1
|
Abdulsalam L, Mordecai J, Ahmad I. Non-viral gene therapy for Leber's congenital amaurosis: progress and possibilities. Nanomedicine (Lond) 2024:1-14. [PMID: 39707712 DOI: 10.1080/17435889.2024.2443387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Leber's congenital amaurosis (LCA) represents a set of rare and pervasive hereditary conditions of the retina that cause severe vision loss starting in early childhood. Targeted treatment intervention has become possible thanks to recent advances in understanding LCA genetic basis. While viral vectors have shown efficacy in gene delivery, they present challenges related to safety, low cargo capacity, and the potential for random genomic integration. Non-viral gene therapy is a safer and more flexible alternative to treating the underlying genetic mutation causing LCA. Non-viral gene delivery methods, such as inorganic nanoparticles, polymer-based delivery systems, and lipid-based nanoparticles, bypass the risks of immunogenicity and genomic integration, potentially offering a more versatile and personalized treatment for patients. This review explores the genetic background of LCA, emphasizing the mutations involved, and explores diverse non-viral gene delivery methods being developed. It also highlights recent studies on non-viral gene therapy for LCA in animal models and clinical trials. It presents future perspectives for gene therapy, including integrating emerging technologies like CRISPR-Cas9, interdisciplinary collaborations, personalized medicine, and ethical considerations.
Collapse
Affiliation(s)
- Latifat Abdulsalam
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Cheng H, Deng H, Ma D, Gao M, Zhou Z, Li H, Liu S, Teng T. Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system. Heliyon 2024; 10:e39538. [PMID: 39502233 PMCID: PMC11535992 DOI: 10.1016/j.heliyon.2024.e39538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR-Cas, the adaptive immune system exclusive to prokaryotes, confers resistance against foreign mobile genetic elements. The CRISPR-Cas system is now being exploited by scientists in a diverse range of genome editing applications. CRISPR-Cas systems can be categorized into six different types based on their composition and mechanism, and there are also natural regulatory biomolecules in bacteria and bacteriophages that can either enhance or inhibit the immune function of CRISPR-Cas. The CRISPR-Cas systems are currently being trialed as a new tool for gene therapy to treat various human diseases, including cancers and genetic diseases, offering significant therapeutic potential. This paper comprehensively summarizes various aspects of the CRISPR-Cas system, encompassing its diversity, regulatory mechanisms, its clinical applications and the obstacles encountered.
Collapse
Affiliation(s)
- Hui Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Haoyue Deng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Dongdao Ma
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Zhihan Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Heng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Shejuan Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
3
|
Matczyńska E, Szymańczak R, Stradomska K, Łyszkiewicz P, Jędrzejowska M, Kamińska K, Beć-Gajowniczek M, Suchecka E, Zagulski M, Wiącek M, Wylęgała E, Machalińska A, Mossakowska M, Puzianowska-Kuźnicka M, Teper S, Boguszewska-Chachulska A. Whole-Exome Analysis for Polish Caucasian Patients with Retinal Dystrophies and the Creation of a Reference Genomic Database for the Polish Population. Genes (Basel) 2024; 15:1011. [PMID: 39202371 PMCID: PMC11353931 DOI: 10.3390/genes15081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
We present the results of the first study of a large cohort of patients with inherited retinal dystrophies (IRD) performed for the Polish population using whole-exome sequencing (WES) in the years 2016-2019. Moreover, to facilitate such diagnostic analyses and enable future application of gene therapy and genome editing for IRD patients, a Polish genomic reference database (POLGENOM) was created based on whole-genome sequences of healthy Polish Caucasian nonagenarians and centenarians. The newly constructed database served as a control, providing a comparison for variant frequencies in the Polish population. The diagnostic yield for the selected group of IRD patients reached 64.9%. The study uncovered the most common pathogenic variants in ABCA4 and USH2A in the European population, along with several novel causative variants. A significant frequency of the ABCA4 complex haplotype p.(Leu541Pro; Ala1038Val) was observed, as well as that of the p.Gly1961Glu variant. The first VCAN causative variant NM_004385.5:c.4004-2A>G in Poland was found and described. Moreover, one of the first patients with the RPE65 causative variants was identified, and, in consequence, could receive the dedicated gene therapy. The availability of the reference POLGENOM database enabled comprehensive variant characterisation during the NGS data analysis, confirming the utility of a population-specific genomic database for enhancing diagnostic accuracy. Study findings suggest the significance of genetic testing in elder patients with unclear aetiology of eye diseases. The combined approach of NGS and the reference genomic database can improve the diagnosis, management, and future treatment of IRDs.
Collapse
Affiliation(s)
- Ewa Matczyńska
- Genomed S.A., 02-971 Warsaw, Poland
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | | | | | | | | | | | | | | | | | - Marta Wiącek
- First Department of Ophthalmology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Małgorzata Mossakowska
- Study on Ageing and Longevity, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Sławomir Teper
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Scientific Research, Branch in Bielsko-Biala, Medical University of Silesia, 43-300 Bielsko-Biała, Poland
| | | |
Collapse
|
4
|
Fang X, Ma M, Rong W, Lian YY, Wu X, Gao Y, Li HP, Sheng X. Exome sequencing confirms the clinical diagnosis of both joubert syndrome and klinefelter syndrome with keratoconus in a han Chinese family. Front Genet 2024; 15:1417584. [PMID: 39076169 PMCID: PMC11284097 DOI: 10.3389/fgene.2024.1417584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Joubert syndrome a rare genetic disorder, is characterized by abnormalities in the development of the central nervous system with "molar signs" on magnetic resonance imaging of the brain and accompanied by cerebellar vermis hypoplasia, ataxia, hypotonia, and developmental delay. Keratoconus (KC) is a kind of genetically predisposed eye disease that causes blindness characterized by a dilated thinning of the central or paracentral cornea conically projected forward, highly irregular astigmatism, and severe visual impairment. Klinefelter syndrome is caused by an extra X chromosome in the cells of male patients, and the main phenotype is tall stature and dysplasia with secondary sex characteristics. This study was intended to identify the genetic etiology and determine the clinical diagnosis of one Han Chinese family with specific clinical manifestations of keratoconus and multiorgan involvement. Methods A comprehensive ocular and related general examination was performed on one patient and his asymptomatic parents and brother. Pathogenic genes were tested by exome sequencing. CNV-seq was used to verify the copy number variation, and peripheral blood was cultured for karyotype analysis. The pathogenicity of the identified variant was determined subject to ACMG guidelines. The Gene Expression Omnibus (GEO) dataset of keratoconus-related genes in the NCBI database was obtained to analyze the differentially expressed genes in corneal tissues of the keratoconus group and the normal control group, and analysis of protein-protein interaction networks (PPI) was performed. Results Proband, a 25-year-old male, had sudden loss of vision in the left eye for 1 week. Best corrected visual acuity (BCVA): 0.5 (-1.00DS/-5.00DC*29°) in the right eye, counting fingers/40 cm in the left eye. Slit-lamp microscopy of the right eye showed mild anterior protrusion of the cornea and thinning of the cone-topped cornea. The left eye showed marked thinning of the central region of the cornea, rounded edema in the form of a cone-like bulge, epithelial bullae, edema and turbidity of the stroma, and bulging of the Descemet's membrane. Cranial magnetic resonance imaging (MRI) revealed changes in the midbrain and cerebellum, with a "molar sign" and a "bat-winged" ventriculus quartus cerebri. General check-up: 168 cm in height, decreased muscle tone in all four limbs, knee jerk elicited, negative Babinski sign, abdominal reflexes elicited, finger-to-nose test positive, intentional tremor evident in both hands, positive Romberg's sign, instability of gait, level I intellectual disability, poor adaptive behavior, communication disorders, teeth all dentures, a peculiar face with blepharophimosis, wide inner canthus distance, mild ptosis, severe positive epicanthus, high palatal arches, exotropia, hypotrichosis of beard and face, inconspicuous prominentia laryngea, and short upper and lower limbs. Exome sequencing detected compound heterozygous frameshift variants M1:c.9279dup:p.His3094Thrfs*18 and M2:c.6515_6522del:p.Lys2172Thrfs*37 in the patient's CPLANE1 gene and the presence of duplication-type CNV on the X chromosome. Sanger sequencing showed that the mother and father carried the M1 and M2 variants, respectively, and the younger brother carried the M2 variant, which was a novel variant. CNV-seq analysis showed the presence of a duplication-type CNV Xp22.33-Xq28 (2757837-156030895) of approximately 155 Mb on the X chromosome of the proband, which was a de novo variant and carried by neither of the parents. The two heterozygous frameshift variants and duplication-type CNV were pathogenic according to the ACMG guidelines. Differential expression analysis of keratoconus-related genes showed that CPLANE1 was upregulated in the corneal tissues of keratoconus patients compared with normal controls, and such a difference was statistically significant (p = 0.000515, <0.05). PPI analysis showed that the CPLANE1-NPHP3 complex protein acted as a bridge between cilia and extracellular matrix tissue. According to the genetic test results and clinical phenotype analysis, the family was finally diagnosed with Joubert syndrome combined with Keratoconus and Klinefelter syndrome. Discussion In this study, we report a proband in a Han Chinese family with both Joubert syndrome and X-linked Klinefelter syndrome as well as keratoconus, and the phenotype spectrum of CPLANE1-Joubert syndrome may be expanded accordingly. Meanwhile, the significance of exome sequencing was emphasized in aiding the clinical diagnosis of complex cases, which is difficult to make.
Collapse
Affiliation(s)
- Xinhe Fang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Meijiao Ma
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Weining Rong
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Yuan-Yuan Lian
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Xueli Wu
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Yongying Gao
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Hui-Ping Li
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Xunlun Sheng
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| |
Collapse
|
5
|
Matczyńska E, Beć-Gajowniczek M, Sivitskaya L, Gregorczyk E, Łyszkiewicz P, Szymańczak R, Jędrzejowska M, Wylęgała E, Krawczyński MR, Teper S, Boguszewska-Chachulska A. Optimised, Broad NGS Panel for Inherited Eye Diseases to Diagnose 1000 Patients in Poland. Biomedicines 2024; 12:1355. [PMID: 38927562 PMCID: PMC11202224 DOI: 10.3390/biomedicines12061355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Advances in gene therapy and genome editing give hope that new treatments will soon be available for inherited eye diseases that together affect a significant proportion of the adult population. New solutions are needed to make genetic diagnosis fast and affordable. This is the first study of such a large group of patients with inherited retinal dystrophies (IRD) and inherited optic neuropathies (ION) in the Polish population. It is based on four years of diagnostic analysis using a broad, targeted NGS approach. The results include the most common pathogenic variants, as well as 91 novel causative variants, including frameshifts in the cumbersome RPGR ORF15 region. The high frequency of the ABCA4 complex haplotype p.(Leu541Pro;Ala1038Val) was confirmed. Additionally, a deletion of exons 22-24 in USH2A, probably specific to the Polish population, was uncovered as the most frequent copy number variation. The diagnostic yield of the broad NGS panel reached 64.3% and is comparable to the results reported for genetic studies of IRD and ION performed for other populations with more extensive WES or WGS methods. A combined approach to identify genetic causes of all known diseases manifesting in the posterior eye segment appears to be the optimal choice given the currently available treatment options and advanced clinical trials.
Collapse
Affiliation(s)
- Ewa Matczyńska
- Genomed S.A., 02-971 Warsaw, Poland
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | | | | | | | | | | | | | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Maciej R. Krawczyński
- Chair and Department of Medical Genetics, Poznań University of Medical Sciences, 61-701 Poznań, Poland
- Centers for Medical Genetics Genesis, 60-529 Poznań, Poland
| | - Sławomir Teper
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | | |
Collapse
|
6
|
Han J, Joo K, Kim US, Woo SJ, Lee EK, Lee JY, Park TK, Kim SJ, Byeon SH. Voretigene Neparvovec for the Treatment of RPE65-associated Retinal Dystrophy: Consensus and Recommendations from the Korea RPE65-IRD Consensus Paper Committee. KOREAN JOURNAL OF OPHTHALMOLOGY 2023; 37:166-186. [PMID: 36950921 PMCID: PMC10151174 DOI: 10.3341/kjo.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Mutations in the RPE65 gene, associated with Leber congenital amaurosis, early-onset severe retinal dystrophy, and retinitis pigmentosa, gained growing attention since gene therapy for patients with RPE65-associated retinal dystrophy is available in clinical practice. RPE65 gene accounts for a very small proportion of patients with inherited retinal degeneration, especially Asian patients. Because RPE65-associated retinal dystrophy shares common clinical characteristics, such as early-onset severe nyctalopia, nystagmus, low vision, and progressive visual field constriction, with retinitis pigmentosa by other genetic mutations, appropriate genetic testing is essential to make a correct diagnosis. Also, fundus abnormalities can be minimal in early childhood, and the phenotype is highly variable depending on the type of mutations in RPE65-associated retinal dystrophy, which makes a diagnostic difficulty. The aim of this paper is to review the epidemiology of RPE65-associated retinal dystrophy, mutation spectrum, genetic diagnosis, clinical characteristics, and voretigene neparvovec, a gene therapy product for the treatment of RPE65-related retinal dystrophy.
Collapse
Affiliation(s)
- Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Ungsoo Samuel Kim
- Department of Ophthalmology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong,
Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon,
Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | | |
Collapse
|
7
|
Skorczyk-Werner A, Sowińska-Seidler A, Wawrocka A, Walczak-Sztulpa J, Krawczyński MR. Molecular background of Leber congenital amaurosis in a Polish cohort of patients-novel variants discovered by NGS. J Appl Genet 2023; 64:89-104. [PMID: 36369640 PMCID: PMC9837007 DOI: 10.1007/s13353-022-00733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophies and the most frequent cause of congenital blindness in children. To date, 25 genes have been implicated in the pathogenesis of this rare disorder. Performing an accurate molecular diagnosis is crucial as gene therapy is becoming available. This study aimed to report the molecular basis of Leber congenital amaurosis, especially novel and rare variants in 27 Polish families with a clinical diagnosis of LCA fully confirmed by molecular analyses. Whole exome sequencing or targeted next-generation sequencing (NGS) of inherited retinal dystrophies-associated (IRD) genes was applied to identify potentially pathogenic variants. Bidirectional Sanger sequencing and quantitative PCR (qPCR) were carried out for validation and segregation analysis of the variants identified within the families. We identified 28 potentially pathogenic variants, including 11 novel, in 8 LCA genes: CEP290, CRB1, GUCY2D, NMNAT1, RPGRIP1, CRX, LRAT1, and LCA5. This study expands the mutational spectrum of the LCA genes. Moreover, these results, together with the conclusions from our previous studies, allow us to point to the most frequently mutated genes and variants in the Polish cohort of LCA patients.
Collapse
Affiliation(s)
- Anna Skorczyk-Werner
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Maciej Robert Krawczyński
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
8
|
Duan W, Zhou T, Jiang H, Zhang M, Hu M, Zhang L. A novel nonsense variant (c.1499C>G) in CRB1 caused Leber congenital amaurosis-8 in a Chinese family and a literature review. BMC Med Genomics 2022; 15:197. [PMID: 36115989 PMCID: PMC9482190 DOI: 10.1186/s12920-022-01356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/09/2022] [Indexed: 12/04/2022] Open
Abstract
Background Leber’s congenital amaurosis (LCA) is a severe hereditary retinopathy disease that is characterized by early and severe reduction of vision, nystagmus, and sluggish or absent pupillary responses. To date, the pathogenesis of LCA remains unclear, and the majority of cases are caused by autosomal recessive inheritance. In this study, we explored the variant in the Crumbs homologue 1 (CRB1) gene in a Chinese family with LCA.
Methods We conducted comprehensive ocular examinations and collected 5 ml of blood samples from members of a Chinese family with LCA. A pathogenic variant was identified by capturing (the panel in NGS) and Sanger sequencing validation. Results A nonsense variant (c.1499C>G) in the 6th exon of CRB1 gene in a Chinese family with LCA was identified, which predicted a change in the protein p. S500*, may lead to loss of gene function. We summarized the 76 variants reported thus far in CRB1 that caused LCA8. Conclusions This study reported a novel variant c.1499C>G (p. S500*) of the CRB1 gene occurred in a Chinese family with LCA, thus expanding the spectrum of CRB1 variants causing LCA.
Collapse
|
9
|
Iosifidis C, Liu J, Gale T, Ellingford JM, Campbell C, Ingram S, Chandler K, Parry NRA, Black GC, Sergouniotis PI. Clinical and genetic findings in TRPM1-related congenital stationary night blindness. Acta Ophthalmol 2022; 100:e1332-e1339. [PMID: 35633130 DOI: 10.1111/aos.15186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Congenital stationary night blindness (CSNB) is a heterogeneous group of Mendelian retinal disorders that present in childhood. Biallelic variants altering the protein-coding region of the TRPM1 gene are one of the commonest causes of CSNB. Here, we report the clinical and genetic findings in 10 unrelated individuals with TRPM1-retinopathy. METHODS Study subjects were recruited through a tertiary clinical ophthalmic genetic service at Manchester, UK. All participants underwent visual electrodiagnostic testing and panel-based genetic analysis. RESULTS Study subjects had a median age of 8 years (range: 3-20 years). All probands were myopic and had electroretinographic findings in keeping with complete CSNB. Notably, three probands reported no night vision problems. Fourteen different disease-associated TRPM1 variants were detected. One individual was homozygous for the NM_001252024.2 (TRPM1):c.965 + 29G>A variant and a mini-gene assay highlighted that this change results in mis-splicing and premature protein termination. Additionally, two unrelated probands who had CSNB and mild neurodevelopmental abnormalities were found to carry a 15q13.3 microdeletion. This copy number variant encompasses seven genes, including TRPM1, and was encountered in the heterozygous state and in trans with a missense TRPM1 variant in each case. CONCLUSION Our findings highlight the importance of comprehensive genomic analysis, beyond the exons and protein-coding regions of genes, for individuals with CSNB. When this characteristic retinal phenotype is accompanied by extraocular findings (including learning and/or behavioural difficulties), a 15q13.3 microdeletion should be suspected. Focused analysis (e.g. microarray testing) is recommended to look for large-scale deletions encompassing TRPM1 in patients with CSNB and neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Christos Iosifidis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
- Manchester Royal Eye Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Jingshu Liu
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
| | - Theodora Gale
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Jamie M. Ellingford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Christopher Campbell
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Stuart Ingram
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Kate Chandler
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Neil R. A. Parry
- Manchester Royal Eye Hospital Manchester University NHS Foundation Trust Manchester UK
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
| | - Graeme C. Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Panagiotis I. Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
- Manchester Royal Eye Hospital Manchester University NHS Foundation Trust Manchester UK
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| |
Collapse
|
10
|
Sallum JMF, Kaur VP, Shaikh J, Banhazi J, Spera C, Aouadj C, Viriato D, Fischer MD. Epidemiology of Mutations in the 65-kDa Retinal Pigment Epithelium (RPE65) Gene-Mediated Inherited Retinal Dystrophies: A Systematic Literature Review. Adv Ther 2022; 39:1179-1198. [PMID: 35098484 PMCID: PMC8918161 DOI: 10.1007/s12325-021-02036-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Inherited retinal dystrophies (IRDs) represent a genetically diverse group of progressive, visually debilitating diseases. Adult and paediatric patients with vision loss due to IRD caused by biallelic mutations in the 65-kDa retinal pigment epithelium (RPE65) gene are often clinically diagnosed as retinitis pigmentosa (RP), and Leber congenital amaurosis (LCA). This study aimed to understand the epidemiological landscape of RPE65 gene-mediated IRD through a systematic review of the literature, as the current evidence base for its epidemiology is very limited. METHODS Medline, Embase, and other databases were searched for articles on the epidemiology of RPE65 gene-mediated IRDs from inception until June 2021. Studies were included if they were original research articles reporting the epidemiology of RP and LCA and/or proportion of RPE65 gene mutations in these clinically diagnosed or molecularly confirmed IRDs patients. RESULTS A total of 100 studies with relevant data were included in this systematic review. The range for prevalence of LCA and RP in the literature was 1.20-2.37 and 11.09-26.43 per 100,000, respectively. The proportion of RPE65 mutations in clinically diagnosed patients with LCA was found to be between ~ 2-16% within the US and major European countries (France, Germany, Italy, Spain, and the UK). This range was also comparable to our findings in the Asian region for RPE65-LCA (1.26-16.67%). Similarly, for these European countries, RPE65-RP was estimated between 0.23 and 1.94%, and RPE65-IRD range was 1.2-14%. Further, in the Americas region, mutations in RPE65 were reported to cause 1-3% of RP and 0.8-3.7% of IRD cases. Lastly, the RPE65-IRD range was 4.81-8% in the Middle East region. CONCLUSIONS There are significant variations in reporting of RPE65 proportions within countries as well as regions. Generating robust epidemiological evidence on RPE65 gene-mediated IRDs would be fundamental to support rare disease awareness, timely therapeutic intervention, and public health decision-making.
Collapse
Affiliation(s)
- Juliana M F Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo, Brazil
| | | | | | | | | | | | | | - M Dominik Fischer
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
11
|
Kayazawa T, Kuniyoshi K, Hatsukawa Y, Fujinami K, Yoshitake K, Tsunoda K, Shimojo H, Iwata T, Kusaka S. Clinical course of a Japanese girl with Leber congenital amaurosis associated with a novel nonsense pathogenic variant in NMNAT1: a case report and mini review. Ophthalmic Genet 2022; 43:400-408. [PMID: 35026968 DOI: 10.1080/13816810.2021.2023195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Leber congenital amaurosis (LCA), although rare, is one of the most severe forms of early-onset inherited retinal dystrophy (IRD). Here, we review the molecular genetics and phenotypic characteristics of patients with NMNAT1-associated IRD. The longitudinal clinical and molecular findings of a Japanese girl diagnosed with LCA associated with pathogenic variants in NMNAT1 c.648delG, (p.Trp216Ter*) and c.709C>T (p.Arg237Cys) have been described to highlight the salient clinical features of NMNAT1-associated IRD.
Collapse
Affiliation(s)
- Tomoyasu Kayazawa
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshikazu Hatsukawa
- Department of Ophthalmology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Genetics, UCL Institute of Ophthalmology Associated with Moorfields Eye Hospital, London, UK.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Graduate School of Agricultural and Life Science, Faculty of Agriculture, The University of Tokyo, Tokyo, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Hiroshi Shimojo
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Beryozkin A, Aweidah H, Carrero Valenzuela RD, Berman M, Iguzquiza O, Cremers FPM, Khan MI, Swaroop A, Amer R, Khateb S, Ben-Yosef T, Sharon D, Banin E. Retinal Degeneration Associated With RPGRIP1: A Review of Natural History, Mutation Spectrum, and Genotype-Phenotype Correlation in 228 Patients. Front Cell Dev Biol 2021; 9:746781. [PMID: 34722527 PMCID: PMC8551679 DOI: 10.3389/fcell.2021.746781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose:RPGRIP1 encodes a ciliary protein expressed in the photoreceptor connecting cilium. Mutations in this gene cause ∼5% of Leber congenital amaurosis (LCA) worldwide, but are also associated with cone–rod dystrophy (CRD) and retinitis pigmentosa (RP) phenotypes. Our purpose was to clinically characterize RPGRIP1 patients from our cohort, collect clinical data of additional RPGRIP1 patients reported previously in the literature, identify common clinical features, and seek genotype–phenotype correlations. Methods: Clinical data were collected from 16 patients of our cohort and 212 previously reported RPGRIP1 patients and included (when available) family history, best corrected visual acuity (BCVA), refraction, comprehensive ocular examination, optical coherence tomography (OCT) imaging, visual fields (VF), and full-field electroretinography (ffERG). Results: Out of 228 patients, the majority (197, 86%) were diagnosed with LCA, 18 (7%) with RP, and 13 (5%) with CRD. Age of onset was during early childhood (n = 133, average of 1.7 years). All patients but 6 had moderate hyperopia (n = 59, mean of 4.8D), and average BCVA was 0.06 Snellen (n = 124; only 10 patients had visual acuity [VA] > 0.10 Snellen). On funduscopy, narrowing of blood vessels was noted early in life. Most patients had mild bone spicule-like pigmentation starting in the midperiphery and later encroaching upon the posterior pole. OCT showed thinning of the outer nuclear layer (ONL), while cystoid changes and edema were relatively rare. VF were usually very constricted from early on. ffERG responses were non-detectable in the vast majority of cases. Most of the mutations are predicted to be null (363 alleles), and 93 alleles harbored missense mutations. Missense mutations were identified only in two regions: the RPGR-interacting domain and the C2 domains. Biallelic null mutations are mostly associated with a severe form of the disease, whereas biallelic missense mutations usually cause a milder disease (mostly CRD). Conclusion: Our results indicate that RPGRIP1 biallelic mutations usually cause severe retinal degeneration at an early age with a cone–rod pattern. However, most of the patients exhibit preservation of some (usually low) BCVA for a long period and can potentially benefit from gene therapy. Missense changes appear only in the conserved domains and are associated with a milder phenotype.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hamzah Aweidah
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Myriam Berman
- Ophthalmology, Clinical Department, Faculty of Medicine, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Oscar Iguzquiza
- Neurology, Clinical Department, Faculty of Medicine, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Radgonde Amer
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Ben-Yosef
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Zhu L, Ouyang W, Zhang M, Wang H, Li S, Meng X, Yin ZQ. Molecular genetics with clinical characteristics of Leber congenital amaurosis in the Han population of western China. Ophthalmic Genet 2021; 42:392-401. [PMID: 33970760 DOI: 10.1080/13816810.2021.1904417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Purpose: Leber congenital amaurosis (LCA) is one of the earliest inherited retinal dystrophies (IRD) that leads to blindness. To date, there have been 25 LCA-associated genes reported in China as well as other countries. The current study aimed to present the dominant molecular genetics and clinical features of LCA in the Han population of western China.Methods: Our study comprised 37 patients with strictly defined Leber congenital amaurosis in a cohort of IRD (2009-2019). The mutations were detected by targeted next-generation sequencing (NGS), Sanger sequencing, and segregation analysis. The patients underwent comprehensive clinical examinations, analysis of phenotypes and genotypes.Results: Out of the 37 patients, 34 harbored known LCA genes; the detection rate of mutations was 91.9%. Forty-seven different alleles incorporated 21 novel mutations; 8 were known LCA-associated genes. The three most frequently mutated genes included CRB1 (27.0%), RDH12 (24.3%), and RPGRIP1 (18.9%). The CRB1-associated LCA showed a pigmented fundus; the RDH12-associated LCA featured macular atrophy. Our results revealed that CRB1 and RPGRIP1 genes occupied a greater proportion in the western Chinese population. The proportion of these two genes was similar in other regions of China as well. The difference existed in a larger proportion of RDH12-associated LCA in the western Chinese population.Conclusions: The new findings in our study group polished the spectrum of the novel mutations and phenotypes of LCA with regional and ethnic variations. This comprehensive database can provide essential information for gene therapies.
Collapse
Affiliation(s)
- Luyao Zhu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Army Medical University, Chongqing, China
| | - Wangbin Ouyang
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Army Medical University, Chongqing, China
| | - Minfang Zhang
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Army Medical University, Chongqing, China
| | - Hao Wang
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Army Medical University, Chongqing, China
| | - Shiying Li
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Army Medical University, Chongqing, China
| | - Xiaohong Meng
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Army Medical University, Chongqing, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Army Medical University, Chongqing, China
| |
Collapse
|