1
|
Chen QL, Zhang CM. TFP/LCHAD Deficiency Due to HADHA Gene Mutation. Clin Pediatr (Phila) 2024; 63:1604-1607. [PMID: 38379183 DOI: 10.1177/00099228241233099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Qiao-Lin Chen
- Pediatric Intensive Care Unit, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Mei Zhang
- Pediatric Intensive Care Unit, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Zhang Q, Yao N, Liu Z, Xu C, Ding Z. An Autopsy Analysis of a Patient With Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency Caused by Compound Heterozygous HADHA Gene Mutations. Am J Forensic Med Pathol 2023; 44:336-339. [PMID: 37549033 DOI: 10.1097/paf.0000000000000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
ABSTRACT Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency is a rare mitochondrial disease characterized by lipid oxidation disorder. It is an autosomal recessive disease induced by a mutation in the HADHA gene, which encodes the LCHAD deficiency. The clinical manifestations of this disease are diverse, primarily affecting the heart, liver, and skeletal muscles. Common symptoms include cardiomyopathy, peripheral neuropathy, retinopathy, and even lead to death in severe cases.Herein, we report a patient who was hospitalized due to flatulence, crying, irritability, and died of acute cardiopulmonary failure after 8 days in hospital. An autopsy was performed to determine the cause of death. Clinical examination revealed abnormal liver and kidney function, and the genetic metabolic disease profile indicated significantly elevated levels of long-chain acyl-carnitine and long-chain 3-OH-acyl-carnitine. Histopathological examination revealed diffuse hepatic steatosis, and the genetic sequencing results detected compound heterozygous mutations in the HADHA gene (c.1528G>C [p.E510Q] and c.703_704dupCG [p.T236Gfs*3]). Of note, the mother had a history of acute fatty liver during pregnancy. Collectively, our study may contribute to understanding the HADHA gene mutation profile and the clinical phenotype of LCHAD deficiency, emphasizing the importance of genetic testing in forensic pathology.
Collapse
Affiliation(s)
- Qinjian Zhang
- From the Hangzhou Huashuo Judicial Expertise Center, Hangzhou, ZhejiangProvince, China
| | - Nan Yao
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui Province, China
| | - Zunzhong Liu
- Zhejiang University Judicial Expertise Center, Hangzhou, Zhejiang Province, China
| | - Changmiao Xu
- From the Hangzhou Huashuo Judicial Expertise Center, Hangzhou, ZhejiangProvince, China
| | - Zijiao Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
3
|
Metzler M, Burns W, Mitchell C, Napolitano S, Chaudhari BP. A case report of necrotizing enterocolitis in a moderately preterm neonate with LCHADD-A call to focus on the basics while utilizing advanced new therapies. Front Pediatr 2023; 11:1081802. [PMID: 36861082 PMCID: PMC9969157 DOI: 10.3389/fped.2023.1081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is an autosomal recessive condition of impaired beta-oxidation. Traditionally, treatment included restriction of dietary long-chain fatty acids via a low-fat diet and supplementation of medium chain triglycerides. In 2020, triheptanoin received FDA approval as an alternative source of medium chain fatty acids for individuals with long-chain fatty acid oxidation disorders (LC-FAOD). We present a case of a moderately preterm neonate born at 33 2/7 weeks gestational age with LCHADD who received triheptanoin and developed necrotizing enterocolitis (NEC). Prematurity is known as a major risk factor for NEC, with risk increasing with decreasing gestational age. To our knowledge, NEC has not previously been reported in patients with LCHADD or with triheptanoin use. While metabolic formula is part of the standard of care for LC-FAOD in early life, preterm neonates may benefit from more aggressive attempts to use skimmed human milk to minimize exposure to formula during the risk period for NEC during feed advancement. This risk period may be longer in neonates with LC-FAOD compared to otherwise healthy premature neonates.
Collapse
Affiliation(s)
- Marina Metzler
- Pediatric Residency, Nationwide Children's Hospital, Columbus, OH, United States
| | - William Burns
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Carly Mitchell
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Stephanie Napolitano
- Division of Neonatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, United States
| | - Bimal P Chaudhari
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Neonatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, United States.,Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
4
|
Ørstavik K, Arntzen KA, Mathisen P, Backe PH, Tangeraas T, Rasmussen M, Kristensen E, Van Ghelue M, Jonsrud C, Bliksrud YT. Novel mutations in the HADHB gene causing a mild phenotype of mitochondrial trifunctional protein (MTP) deficiency. JIMD Rep 2022; 63:193-198. [PMID: 35433169 PMCID: PMC8995838 DOI: 10.1002/jmd2.12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/11/2022] Open
Abstract
Mitochondrial trifunctional protein (MTP) deficiency is an ultrarare hereditary recessive disorder causing a broad spectrum of phenotypes with lethal infantile cardiomyopathy at the most severe end. Attenuated forms with polyneuropathy have been reported combined with myoglobinuria or rhabdomyolysis as key features. We here report three young adults (two siblings) in which three variants in the HADHB-gene were identified. All three cases had a similar mild phenotype with axonal neuropathy and frequent intermittent weakness episodes but without myoglobinuria. Special dietary precautions were recommended to minimize complications especially during infections and other catabolic states. MTP deficiency is therefore an important differential diagnosis in patients with milder fluctuating neuromuscular symptoms. Take‐home message Axonal neuropathy and recurrent muscular weakness without concomitant rhabdomyolysis may be due to MTP deficiency.
Collapse
Affiliation(s)
- Kristin Ørstavik
- Department of Neurology, Section for Rare Neuromuscular disorders and EMANOslo University Hospital, RikshospitaletOsloNorway
| | - Kjell Arne Arntzen
- National Neuromuscular Centre Norway and Department of NeurologyUniversity Hospital of North NorwayTromsøNorway
| | - Per Mathisen
- Department of CardiologyOslo University Hospital, RikshospitaletOsloNorway
| | - Paul Hoff Backe
- Department of MicrobiologyOslo University Hospital, Rikshospitalet and University of OsloOsloNorway
- Department of Medical BiochemistryInstitute for Clinical Medicine, University of OsloOsloNorway
| | - Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent MedicineOslo University HospitalOsloNorway
| | - Magnhild Rasmussen
- Department of Neurology, Section for Rare Neuromuscular disorders and EMANOslo University Hospital, RikshospitaletOsloNorway
- Department of Clinical Neurosciences for ChildrenOslo University Hospital, RikshospitaletOsloNorway
| | - Erle Kristensen
- Department of Medical BiochemistryOslo University Hospital, RikshospitaletOsloNorway
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent HealthUniversity Hospital of North NorwayTromsøNorway
| | - Christoffer Jonsrud
- Department of Medical Genetics, Division of Child and Adolescent HealthUniversity Hospital of North NorwayTromsøNorway
| | - Yngve Thomas Bliksrud
- Department of Medical BiochemistryOslo University Hospital, RikshospitaletOsloNorway
| |
Collapse
|
5
|
Saleh DA, Attia AAEM. Shedding light on the phenotypic–genotypic correlation of rare treatable and potentially treatable pediatric movement disorders. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Advances in genetic science have led to the identification of many rare treatable pediatric movements disorders (MDs). We explored the phenotypic–genotypic spectrum of pediatric patients presenting with MDs. By this, we aimed at raising awareness about such rare disorders, especially in our region. Over the past 3 years, we reviewed the demographic data, clinical profile, molecular genetics and other diagnostic workups of pediatric patients presenting with MDs.
Results
Twelve patients were identified; however, only six patients were genetically confirmed. The phenomenology of MDs ranged from paroxysmal kinesigenic choreoathetosis (1 patient), exercise-induced dyskinesia (2 patients), ataxia (2 patients) and dystonia (2 patients). Whole-exome sequencing in addition to the functional studies for some patients revealed a specific genetic diagnosis being responsible for their MDs. The genetic diagnosis of our patients included infantile convulsions and paroxysmal choreoathetosis syndrome and episodic ataxia due to “pathogenic homozygous mutation of PRRT2 gene,” glucose transporter type 1 deficiency-exercise induced dyskinesia due to “De Novo pathogenic heterozygous missense mutation of exon 4 of SLC2A1 gene,” aromatic L amino acid decarboxylase deficiency due to “pathogenic homozygous mutation of the DDC gene,” myopathy with extrapyramidal signs due to “likely pathogenic homozygous mutations of the MICU1 gene,” mitochondrial trifunctional protein deficiency due to “homozygous variant of uncertain significance (VUS) of HADHB gene” and glutaric aciduria II with serine deficiency due to “homozygous VUS for both ETFDH and PHGDH genes.” After receiving the treatment as per recognized treatment protocols, two patients showed complete resolution of symptoms and the rest showed variable responses.
Conclusion
Identifying the genetic etiology of our patients guided us to provide either disease-specific treatment or redirected our management plan. Hence, highlighting the value of molecular genetic analysis to avoid the diagnostic odyssey and identify treatable MDs.
Collapse
|
6
|
Knapp A, Jagła M, Madetko-Talowska A, Szewczyk K, Książek T, Końska K, Kwinta P. Paternal uniparental disomy of chromosome 2 resulting in a concurrent presentation of Crigler-Najjar syndrome type I and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Am J Med Genet A 2022; 188:1848-1852. [PMID: 35199468 DOI: 10.1002/ajmg.a.62696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/27/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022]
Abstract
This is the first report of the concurrent development of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and Crigler-Najjar syndrome type 1 (CNs1) inherited via uniparental disomy of chromosome 2, which are both autosomal recessive pathologies. Through an expanded newborn metabolic panel, a male infant was identified as having an acylcarnitine pattern typical for LCHADD, later confirmed to be caused by a well-characterized pathogenic variant in the HADHA gene located at 2p23. Prolonged non-hematologic jaundice requiring repetitive phototherapy prompted further genetic analysis, leading to the identification of another genetic abnormality consistent with CNs1, which was caused by a novel pathogenic variant in the UGT1A1 gene located at 2q37. The two identified point mutations in chromosome 2 were homozygous and present on separate arms, which indicated potential uniparental disomy. Microarray analysis of the genetic material from the patient and his parents confirmed paternal isodisomy of chromosome 2. Further studies are needed to identify other possible pathogenic variants located on the same defective chromosome, evaluate the combined effect of the two metabolic abnormalities, and plan the best possible treatment and care.
Collapse
Affiliation(s)
- Anna Knapp
- Department of Pediatrics, Chair of Pediatrics Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz Jagła
- Department of Pediatrics, Chair of Pediatrics Jagiellonian University Medical College, Krakow, Poland
| | - Anna Madetko-Talowska
- University Children Hospital in Krakow, Krakow, Poland.,Department of Medical Genetics, Chair of Pediatrics Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Szewczyk
- University Children Hospital in Krakow, Krakow, Poland.,Department of Medical Genetics, Chair of Pediatrics Jagiellonian University Medical College, Krakow, Poland
| | - Teofila Książek
- University Children Hospital in Krakow, Krakow, Poland.,Department of Medical Genetics, Chair of Pediatrics Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Końska
- Department of Medical Genetics, Chair of Pediatrics Jagiellonian University Medical College, Krakow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Chair of Pediatrics Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
7
|
Ruiz-Sala P, Peña-Quintana L. Biochemical Markers for the Diagnosis of Mitochondrial Fatty Acid Oxidation Diseases. J Clin Med 2021; 10:jcm10214855. [PMID: 34768374 PMCID: PMC8584803 DOI: 10.3390/jcm10214855] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fatty acid β-oxidation (FAO) contributes a large proportion to the body’s energy needs in fasting and in situations of metabolic stress. Most tissues use energy from fatty acids, particularly the heart, skeletal muscle and the liver. In the brain, ketone bodies formed from FAO in the liver are used as the main source of energy. The mitochondrial fatty acid oxidation disorders (FAODs), which include the carnitine system defects, constitute a group of diseases with several types and subtypes and with variable clinical spectrum and prognosis, from paucisymptomatic cases to more severe affectations, with a 5% rate of sudden death in childhood, and with fasting hypoketotic hypoglycemia frequently occurring. The implementation of newborn screening programs has resulted in new challenges in diagnosis, with the detection of new phenotypes as well as carriers and false positive cases. In this article, a review of the biochemical markers used for the diagnosis of FAODs is presented. The analysis of acylcarnitines by MS/MS contributes to improving the biochemical diagnosis, both in affected patients and in newborn screening, but acylglycines, organic acids, and other metabolites are also reported. Moreover, this review recommends caution, and outlines the differences in the interpretation of the biomarkers depending on age, clinical situation and types of samples or techniques.
Collapse
Affiliation(s)
- Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain;
| | - Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Mother and Child Insular University Hospital Complex, Asociación Canaria para la Investigación Pediátrica (ACIP), CIBEROBN, University Institute for Research in Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Correspondence:
| |
Collapse
|
8
|
García García LC, Zamorano Martín F, Rocha de Lossada C, García Lorente M, Luque Aranda G, Escudero Gómez J. Retinitis pigmentosa as a clinical presentation of LCHAD deficiency: A clinical case and review of the literature. ARCHIVOS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGÍA 2021; 96:496-499. [PMID: 34479707 DOI: 10.1016/j.oftale.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022]
Abstract
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency is a rare metabolic disease caused by a specific mutation in the HADHA gene, which leads to an alteration in the metabolic pathway of fatty acids. Its most frequent form of presentation at the ophthalmological level is retinitis pigmentosa, and in some cases the ophthalmologist could be the first one to alert the other paediatric specialties to carry out a multidisciplinary approach to the case. The case is presented of a patient with long-chain 3-hydroxyacyl-CoA dehydrogenase deficit detected in neonatal screening, and which clinically debuted as pigmentary retinosis with no alteration in visual acuity as observed in the fundus images and optical coherence tomography of the retina provided. Finally, a review of the literature of this potentially lethal pathology is presented, and the main pathological and clinical features are highlighted.
Collapse
Affiliation(s)
- L C García García
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, Spain; Servicio de Oftalmología, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain.
| | - F Zamorano Martín
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - C Rocha de Lossada
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - M García Lorente
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - G Luque Aranda
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - J Escudero Gómez
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
9
|
Rücklová K, Hrubá E, Pavlíková M, Hanák P, Farolfi M, Chrastina P, Vlášková H, Kousal B, Smolka V, Foltenová H, Adam T, Friedecký D, Ješina P, Zeman J, Kožich V, Honzík T. Impact of Newborn Screening and Early Dietary Management on Clinical Outcome of Patients with Long Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency and Medium Chain Acyl-CoA Dehydrogenase Deficiency-A Retrospective Nationwide Study. Nutrients 2021; 13:nu13092925. [PMID: 34578803 PMCID: PMC8469775 DOI: 10.3390/nu13092925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD/MTPD) and medium chain acyl-CoA dehydrogenase deficiency (MCADD) were included in the expanded neonatal screening program (ENBS) in Czechia in 2009, allowing for the presymptomatic diagnosis and nutritional management of these patients. The aim of our study was to assess the nationwide impact of ENBS on clinical outcome. This retrospective study analysed acute events and chronic complications and their severity in pre-ENBS and post-ENBS cohorts. In total, 28 children (12 before, 16 after ENBS) were diagnosed with LCHADD/MTPD (incidence 0.8/100,000 before and 1.2/100,000 after ENBS). In the subgroup detected by ENBS, a significantly longer interval from birth to first acute encephalopathy was observed. In addition, improvement in neuropathy and cardiomyopathy (although statistically non-significant) was demonstrated in the post-ENBS subgroup. In the MCADD cohort, we included 69 patients (15 before, 54 after ENBS). The estimated incidence rose from 0.7/100,000 before to 4.3/100,000 after ENBS. We confirmed a significant decrease in the number of episodes of acute encephalopathy and lower proportion of intellectual disability after ENBS (p < 0.0001). The genotype-phenotype correlations suggest a new association between homozygosity for the c.1528C > G variant and more severe heart involvement in LCHADD patients.
Collapse
Affiliation(s)
- Kristina Rücklová
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
- Department of Paediatrics, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 34 Prague, Czech Republic
- Correspondence: (K.R.); (T.H.)
| | - Eva Hrubá
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Markéta Pavlíková
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic;
| | - Petr Hanák
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Martina Farolfi
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Petr Chrastina
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Hana Vlášková
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Bohdan Kousal
- Department of Ophthalmology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic;
| | - Vratislav Smolka
- Department of Paediatrics, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, 779 00 Olomouc, Czech Republic; (V.S.); (H.F.)
| | - Hana Foltenová
- Department of Paediatrics, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, 779 00 Olomouc, Czech Republic; (V.S.); (H.F.)
| | - Tomáš Adam
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (T.A.); (D.F.)
| | - David Friedecký
- Institute of Molecular and Translational Medicine, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (T.A.); (D.F.)
| | - Pavel Ješina
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Jiří Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Viktor Kožich
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (E.H.); (P.H.); (M.F.); (P.C.); (H.V.); (P.J.); (J.Z.); (V.K.)
- Correspondence: (K.R.); (T.H.)
| |
Collapse
|
10
|
Phospholipids: Identification and Implication in Muscle Pathophysiology. Int J Mol Sci 2021; 22:ijms22158176. [PMID: 34360941 PMCID: PMC8347011 DOI: 10.3390/ijms22158176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Phospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular. PLs have not only a key role in compartmentation as they are the main components of membrane, but they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered for a long time to simply be structural elements of membranes, phospholipids are increasingly being viewed as sensors of their environment and regulators of many metabolic processes. After presenting their main characteristics, we expose the increasing methods of PL detection and identification that help to understand their key role in life processes. Interest and importance of PL homeostasis is growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked to human diseases. We here review diseases that involve deregulation of PL homeostasis and present a predominantly muscular phenotype.
Collapse
|
11
|
Grünert SC, Eckenweiler M, Haas D, Lindner M, Tsiakas K, Santer R, Tucci S, Spiekerkoetter U. The spectrum of peripheral neuropathy in disorders of the mitochondrial trifunctional protein. J Inherit Metab Dis 2021; 44:893-902. [PMID: 33638202 DOI: 10.1002/jimd.12372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022]
Abstract
Peripheral neuropathy is a known irreversible long-term complication of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MTPD), two inherited disorders of mitochondrial long-chain fatty acid oxidation. The underlying pathophysiology of neuropathy is still not fully understood. We report electrophysiological studies and neurological findings in a series of 8 LCHAD-deficient and 11 MTP-deficient patients. The median age at time of the study was 8.0 years (0.5-25 years). The overall prevalence of neuropathy was 58% with neuropathic symptoms being slightly more common in MTPD compared to LCHADD (70% vs 50%, respectively). Onset of neuropathy was significantly earlier in MTPD patients compared to LCHADD patients (median age at onset 4.7 vs 15.3 years, respectively, P = .047). In four patients, isolated peripheral neuropathy was the first and only presenting symptom, and in all four the diagnosis was missed by newborn screening. About half of the patients (45.5%) had a sensorimotor neuropathy, while 27.3% showed a pure motor form and another 27.3% an isolated sensory form. Despite early diagnosis by newborn screening and early initiation of therapy, peripheral neuropathy cannot be prevented in all patients with LCHADD/MTPD and has severe impact on the life of affected patients. Electrophysiology classifies LCHADD/MTPD neuropathy as axonal with secondary demyelination. A novel observation is that in patients with acute, fulminant onset of neuropathy, symptoms can be partly reversible. Further studies are needed to elucidate the underlying pathophysiology of axonal damage and possible therapeutic targets.
Collapse
Affiliation(s)
- Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dorothea Haas
- Department of Neuropediatrics and Pediatric Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Lindner
- Department of Pediatric Neurology, University Children's Hospital, Frankfurt/Main, Germany
| | | | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Sara Tucci
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
12
|
Pająk R, Mendela E, Będkowska N, Paprocka J. Update on Neuropathies in Inborn Errors of Metabolism. Brain Sci 2021; 11:brainsci11060763. [PMID: 34201281 PMCID: PMC8227217 DOI: 10.3390/brainsci11060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathies are relatively common in inborn errors of metabolism (IEMs); however, due to the early onset and severe, progressive course of many IEMs, they have not been very well researched yet. This article aims to review and compare neuropathies in inborn errors of metabolism, mostly with childhood and juvenile onset. Some of these diseases are treatable if diagnosed early and in many cases, the therapy can not only slow down disease progression, but can also reverse the changes already made by the condition.
Collapse
Affiliation(s)
- Renata Pająk
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (R.P.); (E.M.); (N.B.)
| | - Ewelina Mendela
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (R.P.); (E.M.); (N.B.)
| | - Natalia Będkowska
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (R.P.); (E.M.); (N.B.)
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence:
| |
Collapse
|
13
|
Sarkar M, Brady CW, Fleckenstein J, Forde KA, Khungar V, Molleston JP, Afshar Y, Terrault NA. Reproductive Health and Liver Disease: Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021; 73:318-365. [PMID: 32946672 DOI: 10.1002/hep.31559] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Monika Sarkar
- University of California, San Francisco, San Francisco, CA
| | | | | | | | | | - Jean P Molleston
- Indiana University and Riley Hospital for Children, Indianapolis, IN
| | - Yalda Afshar
- University of California, Los Angeles, Los Angeles, CA
| | - Norah A Terrault
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
14
|
Stinton C, Fraser H, Geppert J, Johnson R, Connock M, Johnson S, Clarke A, Taylor-Phillips S. Newborn Screening for Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase and Mitochondrial Trifunctional Protein Deficiencies Using Acylcarnitines Measurement in Dried Blood Spots-A Systematic Review of Test Accuracy. Front Pediatr 2021; 9:606194. [PMID: 33816395 PMCID: PMC8017228 DOI: 10.3389/fped.2021.606194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare autosomal recessive fatty acid β-oxidation disorders. Their clinical presentations are variable, and premature death is common. They are included in newborn blood spot screening programs in many countries around the world. The current process of screening, through the measurement of acylcarnitines (a metabolic by-product) in dried blood spots with tandem mass spectrometry, is subject to uncertainty regarding test accuracy. Methods: We conducted a systematic review of literature published up to 19th June 2018. We included studies that investigated newborn screening for LCHAD or MTP deficiencies by tandem mass spectrometry of acylcarnitines in dried blood spots. The reference standards were urine organic acids, blood acylcarnitine profiles, enzyme analysis in cultured fibroblasts or lymphocytes, mutation analysis, or at least 10-year follow-up. The outcomes of interest were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Assessment of titles, abstracts, and full-text papers and quality appraisal were carried out independently by two reviewers. One reviewer extracted study data. This was checked by a second reviewer. Results: Ten studies provided data on test accuracy. LCHAD or MTP deficiencies were identified in 23 babies. No cases of LCHAD/MTP deficiencies were identified in four studies. PPV ranged from 0% (zero true positives and 28 false positives from 276,565 babies screened) to 100% (13 true positives and zero false positives from 2,037,824 babies screened). Sensitivity, specificity, and NPV could not be calculated as there was no systematic follow-up of babies who screened negative. Conclusions: Test accuracy estimates of screening for LCHAD and MTP deficiencies with tandem mass spectrometry measurement of acylcarnitines in dried blood were variable in terms of PPVs. Screening methods (including markers and thresholds) varied between studies, and sensitivity, specificity, and NPVs are unknown.
Collapse
Affiliation(s)
- Chris Stinton
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Hannah Fraser
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Julia Geppert
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rebecca Johnson
- School of Nursing, Midwifery and Health, Coventry University, Coventry, United Kingdom
| | - Martin Connock
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Samantha Johnson
- Warwick Library, University of Warwick, Coventry, United Kingdom
| | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
15
|
García García LC, Zamorano Martín F, Rocha de Lossada C, García Lorente M, Luque Aranda G, Escudero Gómez J. Retinitis pigmentosa as a clinical presentation of LCHAD deficiency: A clinical case and review of the literature. ACTA ACUST UNITED AC 2020. [PMID: 32943256 DOI: 10.1016/j.oftal.2020.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency is a rare metabolic disease caused by a specific mutation in the HADHA gene, which leads to an alteration in the metabolic pathway of fatty acids. Its most frequent form of presentation at the ophthalmological level is retinitis pigmentosa, and in some cases the ophthalmologist could be the first one to alert the other paediatric specialties to carry out a multidisciplinary approach to the case. The case is presented of a patient with long-chain 3-hydroxyacyl-CoA dehydrogenase deficit detected in neonatal screening, and which clinically debuted as pigmentary retinosis with no alteration in visual acuity as observed in the fundus images and optical coherence tomography of the retina provided. Finally, a review of the literature of this potentially lethal pathology is presented, and the main pathological and clinical features are highlighted.
Collapse
Affiliation(s)
- L C García García
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, España; Servicio de Oftalmología, Hospital Universitario de Torrevieja, Torrevieja, Alicante, España.
| | - F Zamorano Martín
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, España
| | - C Rocha de Lossada
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, España
| | - M García Lorente
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, España
| | - G Luque Aranda
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, España
| | - J Escudero Gómez
- Servicio de Oftalmología, Hospital Regional Universitario de Málaga, Málaga, España
| |
Collapse
|
16
|
Kastaniotis AJ, Autio KJ, R Nair R. Mitochondrial Fatty Acids and Neurodegenerative Disorders. Neuroscientist 2020; 27:143-158. [PMID: 32644907 DOI: 10.1177/1073858420936162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fatty acids in mitochondria, in sensu stricto, arise either as β-oxidation substrates imported via the carnitine shuttle or through de novo synthesis by the mitochondrial fatty acid synthesis (mtFAS) pathway. Defects in mtFAS or processes involved in the generation of the mtFAS product derivative lipoic acid (LA), including iron-sulfur cluster synthesis required for functional LA synthase, have emerged only recently as etiology for neurodegenerative disease. Intriguingly, mtFAS deficiencies very specifically affect CNS function, while LA synthesis and attachment defects have a pleiotropic presentation beyond neurodegeneration. Typical mtFAS defect presentations include optical atrophy, as well as basal ganglia defects associated with dystonia. The phenotype display of patients with mtFAS defects can resemble the presentation of disorders associated with coenzyme A (CoA) synthesis. A recent publication links these processes together based on the requirement of CoA for acyl carrier protein maturation. MtFAS defects, CoA synthesis- as well as Fe-S cluster-deficiencies share lack of LA as a common symptom.
Collapse
Affiliation(s)
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| |
Collapse
|