1
|
Fatica T, Naas T, Liwak U, Slaa H, Souaid M, Frangione B, Kattini R, Gaudreau-Lapierre A, Trinkle-Mulcahy L, Chakraborty P, Holcik M. TRNT-1 Deficiency Is Associated with Loss of tRNA Integrity and Imbalance of Distinct Proteins. Genes (Basel) 2023; 14:genes14051043. [PMID: 37239403 DOI: 10.3390/genes14051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial diseases are a group of heterogeneous disorders caused by dysfunctional mitochondria. Interestingly, a large proportion of mitochondrial diseases are caused by defects in genes associated with tRNA metabolism. We recently discovered that partial loss-of-function mutations in tRNA Nucleotidyl Transferase 1 (TRNT1), the nuclear gene encoding the CCA-adding enzyme essential for modifying both nuclear and mitochondrial tRNAs, causes a multisystemic and clinically heterogenous disease termed SIFD (sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay; SIFD). However, it is not clear how mutations in a general and essential protein like TRNT1 cause disease with such clinically broad but unique symptomatology and tissue involvement. Using biochemical, cell, and mass spectrometry approaches, we demonstrate that TRNT1 deficiency is associated with sensitivity to oxidative stress, which is due to exacerbated, angiogenin-dependent cleavage of tRNAs. Furthermore, reduced levels of TRNT1 lead to phosphorylation of Eukaryotic Translation Initiation Factor 2 Subunit Alpha (eIF2α), increased reactive oxygen species (ROS) production, and changes in the abundance of distinct proteins. Our data suggest that the observed variable SIFD phenotypes are likely due to dysregulation of tRNA maturation and abundance, which in turn negatively affects the translation of distinct proteins.
Collapse
Affiliation(s)
- Thet Fatica
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Turaya Naas
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Urszula Liwak
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Hannah Slaa
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Maryam Souaid
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Brianna Frangione
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Ribal Kattini
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Cai G, Jayaraman D. Spontaneous, simultaneous bilateral osteonecrosis of the femoral heads in a patient with sideroblastic anaemia with B-cell immunodeficiency, periodic fever and developmental delay syndrome. BMJ Case Rep 2023; 16:e254175. [PMID: 37130647 PMCID: PMC10163426 DOI: 10.1136/bcr-2022-254175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Sideroblastic anaemia with B-cell immunodeficiency, periodic fever and developmental delay is a recently described, rare syndrome characterised by numerous manifestations underpinned by mutations in transfer RNA nucleotidyltransferase. The pathogenesis arises from mitochondrial dysfunction, with impaired intracellular stress response, deficient metabolism and cellular and systemic inflammation. This yields multiorgan dysfunction and early death in many patients with survivors suffering significant disability and morbidity. New cases, often youths, are still being described, expanding the horizon of recognisable phenotypes. We present a mature patient with spontaneous bilateral hip osteonecrosis that likely arises from the impaired RNA quality control and inflammation caused by this syndrome.
Collapse
|
3
|
Li Y, Deng M, Han T, Mo W, Mao H. Thalidomide as an Effective Treatment in Sideroblastic Anemia, Immunodeficiency, Periodic Fevers, and Developmental Delay (SIFD). J Clin Immunol 2023; 43:780-793. [PMID: 36729249 PMCID: PMC9893968 DOI: 10.1007/s10875-023-01441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
PURPOSE Sideroblastic anemia, immunodeficiency, periodic fevers, and developmental delay (SIFD) is an autosomal recessive syndrome caused by biallelic loss-of-function variant of tRNA nucleotidyl transferase 1 (TRNT1). Efficacious methods to treat SIFD are lacking. We identified two novel mutations in TRNT1 and an efficacious and novel therapy for SIFD. METHODS We retrospectively summarized the clinical records of two patients with SIFD from different families and reviewed all published cases of SIFD. RESULTS Both patients had periodic fever, developmental delay, rash, microcytic anemia, and B cell lymphopenia with infections. Whole-exome sequencing of patient 1 identified a previously unreported homozygous mutation of TRNT1 (c.706G > A/p.Glu236Lys). He received intravenous immunoglobulin (IVIG) replacement and antibiotics, but died at 1 year of age. Gene testing in patient 2 revealed compound heterozygous mutations (c.907C > G/p.Gln303Glu and c.88A > G/p.Met30Val) in TRNT1, the former of which is a novel mutation. Periodic fever was controlled in the first month after adalimumab therapy and IVIG replacement, but recurred in the second month. Adalimumab was discontinued and replaced with thalidomide, which controlled the periodic fever and normalized inflammatory markers effectively. A retrospective analysis of reported cases revealed 69 patients with SIFD carrying 46 mutations. The male: female ratio was 1: 1, and the mean age of onset was 3.0 months. The most common clinical manifestations in patients with SIFD were microcytic anemia (82.6%), hypogammaglobulinemia/B cell lymphopenia (75.4%), periodic fever (66.7%), and developmental delay (60.0%). In addition to the typical tetralogy, SIFD features several heterogeneous symptoms involving multiple systems. Corticosteroids, immunosuppressants, and anakinra have low efficacy, whereas etanercept suppressed fever and improved anemia in reports. Bone-marrow transplantation can be used to treat severe SIFD, but carries a high risk. In total, 28.2% (20/71) of reported patients died, mainly because of multi-organ failure. Biallelic mutations located in exon1-intron5 lead to more severe phenotypes and higher mortality. Furthermore, 15.5% (11/71) patients survived to adulthood. The symptoms could be resolved spontaneously in five patients. CONCLUSIONS Thalidomide can control the inflammation of SIFD and represents a new treatment for SIFD.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Mengyue Deng
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Tongxin Han
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Wenxiu Mo
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Beijing, 100045, China
| | - Huawei Mao
- Department of Immunology, Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Beijing, 100045, China.
| |
Collapse
|
4
|
Odom J, Amin H, Gijavanekar C, Elsea SH, Kralik S, Chinen J, Lin Y, Yates AMM, Mizerik E, Potocki L, Scaglia F. A phenotypic expansion of TRNT1 associated sideroblastic anemia with immunodeficiency, fevers, and developmental delay. Am J Med Genet A 2021; 188:259-268. [PMID: 34510712 DOI: 10.1002/ajmg.a.62482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD; MIM #616084) is an autosomal recessive disorder of mitochondrial and cytosolic tRNA processing caused by pathogenic, biallelic variants in TRNT1. Other features of this disorder include central nervous system, renal, cardiac, ophthalmological features, and sensorineural hearing impairment. SIFD was first described in 2013 and to date, it has been reported in 46 patients. Herein, we review the literature and describe two siblings with SIFD and note the novel phenotype of hypoglycemia in the context of growth hormone (GH) deficiency. GH deficiency without hypoglycemia has previously been reported in three patients with SIFD, but GH deficiency had not been firmly ascribed to SIFD. We propose to expand the phenotype to include GH deficiency, hypoglycemia, and previously unreported dysmorphic features. Furthermore, we highlight the intrafamilial variability of the disease by the discordance of our patients' clinical phenotypes and biochemical profiles measured by untargeted metabolomics analysis. Several metabolomic abnormalities were observed in both patients, and these may represent a potential biochemical signature for SIFD.
Collapse
Affiliation(s)
- John Odom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Hitha Amin
- Texas Children's Hospital, Houston, Texas, USA.,Cortica Care, Irvine, California, USA.,Section of Child Neurology and Neurodevelopmental Disabilities, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Charul Gijavanekar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen Kralik
- Texas Children's Hospital, Houston, Texas, USA.,Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - Javier Chinen
- Division of Allergy and Immunology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuezhen Lin
- Division of Endocrinology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Amber Meshell Mayfield Yates
- Texas Children's Hospital, Houston, Texas, USA.,Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| |
Collapse
|
5
|
Bardou MLD, Rivitti-Machado MC, Michalany NS, de Jesus AA, Goldbach-Mansky R, Barros JCR, Terreri MTDSELRA, Grumach AS. Neutrophilic dermatosis: a new skin manifestation and novel pathogenic variant in a rare autoinflammatory disease. Australas J Dermatol 2020; 62:e276-e279. [PMID: 33332575 DOI: 10.1111/ajd.13527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Sideroblastic anaemia, B-cell immunodeficiency, periodic fever and developmental delay (SIFD) is caused by mutations of TRNT1, an enzyme essential for mitochondrial protein synthesis, and has been reported in 23 cases. A 6-month-old girl was evaluated with recurrent fever, failure to thrive, skin lesions and anaemia. She received blood transfusions and empirical antibiotics. Skin lesions, previously interpreted as insect bites, consisted of numerous firm asymptomatic erythematous papules and nodules, distributed over trunk and limbs. Skin histopathology revealed an intense dermal neutrophilic infiltrate extending to the subcutaneous, with numerous atypical myeloid cells, requiring the diagnosis of leukaemia cutis, to be ruled out. Over the follow-up, she developed herpetic stomatitis, tonsillitis, lobar pneumonia and Metapneumovirus tracheitis, and also deeper skin lesions, resembling panniculitis. Hypogammaglobulinaemia was diagnosed. An autoinflammatory disease was confirmed by whole exome sequencing: heterozygous mutations for TRNT1 NM_182916 c.495_498del, p.F167Tfs * 9 and TRNT1 NM_182916 c.1246A>G, p.K416E. The patient has been treated with subcutaneous immunoglobulin and etanercept. She presented with developmental delay and short stature for age. The fever, anaemia, skin neutrophilic infiltration and the inflammatory parameters improved. We describe a novel mutation in SIFD and the first to present skin manifestations, namely neutrophilic dermal and hypodermal infiltration.
Collapse
Affiliation(s)
| | | | - Nilceo Schwery Michalany
- Collaborating Professor of Pathology Department, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Disease Studies Unit, National Institute of Health, Bethesda, MD, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Disease Studies Unit, National Institute of Health, Bethesda, MD, USA
| | | | | | - Anete Sevciovic Grumach
- Clinical Immunology, Faculdade de Medicina, Centro Universitario Saude ABC, Sao Paulo, Brazil
| |
Collapse
|
6
|
Beiersdorf J, Hevesi Z, Calvigioni D, Pyszkowski J, Romanov R, Szodorai E, Lubec G, Shirran S, Botting CH, Kasper S, Guy GW, Gray R, Di Marzo V, Harkany T, Keimpema E. Adverse effects of Δ9-tetrahydrocannabinol on neuronal bioenergetics during postnatal development. JCI Insight 2020; 5:135418. [PMID: 33141759 PMCID: PMC7714410 DOI: 10.1172/jci.insight.135418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Ongoing societal changes in views on the medical and recreational roles of cannabis increased the use of concentrated plant extracts with a Δ9-tetrahydrocannabinol (THC) content of more than 90%. Even though prenatal THC exposure is widely considered adverse for neuronal development, equivalent experimental data for young age cohorts are largely lacking. Here, we administered plant-derived THC (1 or 5 mg/kg) to mice daily during P5–P16 and P5–P35 and monitored its effects on hippocampal neuronal survival and specification by high-resolution imaging and iTRAQ proteomics, respectively. We found that THC indiscriminately affects pyramidal cells and both cannabinoid receptor 1+ (CB1R)+ and CB1R– interneurons by P16. THC particularly disrupted the expression of mitochondrial proteins (complexes I–IV), a change that had persisted even 4 months after the end of drug exposure. This was reflected by a THC-induced loss of membrane integrity occluding mitochondrial respiration and could be partially or completely rescued by pH stabilization, antioxidants, bypassed glycolysis, and targeting either mitochondrial soluble adenylyl cyclase or the mitochondrial voltage-dependent anion channel. Overall, THC exposure during infancy induces significant and long-lasting reorganization of neuronal circuits through mechanisms that, in large part, render cellular bioenergetics insufficient to sustain key developmental processes in otherwise healthy neurons. Repeated THC exposure in juvenile mice compromises the limbic circuitry, with life-long impairment to the respiration of neurons.
Collapse
Affiliation(s)
- Johannes Beiersdorf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Calvigioni
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Roman Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Private Medical University, Salzburg, Austria
| | - Sally Shirran
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
| | | | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Roy Gray
- GW Phamaceuticals, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Canada Excellence Research Chair, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Québec, Canada
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Biomedikum D7, Karolinska Institutet, Solna, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Slade A, Kattini R, Campbell C, Holcik M. Diseases Associated with Defects in tRNA CCA Addition. Int J Mol Sci 2020; 21:E3780. [PMID: 32471101 PMCID: PMC7312816 DOI: 10.3390/ijms21113780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
tRNA nucleotidyl transferase 1 (TRNT1) is an essential enzyme catalyzing the addition of terminal cytosine-cytosine-adenosine (CCA) trinucleotides to all mature tRNAs, which is necessary for aminoacylation. It was recently discovered that partial loss-of-function mutations in TRNT1 are associated with various, seemingly unrelated human diseases including sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD), retinitis pigmentosa with erythrocyte microcytosis, and progressive B-cell immunodeficiency. In addition, even within the same disease, the severity and range of the symptoms vary greatly, suggesting a broad, pleiotropic impact of imparting TRNT1 function on diverse cellular systems. Here, we describe the current state of knowledge of the TRNT1 function and the phenotypes associated with mutations in TRNT1.
Collapse
Affiliation(s)
| | | | | | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.S.); (R.K.); (C.C.)
| |
Collapse
|
8
|
Wellner K, Pöhler MT, Betat H, Mörl M. Dual expression of CCA-adding enzyme and RNase T in Escherichia coli generates a distinct cca growth phenotype with diverse applications. Nucleic Acids Res 2019; 47:3631-3639. [PMID: 30828718 PMCID: PMC6468291 DOI: 10.1093/nar/gkz133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/22/2022] Open
Abstract
Correct synthesis and maintenance of functional tRNA 3′-CCA-ends is a crucial prerequisite for aminoacylation and must be achieved by the phylogenetically diverse group of tRNA nucleotidyltransferases. While numerous reports on the in vitro characterization exist, robust analysis under in vivo conditions is lacking. Here, we utilize Escherichia coli RNase T, a tRNA-processing enzyme responsible for the tRNA-CCA-end turnover, to generate an in vivo system for the evaluation of A-adding activity. Expression of RNase T results in a prominent growth phenotype that renders the presence of a CCA- or A-adding enzyme essential for cell survival in an E. coli Δcca background. The distinct growth fitness allows for both complementation and selection of enzyme variants in a natural environment. We demonstrate the potential of our system via detection of altered catalytic efficiency and temperature sensitivity. Furthermore, we select functional enzyme variants out of a sequence pool carrying a randomized codon for a highly conserved position essential for catalysis. The presented E. coli-based approach opens up a wide field of future studies including the investigation of tRNA nucleotidyltransferases from all domains of life and the biological relevance of in vitro data concerning their functionality and mode of operation.
Collapse
Affiliation(s)
- Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Marie-Theres Pöhler
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Kumaki E, Tanaka K, Imai K, Aoki-Nogami Y, Ishiguro A, Okada S, Kanegane H, Ishikawa F, Morio T. Atypical SIFD with novel TRNT1 mutations: a case study on the pathogenesis of B-cell deficiency. Int J Hematol 2019; 109:382-389. [PMID: 30758723 DOI: 10.1007/s12185-019-02614-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
Mutation in the gene encoding tRNA nucleotidyl transferase, CCA-adding 1 (TRNT1), an enzyme essential for the synthesis of the 3'-terminal CCA sequence in tRNA molecules, results in a disorder that features sideroblastic anemia, B-cell immunodeficiency, periodic fever, and developmental delay. Mutations in TRNT1 are also linked to phenotypes including retinitis pigmentosa, cataracts, and cardiomyopathy. To date, it has remained unclear how defective TRNT1 is linked to B-cell deficiency. Here we report the case of a 12-year-old boy without sideroblastic anemia who harbors novel compound heterozygous mutations in TRNT1. Immunophenotypic analysis revealed severely decreased levels of B cells and follicular helper T cells. In the bone marrow, B-cell maturation stopped at the CD19+CD10+CD20+/- pre-B-cell stage. Severe combined immunodeficiency mice transplanted with bone marrow hematopoietic stem cells from the patient showed largely normal B-cell engraftment and differentiation in the bone marrow and periphery at 24 weeks post-transplantation, comparable to those in mouse transplanted with healthy hematopoietic stem cells. Biochemical analysis revealed augmented endoplasmic reticulum (ER) stress response in activated T cells. Peripheral B-cell deficiency of TRNT1 deficiency may be associated with augmented ER stress in immature B cells in the bone marrow.
Collapse
Affiliation(s)
- Eri Kumaki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Keisuke Tanaka
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Aoki-Nogami
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akira Ishiguro
- Center for Postgraduate Education and Training, National Center for Child Health and Development, Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
10
|
Beck DB, Aksentijevich I. Biochemistry of Autoinflammatory Diseases: Catalyzing Monogenic Disease. Front Immunol 2019; 10:101. [PMID: 30766537 PMCID: PMC6365650 DOI: 10.3389/fimmu.2019.00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Monogenic autoinflammatory disorders are a group of conditions defined by systemic or localized inflammation without identifiable causes, such as infection. In contrast to classical primary immunodeficiencies that manifest with impaired immune responses, these disorders are due to defects in genes that regulate innate immunity leading to constitutive activation of pro-inflammatory signaling. Through studying patients with rare autoinflammatory conditions, novel mechanisms of inflammation have been identified that bare on our understanding not only of basic signaling in inflammatory cells, but also of the pathogenesis of more common inflammatory diseases and have guided treatment modalities. Autoinflammation has further been implicated as an important component of cardiovascular, neurodegenerative, and metabolic syndromes. In this review, we will focus on a subset of inherited enzymatic deficiencies that lead to constitutive inflammation, and how these rare diseases have provided insights into diverse areas of cell biology not restricted to immune cells. In this way, Mendelian disorders of the innate immune system, and in particular loss of catalytic activity of enzymes in distinct pathways, have expanded our understanding of the interplay between many seemingly disparate cellular processes. We also explore the overlap between autoinflammation, autoimmunity, and immunodeficiency, which has been increasingly recognized in patients with dysregulated immune responses.
Collapse
Affiliation(s)
- David B Beck
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Giannelou A, Wang H, Zhou Q, Park YH, Abu-Asab MS, Ylaya K, Stone DL, Sediva A, Sleiman R, Sramkova L, Bhatla D, Serti E, Tsai WL, Yang D, Bishop K, Carrington B, Pei W, Deuitch N, Brooks S, Edwan JH, Joshi S, Prader S, Kaiser D, Owen WC, Sonbul AA, Zhang Y, Niemela JE, Burgess SM, Boehm M, Rehermann B, Chae J, Quezado MM, Ombrello AK, Buckley RH, Grom AA, Remmers EF, Pachlopnik JM, Su HC, Gutierrez-Cruz G, Hewitt SM, Sood R, Risma K, Calvo KR, Rosenzweig SD, Gadina M, Hafner M, Sun HW, Kastner DL, Aksentijevich I. Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Ann Rheum Dis 2018; 77:612-619. [PMID: 29358286 PMCID: PMC5890629 DOI: 10.1136/annrheumdis-2017-212401] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/15/2017] [Accepted: 12/30/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To characterise the clinical features, immune manifestations and molecular mechanisms in a recently described autoinflammatory disease caused by mutations in TRNT1, a tRNA processing enzyme, and to explore the use of cytokine inhibitors in suppressing the inflammatory phenotype. METHODS We studied nine patients with biallelic mutations in TRNT1 and the syndrome of congenital sideroblastic anaemia with immunodeficiency, fevers and developmental delay (SIFD). Genetic studies included whole exome sequencing (WES) and candidate gene screening. Patients' primary cells were used for deep RNA and tRNA sequencing, cytokine profiling, immunophenotyping, immunoblotting and electron microscopy (EM). RESULTS We identified eight mutations in these nine patients, three of which have not been previously associated with SIFD. Three patients died in early childhood. Inflammatory cytokines, mainly interleukin (IL)-6, interferon gamma (IFN-γ) and IFN-induced cytokines were elevated in the serum, whereas tumour necrosis factor (TNF) and IL-1β were present in tissue biopsies of patients with active inflammatory disease. Deep tRNA sequencing of patients' fibroblasts showed significant deficiency of mature cytosolic tRNAs. EM of bone marrow and skin biopsy samples revealed striking abnormalities across all cell types and a mix of necrotic and normal-appearing cells. By immunoprecipitation, we found evidence for dysregulation in protein clearance pathways. In 4/4 patients, treatment with a TNF inhibitor suppressed inflammation, reduced the need for blood transfusions and improved growth. CONCLUSIONS Mutations of TRNT1 lead to a severe and often fatal syndrome, linking protein homeostasis and autoinflammation. Molecular diagnosis in early life will be crucial for initiating anti-TNF therapy, which might prevent some of the severe disease consequences.
Collapse
Affiliation(s)
- Angeliki Giannelou
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Hongying Wang
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Qing Zhou
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Yong Hwan Park
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Mones S Abu-Asab
- Section of Histopathology, National Eye Institute, Bethesda, Maryland, USA
| | - Kris Ylaya
- Experimental Pathology Laboratory, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah L Stone
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Anna Sediva
- Department of Immunology Charles, University and University Hospital Motol, Prague, Czech Republic
| | - Rola Sleiman
- Dr. Sulaiman Al Habib Al Rayan Hospital, Riyadh, Saudi Arabia
| | - Lucie Sramkova
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Deepika Bhatla
- SSM Health Cardinal Glennon Children’s Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Elisavet Serti
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Wanxia Li Tsai
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Dan Yang
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Kevin Bishop
- Zebrafish Core, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Wuhong Pei
- Zebrafish Core, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Natalie Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Stephen Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Jehad H Edwan
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Sarita Joshi
- Department of Pathology, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Seraina Prader
- Department of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Daniela Kaiser
- Department of Pediatric Rheumatology, Children’s Hospital, Lucerne, Switzerland
| | - William C Owen
- Children’s Cancer and Blood Disorders Center, Children’s Hospital of the King’s Daughters, Norfolk, Virginia, USA
| | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Julie E Niemela
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Shawn M Burgess
- Zebrafish Core, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Barbara Rehermann
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - JaeJin Chae
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Rebecca H Buckley
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexi A Grom
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Elaine F Remmers
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jana M Pachlopnik
- Department of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Gustavo Gutierrez-Cruz
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, National Cancer Institute, Bethesda, Maryland, USA
| | - Raman Sood
- Zebrafish Core, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Kimberly Risma
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Katherine R Calvo
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Markus Hafner
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Leibovitch M, Hanic-Joyce PJ, Joyce PBM. In vitro studies of disease-linked variants of human tRNA nucleotidyltransferase reveal decreased thermal stability and altered catalytic activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:527-540. [PMID: 29454993 DOI: 10.1016/j.bbapap.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 11/15/2022]
Abstract
Mutations in the human TRNT1 gene encoding tRNA nucleotidyltransferase (tRNA-NT), an essential enzyme responsible for addition of the CCA (cytidine-cytidine-adenosine) sequence to the 3'-termini of tRNAs, have been linked to disease phenotypes including congenital sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD) or retinitis pigmentosa with erythrocyte microcytosis. The effects of these disease-linked mutations on the structure and function of tRNA-NT have not been explored. Here we use biochemical and biophysical approaches to study how five SIFD-linked amino acid substitutions (T154I, M158V, L166S, R190I and I223T), residing in the N-terminal head and neck domains of the enzyme, affect the structure and activity of human tRNA-NT in vitro. Our data suggest that the SIFD phenotype is linked to poor stability of the T154I and L166S variant proteins, and to a combination of reduced stability and altered catalytic efficiency in the M158 V, R190I and I223T variants.
Collapse
Affiliation(s)
- M Leibovitch
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P J Hanic-Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P B M Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada.
| |
Collapse
|
13
|
A tRNA's fate is decided at its 3' end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:433-441. [PMID: 29374586 DOI: 10.1016/j.bbagrm.2018.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
tRNAs are key players in translation and are additionally involved in a wide range of distinct cellular processes. The vital importance of tRNAs becomes evident in numerous diseases that are linked to defective tRNA molecules. It is therefore not surprising that the structural intactness of tRNAs is continuously scrutinized and defective tRNAs are eliminated. In this process, erroneous tRNAs are tagged with single-stranded RNA sequences that are recognized by degrading exonucleases. Recent discoveries have revealed that the CCA-adding enzyme - actually responsible for the de novo synthesis of the 3'-CCA end - plays an indispensable role in tRNA quality control by incorporating a second CCA triplet that is recognized as a degradation tag. In this review, we give an update on the latest findings regarding tRNA quality control that turns out to represent an interplay of the CCA-adding enzyme and RNases involved in tRNA degradation and maturation. In particular, the RNase-induced turnover of the CCA end is now recognized as a trigger for the CCA-adding enzyme to repeatedly scrutinize the structural intactness of a tRNA. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
|
14
|
Sharma TP, Wiley LA, Whitmore SS, Anfinson KR, Cranston CM, Oppedal DJ, Daggett HT, Mullins RF, Tucker BA, Stone EM. Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1-associated Retinitis pigmentosa. Stem Cell Res 2017; 21:58-70. [PMID: 28390992 DOI: 10.1016/j.scr.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/20/2017] [Accepted: 03/10/2017] [Indexed: 12/18/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of monogenic disorders characterized by progressive death of the light-sensing photoreceptor cells of the outer neural retina. We recently identified novel hypomorphic mutations in the tRNA Nucleotidyl Transferase, CCA-Adding 1 (TRNT1) gene that cause early-onset RP. To model this disease in vitro, we generated patient-specific iPSCs and iPSC-derived retinal organoids from dermal fibroblasts of patients with molecularly confirmed TRNT1-associated RP. Pluripotency was confirmed using rt-PCR, immunocytochemistry, and a TaqMan Scorecard Assay. Mutations in TRNT1 caused reduced levels of full-length TRNT1 protein and expression of a truncated smaller protein in both patient-specific iPSCs and iPSC-derived retinal organoids. Patient-specific iPSCs and iPSC-derived retinal organoids exhibited a deficit in autophagy, as evidenced by aberrant accumulation of LC3-II and elevated levels of oxidative stress. Autologous stem cell-based disease modeling will provide a platform for testing multiple avenues of treatment in patients suffering from TRNT1-associated RP.
Collapse
Affiliation(s)
- Tasneem P Sharma
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Luke A Wiley
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - S Scott Whitmore
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Kristin R Anfinson
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Cathryn M Cranston
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Douglas J Oppedal
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Heather T Daggett
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Robert F Mullins
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Budd A Tucker
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Edwin M Stone
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|