1
|
Panis B, Vos EN, Barić I, Bosch AM, Brouwers MCGJ, Burlina A, Cassiman D, Coman DJ, Couce ML, Das AM, Demirbas D, Empain A, Gautschi M, Grafakou O, Grunewald S, Kingma SDK, Knerr I, Leão-Teles E, Möslinger D, Murphy E, Õunap K, Pané A, Paci S, Parini R, Rivera IA, Scholl-Bürgi S, Schwartz IVD, Sdogou T, Shakerdi LA, Skouma A, Stepien KM, Treacy EP, Waisbren S, Berry GT, Rubio-Gozalbo ME. Brain function in classic galactosemia, a galactosemia network (GalNet) members review. Front Genet 2024; 15:1355962. [PMID: 38425716 PMCID: PMC10902464 DOI: 10.3389/fgene.2024.1355962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Classic galactosemia (CG, OMIM #230400, ORPHA: 79,239) is a hereditary disorder of galactose metabolism that, despite treatment with galactose restriction, affects brain function in 85% of the patients. Problems with cognitive function, neuropsychological/social emotional difficulties, neurological symptoms, and abnormalities in neuroimaging and electrophysiological assessments are frequently reported in this group of patients, with an enormous individual variability. In this review, we describe the role of impaired galactose metabolism on brain dysfunction based on state of the art knowledge. Several proposed disease mechanisms are discussed, as well as the time of damage and potential treatment options. Furthermore, we combine data from longitudinal, cross-sectional and retrospective studies with the observations of specialist teams treating this disease to depict the brain disease course over time. Based on current data and insights, the majority of patients do not exhibit cognitive decline. A subset of patients, often with early onset cerebral and cerebellar volume loss, can nevertheless experience neurological worsening. While a large number of patients with CG suffer from anxiety and depression, the increased complaints about memory loss, anxiety and depression at an older age are likely multifactorial in origin.
Collapse
Affiliation(s)
- Bianca Panis
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
| | - E. Naomi Vos
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb, Croatia, and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Annet M. Bosch
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Pediatrics, Division of Metabolic Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - Martijn C. G. J. Brouwers
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Alberto Burlina
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, University Hospital Padova, Padova, Italy
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - David J. Coman
- Queensland Children’s Hospital, Children’s Health Queensland, Brisbane, QLD, Australia
| | - María L. Couce
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Pediatrics, Diagnosis and Treatment Unit of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, IDIS-Health Research Institute of Santiago de Compostela, CIBERER, RICORS Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - Anibh M. Das
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics, Pediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Didem Demirbas
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - Aurélie Empain
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics, Metabolic and Nutrition Unit, Division of Endocrinology, Diabetes and Metabolism, University Hospital for Children Queen Fabiola, Bruxelles, Belgium
| | - Matthias Gautschi
- Department of Paediatrics, Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Swiss Reference Centre for Inborn Errors of Metabolism, Site Bern, Division of Pediatric Endocrinology, Diabetes and Metabolism, University of Bern, Bern, Switzerland
| | - Olga Grafakou
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- IEM Clinic, Arch Makarios III Hospital, Nicosia, Cyprus
| | - Stephanie Grunewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, United Kingdom
| | - Sandra D. K. Kingma
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland at Temple Street, University College Dublin, Dublin, Ireland
| | - Elisa Leão-Teles
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Dorothea Möslinger
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery (NHNN), London, United Kingdom
| | - Katrin Õunap
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Genetics and Personalized Medicine Clinic, Faculty of Medicine, Tartu University Hospital, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Adriana Pané
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sabrina Paci
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Inborn Errors of Metabolism, Clinical Department of Pediatrics, San Paolo Hospital - ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Rossella Parini
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Rare Diseases Unit, Department of Internal Medicine, San Gerardo Hospital IRCCS, Monza, Italy
| | - Isabel A. Rivera
- iMed.ULisboa–Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division of Pediatrics I-Inherited Metabolic Disorders, Medical University Innsbruck, Innsbruck, Austria
| | - Ida V. D. Schwartz
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Triantafyllia Sdogou
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Newborn Screening Department, Institute of Child Health, Athens, Greece
| | - Loai A. Shakerdi
- Adult Metabolics/Genetics, National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Anastasia Skouma
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Newborn Screening Department, Institute of Child Health, Athens, Greece
| | - Karolina M. Stepien
- Salford Royal Organisation, Northern Care Alliance NHS Foundation Trust, Salford, United Kingdom
| | - Eileen P. Treacy
- School of Medicine, Trinity College Dublin, National Rare Diseases Office, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Susan Waisbren
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - Gerard T. Berry
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - M. Estela Rubio-Gozalbo
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Verdino A, D’Urso G, Tammone C, Scafuri B, Catapano L, Marabotti A. Simulation of the Interactions of Arginine with Wild-Type GALT Enzyme and the Classic Galactosemia-Related Mutant p.Q188R by a Computational Approach. Molecules 2021; 26:6061. [PMID: 34641605 PMCID: PMC8513022 DOI: 10.3390/molecules26196061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Classic galactosemia is an inborn error of metabolism associated with mutations that impair the activity and the stability of galactose-1-phosphate uridylyltransferase (GALT), catalyzing the third step in galactose metabolism. To date, no treatments (including dietary galactose deprivation) are able to prevent or alleviate the long-term complications affecting galactosemic patients. Evidence that arginine is able to improve the activity of the human enzyme expressed in a prokaryotic model of classic galactosemia has induced researchers to suppose that this amino acid could act as a pharmacochaperone, but no effects were detected in four galactosemic patients treated with this amino acid. Given that no molecular characterizations of the possible effects of arginine on GALT have been performed, and given that the samples of patients treated with arginine are extremely limited for drawing definitive conclusions at the clinical level, we performed computational simulations in order to predict the interactions (if any) between this amino acid and the enzyme. Our results do not support the possibility that arginine could function as a pharmacochaperone for GALT, but information obtained by this study could be useful for identifying, in the future, possible pharmacochaperones for this enzyme.
Collapse
Affiliation(s)
- Anna Verdino
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (A.V.); (G.D.); (C.T.); (B.S.); (L.C.)
| | - Gaetano D’Urso
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (A.V.); (G.D.); (C.T.); (B.S.); (L.C.)
| | - Carmen Tammone
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (A.V.); (G.D.); (C.T.); (B.S.); (L.C.)
| | - Bernardina Scafuri
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (A.V.); (G.D.); (C.T.); (B.S.); (L.C.)
- Interuniversity Center “ELFID—European Laboratory for Food Induced Diseases”, University of Salerno, 84084 Fisciano, SA, Italy
| | - Lucrezia Catapano
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (A.V.); (G.D.); (C.T.); (B.S.); (L.C.)
| | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (A.V.); (G.D.); (C.T.); (B.S.); (L.C.)
- Interuniversity Center “ELFID—European Laboratory for Food Induced Diseases”, University of Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|