Mol Cell Probes 2019; 44:14-20. [PMID: 30682426 DOI: 10.1016/j.mcp.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 12/31/2022]
Abstract
The heterooctameric mitochondrial trifunctional protein (MTP), composed of four α- and β-subunits harbours three enzymes that each perform a different function in mitochondrial fatty acid β-oxidation. Pathogenic variants in the MTP genes (HADHA and HADHB) cause MTP deficiency, a rare autosomal recessive metabolic disorder characterized by phenotypic heterogeneity ranging from severe, early-onset, cardiac disease to milder, later-onset, myopathy and neuropathy. Since metabolic myopathies and neuropathies are a group of rare genetic disorders and their associated muscle symptoms may be subtle, the diagnosis is often delayed. Here we evaluated data of 161 patients with myopathy and 242 patients with neuropathy via next generation sequencing (NGS) and report the diagnostic yield in three patients of this cohort by the detection of disease-causing variants in the HADHA or HADHB gene. The mitigated phenotypes of this treatable disease were missed by the newborn screening, highlighting the importance of phenotype-based NGS analysis in patients with rare and clinically very variable disorders such as MTP deficiency.
Collapse
Affiliation(s)
| | | | - Rita Horvath
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Oliver Schwartz
- Department of Neuropediatrics, University Children's Hospital Muenster, Muenster, Germany
| | | | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| | - Angela Abicht
- Medical Genetics Center, Munich, Germany; Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
26
|
David J, Chrastina P, Vinohradska H, Al Taji E, Holubova A, Hlidkova E, Kozich V, Votava F. Neonatal screening in the Czech Republic: increased prevalence of selected diseases in low birthweight neonates. Eur J Pediatr 2018; 177:1697-1704. [PMID: 30136145 DOI: 10.1007/s00431-018-3230-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Neonates with low birthweight (LBW) represent a vulnerable population. This retrospective study analyzed the birth frequency of diseases detected by neonatal screening (NBS) in normal and LBW neonates in the Czech Republic. Between years 2002 and 2016, the number of screened disorders in the Czech Republic gradually increased from two to 13. Prevalence of screened diseases was calculated for cohorts ranging from 777,100 to 1,277,283 neonates stratified by birthweight. Odds ratio of the association of LBW with each disease was calculated and statistical significance was evaluated using the chi-square test or Fisher's exact test, as appropriate. Three diseases were associated with higher risk of prevalence in LBW neonates, namely congenital hypothyroidism (OR 2.50, CI 1.92; 3.25), cystic fibrosis (OR 2.44, CI 1.51; 3.94), and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) (OR 7.74, CI 2.18; 27.42).Conclusion: Although the underlying mechanisms are not well understood, results can be hypothesized that LBW (respectively prematurity) may lead to the secondary and often transitory hypothyroidism while cystic fibrosis and LCHADD may manifest already prenatally and result into preterm birth and LBW. What is Known: • The percentage of low birthweight (LBW) neonates in the Czech Republic has been increasing. • Previously published studies reported positive association between LBW and congenital hypothyroidism and cystic fibrosis. What is New: • The association between LCHADD and LBW has not yet been described. • LBW can be the first manifestation of cystic fibrosis and LCHADD.
Collapse
Affiliation(s)
- Jan David
- Department of Children and Adolescents, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Srobarova 1150/50, 100 34, Prague 10, Czech Republic.
| | - Petr Chrastina
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, Prague, Czech Republic
| | - Hana Vinohradska
- Department of Clinical Biochemistry, Faculty of Medicine, Masaryk University and University Hospital Brno, Jihlavska 20, Brno, Czech Republic
| | - Eva Al Taji
- Department of Children and Adolescents, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Srobarova 1150/50, 100 34, Prague 10, Czech Republic
| | - Andrea Holubova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague, Czech Republic
| | - Eva Hlidkova
- Department of Clinical Biochemistry, Faculty of Medicine, Palacky University and University Hospital Olomouc, I. P. Pavlova 185/6, Olomouc, Czech Republic
| | - Viktor Kozich
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 455/2, Prague, Czech Republic
| | - Felix Votava
- Department of Children and Adolescents, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Srobarova 1150/50, 100 34, Prague 10, Czech Republic
| |
Collapse
|
27
|
Lotz-Havla AS, Röschinger W, Schiergens K, Singer K, Karall D, Konstantopoulou V, Wortmann SB, Maier EM. Fatal pitfalls in newborn screening for mitochondrial trifunctional protein (MTP)/long-chain 3-Hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. Orphanet J Rare Dis 2018; 13:122. [PMID: 30029694 PMCID: PMC6053800 DOI: 10.1186/s13023-018-0875-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency are long-chain fatty acid oxidation disorders with particularly high morbidity and mortality. Outcome can be favorable if diagnosed in time, prompting the implementation in newborn screening programs. Sporadic cases missed by the initial screening sample have been reported. However, little is known on pitfalls during confirmatory testing resulting in fatal misconception of the diagnosis. Results We report a series of three patients with MTP and LCHAD deficiency, in whom diagnosis was missed by newborn screening, resulting in life-threatening metabolic decompensations within the first half year of life. Two of the patients showed elevated concentrations of primary markers C16-OH and C18:1-OH but were missed by confirmatory testing performed by the maternity clinic. A metabolic center was not consulted. Confirmatory testing consisted of analyses of acylcarnitines in blood and organic acids in urine, the finding of normal excretion of organic acids led to rejection and underestimation of the diagnosis, respectively. The third patient, a preterm infant, was not identified in the initial screening sample due to only moderate elevations of C16-OH and C18:1-OH and normal secondary markers and analyte ratios. Conclusion Our observations highlight limitations of newborn screening for MTP/LCHAD deficiency. They confirm that analyses of acylcarnitines in blood and organic acids in urine alone are not suitable for confirmatory testing and molecular or functional analysis is crucial in diagnosing MTP/LCHAD deficiency. Mild elevations of primary biomarkers in premature infants need to trigger confirmatory testing. Our report underscores the essential role of specialized centers in confirming or ruling out diagnoses in suspicious screening results.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Wulf Röschinger
- Becker and colleagues laboratory, Fuehrichstr. 70, 81671, Munich, Germany
| | - Katharina Schiergens
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina Singer
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Daniela Karall
- Clinic for Pediatrics, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Saskia B Wortmann
- Department of Pediatrics, Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
28
|
Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion 2018; 46:73-90. [PMID: 29551309 DOI: 10.1016/j.mito.2018.02.009] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/04/2017] [Accepted: 02/27/2018] [Indexed: 12/30/2022]
Abstract
Mitochondrial β-oxidation of fatty acids generates acetyl-coA, NADH and FADH2. Acyl-coA synthetases catalyze the binding of fatty acids to coenzyme A to form fatty acyl-coA thioesters, the first step in the intracellular metabolism of fatty acids. l-carnitine system facilitates the transport of fatty acyl-coA esters across the mitochondrial membrane. Carnitine palmitoyltransferase-1 transfers acyl groups from coenzyme A to l-carnitine, forming acyl-carnitine esters at the outer mitochondrial membrane. Carnitine acyl-carnitine translocase exchanges acyl-carnitine esters that enter the mitochondria, by free l-carnitine. Carnitine palmitoyltransferase-2 converts acyl-carnitine esters back to acyl-coA esters at the inner mitochondrial membrane. The β-oxidation pathway of fatty acyl-coA esters includes four reactions. Fatty acyl-coA dehydrogenases catalyze the introduction of a double bond at the C2 position, producing 2-enoyl-coA esters and reducing equivalents that are transferred to the respiratory chain via electron transferring flavoprotein. Enoyl-coA hydratase catalyzes the hydration of the double bond to generate a 3-l-hydroxyacyl-coA derivative. 3-l-hydroxyacyl-coA dehydrogenase catalyzes the formation of a 3-ketoacyl-coA intermediate. Finally, 3-ketoacyl-coA thiolase catalyzes the cleavage of the chain, generating acetyl-coA and a fatty acyl-coA ester two carbons shorter. Mitochondrial trifunctional protein catalyzes the three last steps in the β-oxidation of long-chain and medium-chain fatty acyl-coA esters while individual enzymes catalyze the β-oxidation of short-chain fatty acyl-coA esters. Clinical phenotype of fatty acid oxidation disorders usually includes hypoketotic hypoglycemia triggered by fasting or infections, skeletal muscle weakness, cardiomyopathy, hepatopathy, and neurological manifestations. Accumulation of non-oxidized fatty acids promotes their conjugation with glycine and l-carnitine and alternate ways of oxidation, such as ω-oxidation.
Collapse
|
29
|
Kang E, Kim YM, Kang M, Heo SH, Kim GH, Choi IH, Choi JH, Yoo HW, Lee BH. Clinical and genetic characteristics of patients with fatty acid oxidation disorders identified by newborn screening. BMC Pediatr 2018. [PMID: 29519241 PMCID: PMC5842515 DOI: 10.1186/s12887-018-1069-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fatty acid oxidation disorders (FAODs) include more than 15 distinct disorders with variable clinical manifestations. After the introduction of newborn screening using tandem mass spectrometry, early identification of FAODs became feasible. This study describes the clinical, biochemical and molecular characteristics of FAODs patients detected by newborn screening (NBS) compared with those of 9 patients with symptomatic presentations. METHODS Clinical and genetic features of FAODs patients diagnosed by NBS and by symptomatic presentations were reviewed. RESULTS Fourteen patients were diagnosed with FAODs by NBS at the age of 54.8 ± 4.8 days: 5 with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency, 5 with medium chain acyl-CoA dehydrogenase (MCAD) deficiency, 1 with primary carnitine deficiency, 1 with carnitine palmitoyltransferase 1A (CPT1A) deficiency, 1 with long-chain 3-hydroxyacyl-CoA dehydrogenase or mitochondrial trifunctional protein (LCAHD/MTP) deficiency, and 1 with short chain acyl-CoA dehydrogenase (SCAD) deficiency. Three patients with VLCAD or LCHAD/MTP deficiency developed recurrent rhabdomyolysis or cardiomyopathy, and one patient died of cardiomyopathy. The other 10 patients remained neurodevelopmentally normal and asymptomatic during the follow-up. In 8 patients with symptomatic presentation, FAODs manifested as LCHAD/MTP deficiencies by recurrent rhabdomyolysis or cadiomyopathy (6 patients), and VLCAD deficiency by cardiomyopathy (1 patient), and CPT1A deficiency by hepatic failure (1 patient). Two patients with LCHAD/MTP deficiencies died due to severe cardiomyopathy in the neonatal period, and developmental disability was noted in CPT1A deficiency (1 patient). CONCLUSIONS NBS helped to identify the broad spectrum of FAODs and introduce early intervention to improve the clinical outcome of each patient. However, severe clinical manifestations developed in some patients, indicating that careful, life-long observation is warranted in all FAODs patients.
Collapse
Affiliation(s)
- Eungu Kang
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Yoon-Myung Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Minji Kang
- Asan Insitute for Life Sciences, Asan Medical Center Children's Hospital, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Sun-Hee Heo
- Asan Insitute for Life Sciences, Asan Medical Center Children's Hospital, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - In-Hee Choi
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.,Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea. .,Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
| |
Collapse
|
30
|
Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018; 19:93-106. [PMID: 29926323 PMCID: PMC6208583 DOI: 10.1007/s11154-018-9448-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial fatty acid oxidation is an essential pathway for energy production, especially during prolonged fasting and sub-maximal exercise. Long-chain fatty acids are the most abundant fatty acids in the human diet and in body stores, and more than 15 enzymes are involved in long-chain fatty acid oxidation. Pathogenic mutations in genes encoding these enzymes result in a long-chain fatty acid oxidation disorder in which the energy homeostasis is compromised and long-chain acylcarnitines accumulate. Symptoms arise or exacerbate during catabolic situations, such as fasting, illness and (endurance) exercise. The clinical spectrum is very heterogeneous, ranging from hypoketotic hypoglycemia, liver dysfunction, rhabdomyolysis, cardiomyopathy and early demise. With the introduction of several of the long-chain fatty acid oxidation disorders (lcFAOD) in newborn screening panels, also asymptomatic individuals with a lcFAOD are identified. However, despite early diagnosis and dietary therapy, a significant number of patients still develop symptoms emphasizing the need for individualized treatment strategies. This review aims to function as a comprehensive reference for clinical and laboratory findings for clinicians who are confronted with pediatric and adult patients with a possible diagnosis of a lcFAOD.
Collapse
Affiliation(s)
- Suzan J G Knottnerus
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Jeannette C Bleeker
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Lodewijk IJlst
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Frits A Wijburg
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Gepke Visser
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands.
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Riekelt H Houtkooper
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Hagenbuchner J, Scholl-Buergi S, Karall D, Ausserlechner MJ. Very long-/ and long Chain-3-Hydroxy Acyl CoA Dehydrogenase Deficiency correlates with deregulation of the mitochondrial fusion/fission machinery. Sci Rep 2018; 8:3254. [PMID: 29459657 PMCID: PMC5818531 DOI: 10.1038/s41598-018-21519-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Children diagnosed with Long-Chain-3-Hydroxy-Acyl-CoA-Dehydrogenase-Deficiency (LCHADD) or Very-Long-Chain-3-Hydroxy-Acyl-CoA-Dehydrogenase-Deficiency (VLCADD) frequently present with hypertrophic cardiomyopathy or muscle weakness which is caused by the accumulation of fatty acid metabolites due to inactivating mutations in the mitochondrial trifunctional protein. By analyzing mitochondrial morphology we uncovered that mutations within the HADHA or the ACADVL gene not only affect fatty acid oxidation, but also cause significant changes in the DNM1L/MFN2 ratio leading to the significant accumulation of truncated and punctate mitochondria in contrast to network-like mitochondrial morphology in controls. These striking morphological abnormalities correlate with changes in OXPHOS, an imbalance in ROS levels, reduced mitochondrial respiration, reduced growth rates and significantly increased glucose uptake per cell, suggesting that HADHA and ACADVL mutations shift cellular energy household into glycolysis. Experiments using the NOX2-specific inhibitor Phox-I2 suggest that NOX2 is activated by accumulating long-chain fatty acids and generates ROS, which in turn changes mitochondrial morphology and activity. We thereby provide novel insights into the cellular energy household of cells from LCHADD/VLCADD patients and demonstrate for the first time a connection between fatty acid metabolism, mitochondrial morphology and ROS in patients with these rare genetic disorders.
Collapse
Affiliation(s)
- Judith Hagenbuchner
- Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
| | | | - Daniela Karall
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
32
|
Bursle C, Weintraub R, Ward C, Justo R, Cardinal J, Coman D. Mitochondrial Trifunctional Protein Deficiency: Severe Cardiomyopathy and Cardiac Transplantation. JIMD Rep 2017; 40:91-95. [PMID: 29124685 PMCID: PMC6122028 DOI: 10.1007/8904_2017_68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022] Open
Abstract
We describe mitochondrial trifunctional protein deficiency (MTPD) in two male siblings who presented with severe cardiomyopathy in infancy. The first sibling presented in severe cardiac failure at 6 months of age and succumbed soon after. The second sibling came to attention after newborn screening identified a possible fatty acid oxidation defect. Dietary therapy and carnitine supplementation commenced in the neonatal period. Despite this the second child required cardiac transplantation at 3 years of age after a sudden and rapid decline in cardiac function. The outcome has been excellent, with no apparent extra-cardiac manifestations of a fatty acid oxidation disorder at the age of 7. Pathogenic HADHA mutations were subsequently identified via genome wide exome sequencing. This is the first reported case of MTPD to undergo cardiac transplantation. We suggest that cardiac transplantation could be considered in the treatment of cardiomyopathy in MTPD.
Collapse
Affiliation(s)
- C Bursle
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - R Weintraub
- Department of Cardiology, The Royal Children's Hospital, Melbourne, VIC, Australia
- School of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - C Ward
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Cardiology, The Lady Cilento Children's Hospital, Brisbane, QLD, Australia
| | - R Justo
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
- Department of Cardiology, The Lady Cilento Children's Hospital, Brisbane, QLD, Australia
| | - J Cardinal
- Cardinal Bioresearch, Brisbane, QLD, Australia
| | - D Coman
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, QLD, Australia.
- School of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Department of Paediatrics, The Wesley Hospital, Brisbane, QLD, Australia.
- School of Medicine, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
33
|
Pichler K, Michel M, Zlamy M, Scholl-Buergi S, Ralser E, Jörg-Streller M, Karall D. Breast milk feeding in infants with inherited metabolic disorders other than phenylketonuria - a 10-year single-center experience. J Perinat Med 2017; 45:375-382. [PMID: 27564695 DOI: 10.1515/jpm-2016-0205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/21/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Published data on breast milk feeding in infants suffering from inherited metabolic disorders (IMDs) other than phenylketonuria (PKU) are limited and described outcome is variable. OBJECTIVE We aimed to evaluate retrospectively whether breastfeeding and/or breast milk feeding are feasible in infants with IMDs including organic acidemias, fatty acid oxidation disorders, urea cycle disorders, aminoacidopathies or disorders of galactose metabolism. METHODS Data on breastfeeding and breast milk feeding as well as monitoring and neurological outcome were collected retrospectively from our database of patients with the mentioned IMD, who were followed in our metabolic center within the last 10 years. RESULTS Twenty patients were included in the study, who were either breast fed on demand or received expressed breast milk. All the infants were evaluated clinically and biochemically at 2-4-week intervals, with weight gain as the leading parameter to determine metabolic control. Good metabolic control and adequate neurological development were achieved in all patients but one, who experienced the only metabolic crisis observed within the study period. CONCLUSION Breast milk feeding with close clinical and biochemical monitoring is feasible in most IMD and should be considered as it offers nutritional and immunological benefits.
Collapse
Affiliation(s)
- Karin Pichler
- Department of Pediatrics, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna
| | - Miriam Michel
- University Hospital Innsbruck, Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstrasse. 35, A-6020 Innsbruck
| | - Manuela Zlamy
- University Hospital Innsbruck, Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstrasse. 35, A-6020 Innsbruck
| | - Sabine Scholl-Buergi
- University Hospital Innsbruck, Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstrasse. 35, A-6020 Innsbruck
| | - Elisabeth Ralser
- University Hospital Innsbruck, Department of Pediatrics II, Neonatology, Medical University of Innsbruck, Anichstrasse. 35, A-6020 Innsbruck
| | - Monika Jörg-Streller
- University Hospital Innsbruck, Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstrasse. 35, A-6020 Innsbruck
| | - Daniela Karall
- University Hospital Innsbruck, Department of Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Anichstrasse. 35, A-6020 Innsbruck
| |
Collapse
|
34
|
Alam S, Sood V. Metabolic Liver Disease: When to Suspect and How to Diagnose? Indian J Pediatr 2016; 83:1321-1333. [PMID: 27130505 DOI: 10.1007/s12098-016-2097-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/17/2016] [Indexed: 02/07/2023]
Abstract
Metabolic liver diseases are still considered by many as a 'rare' diagnosis, though scenario has definitely changed in recent times. With recent advances and wider availablility of newer techniques, many of these are now amenable to diagnosis and optimum management. Though the logistics involved are still out of reach of a significant proportion of our population, a stepwise and methodological approach with simple diagnostic tests can help point towards a probable diagnosis (with resultant directed investigations), helping to avoid unnecessary and costly workup. This review focuses on diagnostic protocol-based approach to common metabolic liver diseases encountered frequently in pediatric hepatology.
Collapse
Affiliation(s)
- Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India.
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| |
Collapse
|
35
|
De Biase I, Viau KS, Liu A, Yuzyuk T, Botto LD, Pasquali M, Longo N. Diagnosis, Treatment, and Clinical Outcome of Patients with Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxy Acyl-CoA Dehydrogenase Deficiency. JIMD Rep 2016; 31:63-71. [PMID: 27117294 DOI: 10.1007/8904_2016_558] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/02/2022] Open
Abstract
Deficiency of the mitochondrial trifunctional protein (TFP) and long-chain 3-Hydroxy Acyl-CoA dehydrogenase (LCHAD) impairs long-chain fatty acid oxidation and presents with hypoglycemia, cardiac, liver, eye, and muscle involvement. Without treatment, both conditions can be life-threatening. These diseases are identified by newborn screening (NBS), but the impact of early treatment on long-term clinical outcome is unknown. Moreover, there is lack of consensus on treatment, particularly on the use of carnitine supplementation. Here, we report clinical and biochemical data in five patients with TFP/LCHAD deficiency, three of whom were diagnosed by newborn screening. All patients had signs and symptoms related to their metabolic disorder, including hypoglycemia, elevated creatine kinase (CK), and rhabdomyolysis, and experienced episodes of metabolic decompensation triggered by illness. Treatment was started shortly after diagnosis in all patients and consisted of a diet low in long-chain fats supplemented with medium chain triglycerides (MCT), essential fatty acids, and low-dose carnitine (25 mg/kg/day). Patients had growth restriction early in life that resolved after 2 years of age. All patients but the youngest (2 years old) developed pigmentary retinopathy. Long-chain hydroxylated acylcarnitines did not change significantly with age, but increased during acute illnesses. Free carnitine levels were maintained within the normal range and did not correlate with long-chain hydroxylated acylcarnitines. These results show that patients with LCHAD deficiency can have normal growth and development with appropriate treatment. Low-dose carnitine supplements prevented carnitine deficiency and did not result in increased long-chain hydroxylated acylcarnitines or any specific toxicity.
Collapse
Affiliation(s)
- Irene De Biase
- Department of Pathology, University of Utah, Salt Lake City, UT, 84108, USA. .,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT, 84108, USA. .,ARUP Institute of Clinical and Experimental Pathology, Salt Lake City, UT, USA.
| | - Krista S Viau
- Department of Pediatrics, University of Utah, Salt Lake City, UT, 84108, USA
| | - Aiping Liu
- ARUP Institute of Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT, 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT, 84108, USA.,ARUP Institute of Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Lorenzo D Botto
- Department of Pediatrics, University of Utah, Salt Lake City, UT, 84108, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT, 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT, 84108, USA.,ARUP Institute of Clinical and Experimental Pathology, Salt Lake City, UT, USA.,Department of Pediatrics, University of Utah, Salt Lake City, UT, 84108, USA
| | - Nicola Longo
- Department of Pathology, University of Utah, Salt Lake City, UT, 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT, 84108, USA.,ARUP Institute of Clinical and Experimental Pathology, Salt Lake City, UT, USA.,Department of Pediatrics, University of Utah, Salt Lake City, UT, 84108, USA
| |
Collapse
|
36
|
Immonen T, Ahola E, Toppila J, Lapatto R, Tyni T, Lauronen L. Peripheral neuropathy in patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency - A follow-up EMG study of 12 patients. Eur J Paediatr Neurol 2016; 20:38-44. [PMID: 26653362 DOI: 10.1016/j.ejpn.2015.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/14/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND The neonatal screening and early start of the dietary therapy have improved the outcome of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). The acute symptoms of LCHADD are hypoketotic hypoglycemia, failure to thrive, hepatopathy and rhabdomyolysis. Long term complications are retinopathy and neuropathy. Speculated etiology of these long term complications are the accumulation and toxicity of hydroxylacylcarnitines and long-chain fatty acid metabolites or deficiency of essential fatty acids. AIMS To study the possible development of polyneuropathy in LCHADD patients with current dietary regimen. METHODS Development of polyneuropathy in 12 LCHADD patients with the homozygous common mutation c.G1528C was evaluated with electroneurography (ENG) studies. The ENG was done 1-12 times to each patient, between the ages of 3 and 40 years. Clinical data of the patients were collected from the patient records. RESULTS The first sign of polyneuropathy was detected between the ages of 6-12 years, the first abnormality being reduction of the sensory amplitudes of the sural nerves. With time, progression was detected by abnormalities in sensory responses extending to upper limbs, as well as abnormalities in motor responses in lower limbs. Altogether, eight of the patients had polyneuropathy, despite good compliancy of the diet. CONCLUSIONS This study is the first to report the evolution of polyneuropathy with clinical neurophysiological methods in a relative large LCHADD patient group. Despite early start, and good compliance of the therapy, 6/10 of the younger patients developed neuropathy. However, in most patients the polyneuropathy was less severe than previously described.
Collapse
Affiliation(s)
- Tuuli Immonen
- Children's Hospital, University of Helsinki, Helsinki University Hospital, Finland.
| | - Emilia Ahola
- Children's Hospital, University of Helsinki, Helsinki University Hospital, Finland
| | - Jussi Toppila
- Department of Clinical Neurophysiology, Children's Hospital, University of Helsinki, HUS Medical Imaging Center, Finland
| | - Risto Lapatto
- Children's Hospital, University of Helsinki, Helsinki University Hospital, Finland
| | - Tiina Tyni
- Children's Hospital, University of Helsinki, Helsinki University Hospital, Finland
| | - Leena Lauronen
- Department of Clinical Neurophysiology, Children's Hospital, University of Helsinki, HUS Medical Imaging Center, Finland
| |
Collapse
|
37
|
Lund M, Olsen RKJ, Gregersen N. A short introduction to acyl-CoA dehydrogenases; deficiencies and novel treatment strategies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1092869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|