1
|
Xin Z, Xin C, Huo J, Liu Q, Dong H, Li R, Liu Y. Neuroprotective Effect of a Multistrain Probiotic Mixture in SOD1 G93A Mice by Reducing SOD1 Aggregation and Targeting the Microbiota-Gut-Brain Axis. Mol Neurobiol 2024; 61:10051-10071. [PMID: 38349516 PMCID: PMC11584480 DOI: 10.1007/s12035-024-03988-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 11/24/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the selective loss of motor neurons. A bidirectional communication system known as the "microbiota-gut-brain" axis has a regulatory function in neurodegenerative disorders. The impact of probiotics on ALS through the "microbiota-gut-brain" axis remains uncertain. A longitudinal investigation was conducted to examine the alterations in the structure of the ileum and colon in mutant superoxide dismutase 1 (SOD1G93A) transgenic mice models of ALS by using immunofluorescence and Western blotting. Subsequently, the mice were administered a multistrain probiotic mixture (LBE) or vehicle orally, starting from 60 days of age until the terminal stage of the disease. The effects of these agents on the behavior, gut microbiota, microbial metabolites, and pathological processes of the spinal and intestine of SOD1G93A mice were analyzed, with a focus on exploring potential protective mechanisms. SOD1G93A mice exhibit various structural abnormalities in the intestine. Oral administration of LBE improved the proinflammatory response, reduced aberrant superoxide dismutase 1 (SOD1) aggregation, and protected neuronal cells in the intestine and spinal cord of SOD1G93A mice. Furthermore, LBE treatment resulted in a change in intestinal microbiota, an increase in short-chain fatty acid levels, and an enhancement in autophagy flux. SOD1G93A mice exhibited various structural abnormalities in the intestine. LBE can improve the proinflammatory response, reduce aberrant SOD1 aggregation, and protect neuronal cells in the spinal cord and intestine of SOD1G93A mice. The positive effect of LBE can be attributed to increased short-chain fatty acids and enhanced autophagy flux.
Collapse
Affiliation(s)
- Zikai Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, People's Republic of China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, People's Republic of China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China.
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, 050000, People's Republic of China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Lv B, Fan K, Su C, Xu D, Pan J. Metabolic Disturbances in a Mouse Model of MPTP/Probenecid-Induced Parkinson's Disease: Evaluation Using Liquid Chromatography-Mass Spectrometry. Neuropsychiatr Dis Treat 2024; 20:1629-1639. [PMID: 39220601 PMCID: PMC11365497 DOI: 10.2147/ndt.s471744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Parkinson's disease (PD) is a common neurodegenerative disease that severely affects patients' daily lives and places a significant burden on the global economy. There are currently no specific biomarkers for distinguishing between the different stages of PD. Methods We divided 78 mice into six equal groups, including five model PD groups (W1-W5; based on the PD stage induced by length of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/propofol induction time) and a control group. Then, we used metabolomics technology to detect the serum small-molecule metabolites present in each group. Ultimately, we screened for potential biomarkers using the variable importance in the projection of the orthogonal partial least squares discriminant analysis and the coefficient value of LASSO ordinal logistic regression. Results We identified 12 potential biomarkers, including dehydroepiandrosterone sulfate, pipecolic acid, N-acetylleucine, 2-aminoadipic acid, L-tyrosine, uric acid, and 5-hydroxyindoleacetaldehyde. Pathway analysis revealed their involvement in amino acid metabolism, caffeine metabolism, steroid hormone biosynthesis, and purine metabolism. Additionally, the receiver operating characteristic curve indicated that a biomarker panel comprising the 12 biomarkers could differentiate between the different PD stages. Conclusion Different PD stages are characterized by different metabolites. The biomarkers identified in this study are helpful to understand the PD process.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Bo Lv
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Kai Fan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Cunjin Su
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Delai Xu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Chourpiliadis C, Seitz C, Lovik A, Joyce EE, Pan L, Hu Y, Kläppe U, Samuelsson K, Press R, Ingre C, Fang F. Lifestyle and medical conditions in relation to ALS risk and progression-an introduction to the Swedish ALSrisc Study. J Neurol 2024; 271:5447-5459. [PMID: 38878106 PMCID: PMC11319377 DOI: 10.1007/s00415-024-12496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND This study was an introduction to the Swedish ALSrisc Study and explored the association of lifestyle and medical conditions, with risk and progression of amyotrophic lateral sclerosis (ALS). METHODS We included 265 newly diagnosed ALS patients during 2016-2022 in Stockholm and 207 ALS-free siblings and partners of the patients as controls. Information on body mass index (BMI), smoking, and history of head injuries, diabetes mellitus, hypercholesterolemia, and hypertension was obtained through the Euro-MOTOR questionnaire at recruitment. Patients were followed from diagnosis until death, invasive ventilation, or November 30, 2022. RESULTS Higher BMI at recruitment was associated with lower risk for ALS (OR 0.89, 95%CI 0.83-0.95), especially among those diagnosed after 65 years. One unit increase in the average BMI during the 3 decades before diagnosis was associated with a lower risk for ALS (OR 0.94, 95%CI 0.89-0.99). Diabetes was associated with lower risk of ALS (OR 0.38, 95%CI 0.16-0.90), while hypercholesterolemia was associated with higher risk of ALS (OR 2.10, 95%CI 1.13-3.90). Higher BMI at diagnosis was associated with lower risk of death (HR 0.91, 95%CI 0.84-0.98), while the highest level of smoking exposure (in pack-years) (HR 1.90, 95%CI 1.20-3.00), hypercholesterolemia (HR 1.84, 95%CI 1.06-3.19), and hypertension (HR 1.76, 95%CI 1.03-3.01) were associated with higher risk of death, following ALS diagnosis. CONCLUSIONS Higher BMI and diabetes were associated with lower risk of ALS. Higher BMI was associated with lower risk of death, whereas smoking (especially in high pack-years), hypercholesterolemia, and hypertension were associated with higher risk of death after ALS diagnosis.
Collapse
Affiliation(s)
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anikó Lovik
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Emily E Joyce
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yihan Hu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Kläppe
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Kristin Samuelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Rayomand Press
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Lee I, Mitsumoto H, Lee S, Kasarskis E, Rosenbaum M, Factor-Litvak P, Nieves JW. Higher Glycemic Index and Glycemic Load Diet Is Associated with Slower Disease Progression in Amyotrophic Lateral Sclerosis. Ann Neurol 2024; 95:217-229. [PMID: 37975189 PMCID: PMC10842093 DOI: 10.1002/ana.26825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE High-caloric diets may slow the progression of amyotrophic lateral sclerosis; however, key macronutrients have not been identified. We examined whether dietary macronutrients are associated with the rate of progression and length of survival among the prospective cohort study participants. METHODS Participants with a confirmed diagnosis of sporadic amyotrophic lateral sclerosis enrolled in the Multicenter Cohort Study of Oxidative Stress were included (n = 304). We evaluated baseline macronutrient intake assessed by food frequency questionnaire in relation to change in revised amyotrophic lateral sclerosis functional rating scale total-score, and tracheostomy-free survival using linear regression and Cox proportional hazard models. Baseline age, sex, disease duration, diagnostic certainty, body mass index, bulbar onset, revised amyotrophic lateral sclerosis functional rating scale total-score, and forced vital capacity were included as covariates. RESULTS Baseline higher glycemic index and load were associated with less decline of revised amyotrophic lateral sclerosis functional rating scale total score at 3-month follow-up (β = -0.13, 95% CI -0.2, -0.01, p = 0.03) and (β = -0.01, 95% CI -0.03, -0.0007, p = 0.04), respectively. Glycemic index second-quartile, third-quartile, and fourth-quartile groups were associated with less decline at 3 months by 1.9 (95% CI -3.3, -0.5, p = 0.008), 2.0 (95% CI -3.3, -0.6, p = 0.006), and 1.6 (95% CI -3.0, -0.2, p = 0.03) points compared with the first-quartile group; the glycemic load fourth-quartile group had 1.4 points less decline compared with the first-quartile group (95% CI -2.8, 0.1, p = 0.07). Higher glycemic index was associated with a trend toward longer tracheostomy-free survival (HR 0.97, 95% CI 0.93, 1.00, p = 0.07). INTERPRETATION Higher dietary glycemic index and load are associated with slower disease progression in amyotrophic lateral sclerosis. ANN NEUROL 2024;95:217-229.
Collapse
Affiliation(s)
- Ikjae Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hiroshi Mitsumoto
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seonjoo Lee
- Department of Biostatistics and Psychiatry, Columbia University, New York, NY, USA
- Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Edward Kasarskis
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Michael Rosenbaum
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jeri W Nieves
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
5
|
Ali Z, Godoy-Corchuelo JM, Martins-Bach AB, Garcia-Toledo I, Fernández-Beltrán LC, Nair RR, Spring S, Nieman BJ, Jimenez-Coca I, Bains RS, Forrest H, Lerch JP, Miller KL, Fisher EMC, Cunningham TJ, Corrochano S. Mutation in the FUS nuclear localisation signal domain causes neurodevelopmental and systemic metabolic alterations. Dis Model Mech 2023; 16:dmm050200. [PMID: 37772684 PMCID: PMC10642611 DOI: 10.1242/dmm.050200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.
Collapse
Affiliation(s)
- Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Juan M. Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Aurea B. Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Irene Garcia-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Remya R. Nair
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Brian J. Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Rasneer S. Bains
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Hamish Forrest
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas J. Cunningham
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| |
Collapse
|
6
|
Qu L, Liu F, Fang Y, Wang L, Chen H, Yang Q, Dong H, Jin L, Wu W, Sun D. Improvement in Zebrafish with Diabetes and Alzheimer's Disease Treated with Pasteurized Akkermansia muciniphila. Microbiol Spectr 2023; 11:e0084923. [PMID: 37191572 PMCID: PMC10269592 DOI: 10.1128/spectrum.00849-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023] Open
Abstract
Diabetes and Alzheimer's disease (AD) are associated with specific changes in the composition of the intestinal flora. Studies have shown that the supplementation with pasteurized Akkermansia muciniphila has therapeutic and preventive effects on diabetes. However, it is not clear whether there is any association with improvement in and prevention of Alzheimer's disease and diabetes with Alzheimer's disease. Here, we found that pasteurized Akkermansia muciniphila can significantly improve the blood glucose, body mass index, and diabetes indexes of zebrafish with diabetes mellitus complicated with Alzheimer's disease and also alleviate the related indexes of Alzheimer's disease. The memory, anxiety, aggression, and social preference behavior of zebrafish with combined type 2 diabetes mellitus (T2DM) and Alzheimer's disease (TA zebrafish) were significantly improved after pasteurized Akkermansia muciniphila treatment. Moreover, we examined the preventive effect of pasteurized Akkermansia muciniphila on diabetes mellitus complicated with Alzheimer's disease. The results showed that the zebrafish in the prevention group were better in terms of biochemical index and behavior than the zebrafish in the treatment group. These findings provide new ideas for the prevention and treatment of diabetes mellitus complicated with Alzheimer's disease. IMPORTANCE The interaction between intestinal microflora and host affects the progression of diabetes and Alzheimer's disease. As a recognized next-generation probiotic, Akkermansia muciniphila has been shown to play a key role in the progression of diabetes and Alzheimer's disease, but whether A. muciniphila can improve diabetes complicated with Alzheimer's disease and its potential mechanism are unclear. In this study, a new zebrafish model of diabetes mellitus complicated with Alzheimer's disease was established, and the effect of Akkermansia muciniphila on diabetes mellitus complicated with Alzheimer's disease is discussed. The results showed that Akkermansia muciniphila after pasteurization significantly improved and prevented diabetes mellitus complicated with Alzheimer's disease. Treatment with pasteurized Akkermansia muciniphila improved the memory, social preference, and aggressive and anxiety behavior of TA zebrafish and alleviated the pathological characteristics of T2DM and AD. These results provide a new prospect for probiotics in the treatment of diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| |
Collapse
|
7
|
Meneses AD, Koga S, Li Z, O’Leary J, Li F, Chen K, Murakami A, Qiao W, Kurti A, Heckman MG, White L, Xie M, Chen Y, Finch NA, Lim MJ, Delenclos M, DeTure MA, Linares C, Martin NB, Ikezu TC, van Blitterswijk MM, Wu LJ, McLean PJ, Rademakers R, Ross OA, Dickson DW, Bu G, Zhao N. APOE2 Exacerbates TDP-43 Related Toxicity in the Absence of Alzheimer Pathology. Ann Neurol 2023; 93:830-843. [PMID: 36546684 PMCID: PMC10471132 DOI: 10.1002/ana.26580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies. METHODS We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice. Behavior tests were performed across ages. Animals were harvested at 11 months of age and TDP-43 overexpression-related neurodegeneration and gliosis were assessed. To further address the human relevance, we analyzed the association of APOE with TDP-43 pathology in 160 postmortem brains from autopsy-confirmed amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) in the Mayo Clinic Brain Bank. RESULTS We found that TDP-43 overexpression induced motor function deficits, neuronal loss, and gliosis in the motor cortex, especially in APOE2 mice, with much milder or absent effects in APOE3, APOE4, or Apoe-KO mice. In the motor cortex of the ALS and FTLD-MND postmortem human brains, we found that the APOE2 allele was associated with more severe TDP-43-positive dystrophic neurites. INTERPRETATION Our data suggest a genotype-specific effect of APOE on TDP-43 proteinopathy and neurodegeneration in the absence of AD pathology, with the strongest association seen with APOE2. ANN NEUROL 2023;93:830-843.
Collapse
Affiliation(s)
- Axel D. Meneses
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Clinical and Translational Science Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Justin O’Leary
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Fuyao Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Kai Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Aya Murakami
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G. Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Launia White
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - NiCole A. Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Melina J. Lim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael A. DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Tadafumi C. Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Long-Jun Wu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
8
|
Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegeneration. Commun Biol 2022; 5:1340. [PMID: 36477191 PMCID: PMC9729297 DOI: 10.1038/s42003-022-04295-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The human microbiota is believed to influence health. Microbiome dysbiosis may be linked to neurological conditions like Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. We report the ability of a probiotic bacterial strain in halting neurodegeneration phenotypes. We show that Lacticaseibacillus rhamnosus HA-114 is neuroprotective in C. elegans models of amyotrophic lateral sclerosis and Huntington's disease. Our results show that neuroprotection from L. rhamnosus HA-114 is unique from other L. rhamnosus strains and resides in its fatty acid content. Neuroprotection by L. rhamnosus HA-114 requires acdh-1/ACADSB, kat-1/ACAT1 and elo-6/ELOVL3/6, which are associated with fatty acid metabolism and mitochondrial β-oxidation. Our data suggest that disrupted lipid metabolism contributes to neurodegeneration and that dietary intervention with L. rhamnosus HA-114 restores lipid homeostasis and energy balance through mitochondrial β-oxidation. Our findings encourage the exploration of L. rhamnosus HA-114 derived interventions to modify the progression of neurodegenerative diseases.
Collapse
|
9
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target? Biomedicines 2022; 10:1611. [PMID: 35884915 PMCID: PMC9313171 DOI: 10.3390/biomedicines10071611] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria's role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt's role in diseases, and its possible negative consequences in particular pathological conditions.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Carmen J. Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| |
Collapse
|
10
|
TDP-43 regulates cholesterol biosynthesis by inhibiting sterol regulatory element-binding protein 2. Sci Rep 2022; 12:7988. [PMID: 35568729 PMCID: PMC9107471 DOI: 10.1038/s41598-022-12133-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/22/2022] [Indexed: 12/29/2022] Open
Abstract
Dyslipidemia is considered an essential component of the pathological process of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disease. Although TAR DNA Binding Protein 43 kDa (TDP-43) links both familial and sporadic forms of ALS and cytoplasmic aggregates are a hallmark of most cases of ALS, the molecular mechanism and the in vivo relation of ALS dyslipidemia with TDP-43 have been unclear. To analyze the dyslipidemia-related gene expression by TDP-43, we performed expression microarray and RNA deep sequencing (RNA-Seq) using cell lines expressing high levels of TDP-43 and identified 434 significantly altered genes including sterol regulatory element-binding protein 2 (SREBP2), a master regulator of cholesterol homeostasis and its downstream genes. Elevated TDP-43 impaired SREBP2 transcriptional activity, leading to inhibition of cholesterol biosynthesis. The amount of cholesterol was significantly decreased in the spinal cords of TDP-43-overexpressed ALS model mice and in the cerebrospinal fluids of ALS patients. These results suggested that TDP-43 could play an essential role in cholesterol biosynthesis in relation to ALS dyslipidemia.
Collapse
|
11
|
Gautam M, Gunay A, Chandel NS, Ozdinler PH. Mitochondrial dysregulation occurs early in ALS motor cortex with TDP-43 pathology and suggests maintaining NAD + balance as a therapeutic strategy. Sci Rep 2022; 12:4287. [PMID: 35277554 PMCID: PMC8917163 DOI: 10.1038/s41598-022-08068-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial defects result in dysregulation of metabolomics and energy homeostasis that are detected in upper motor neurons (UMNs) with TDP-43 pathology, a pathology that is predominantly present in both familial and sporadic cases of amyotrophic lateral sclerosis (ALS). While same mitochondrial problems are present in the UMNs of ALS patients with TDP-43 pathology and UMNs of TDP-43 mouse models, and since pathologies are shared at a cellular level, regardless of species, we first analyzed the metabolite profile of both healthy and diseased motor cortex to investigate whether metabolomic changes occur with respect to TDP-43 pathology. High-performance liquid chromatography, high-resolution mass spectrometry and tandem mass spectrometry (HPLC-MS/MS) for metabolite profiling began to suggest that reduced levels of NAD+ is one of the underlying causes of metabolomic problems. Since nicotinamide mononucleotide (NMN) was reported to restore NAD+ levels, we next investigated whether NMN treatment would improve the health of diseased corticospinal motor neurons (CSMN, a.k.a. UMN in mice). prpTDP-43A315T-UeGFP mice, the CSMN reporter line with TDP-43 pathology, allowed cell-type specific responses of CSMN to NMN treatment to be assessed in vitro. Our results show that metabolomic defects occur early in ALS motor cortex and establishing NAD+ balance could offer therapeutic benefit to UMNs with TDP-43 pathology.
Collapse
Affiliation(s)
- Mukesh Gautam
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Aksu Gunay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA. .,Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60611, USA. .,Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Feinberg School of Medicine, Les Turner ALS Center at Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Cattaneo M, Jesus P, Lizio A, Fayemendy P, Guanziroli N, Corradi E, Sansone V, Leocani L, Filippi M, Riva N, Corcia P, Couratier P, Lunetta C. The hypometabolic state: a good predictor of a better prognosis in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:41-47. [PMID: 34353859 DOI: 10.1136/jnnp-2021-326184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Malnutrition and weight loss are negative prognostic factors for survival in patients with amyotrophic lateral sclerosis (ALS). However, energy expenditure at rest (REE) is still not included in clinical practice, and no data are available concerning hypometabolic state in ALS. OBJECTIVE To evaluate in a referral cohort of patients with ALS the prevalence of hypometabolic state as compared with normometabolic and hypermetabolic states, and to correlate it with clinical phenotype, rate of progression and survival. DESIGN We conducted a retrospective study examining REE measured by indirect calorimetry in patients with ALS referred to Milan, Limoges and Tours referral centres between January 2011 and December 2017. Hypometabolism and hypermetabolism states were defined when REE difference between measured and predictive values was ≤-10% and ≥10%, respectively. We evaluated the relationship between these metabolic alterations and measures of body composition, clinical characteristics and survival. RESULTS Eight hundred forty-seven patients with ALS were recruited. The median age at onset was 63.79 years (IQR 55.00-71.17). The male/female ratio was 1.26 (M/F: 472/375). Ten per cent of patients with ALS were hypometabolic whereas 40% were hypermetabolic. Hypometabolism was significantly associated with later need for gastrostomy, non-invasive ventilation and tracheostomy placement. Furthermore, hypometabolic patients with ALS significantly outlived normometabolic (HR=1.901 (95% CI 1.080 to 3.345), p=0.0259) and hypermetabolic (HR=2.138 (95% CI 1.154 to 3.958), p=0.0157) patients. CONCLUSION Hypometabolism in ALS is not uncommon and is associated with slower disease progression and better survival than normometabolic and hypermetabolic subjects. Indirect calorimetry should be performed at least at time of diagnosis because alterations in metabolism are correlated with prognosis.
Collapse
Affiliation(s)
- Marina Cattaneo
- NeuroMuscular Omnicentre (NeMO)-Fondazione Serena Onlus, Milano, Italy.,ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Pierre Jesus
- Nutrition Unit, University Hospital Centre of Limoges, Limoges, France.,Inserm UMR 1094, Tropical Neuroepidemiology, University of Limoges Medical Faculty, Limoges, France
| | - Andrea Lizio
- NeuroMuscular Omnicentre (NeMO)-Fondazione Serena Onlus, Milano, Italy
| | - Philippe Fayemendy
- Inserm UMR 1094, Tropical Neuroepidemiology, University of Limoges Medical Faculty, Limoges, France.,Nutrition Unit, Limoges, France
| | | | - Ettore Corradi
- ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Valeria Sansone
- NeuroMuscular Omnicentre (NeMO)-Fondazione Serena Onlus, Milano, Italy.,Department of Biomedical Sciences of Health, University of Milan, Milano, Italy
| | - Letizia Leocani
- Neurorehabilitation Unit, San Raffaele Hospital, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Vita-Salute San Raffaele University, Milano, Italy.,Neurology Unit, San Raffaele Hospital, Milano, Italy
| | - Nilo Riva
- Neurorehabilitation Unit, San Raffaele Hospital, Milano, Italy.,Neurology Unit, San Raffaele Hospital, Milano, Italy
| | - Philippe Corcia
- ALS Center, University Hospital of Tours, Tours, France.,Inserm Unit 1253, iBrain, Tours, France
| | - Philippe Couratier
- Inserm UMR 1094, Tropical Neuroepidemiology, University of Limoges Medical Faculty, Limoges, France.,Centre de reference maladies rares SLA et autres maladies du neurone moteur, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Christian Lunetta
- NeuroMuscular Omnicentre (NeMO)-Fondazione Serena Onlus, Milano, Italy
| |
Collapse
|
13
|
Diabetes Mellitus and Amyotrophic Lateral Sclerosis: A Systematic Review. Biomolecules 2021; 11:biom11060867. [PMID: 34200812 PMCID: PMC8230511 DOI: 10.3390/biom11060867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder which affects the motor neurons. Growing evidence suggests that ALS may impact the metabolic system, including the glucose metabolism. Several studies investigated the role of Diabetes Mellitus (DM) as risk and/or prognostic factor. However, a clear correlation between DM and ALS has not been defined. In this review, we focus on the role of DM in ALS, examining the different hypotheses on how perturbations of glucose metabolism may interact with the pathophysiology and the course of ALS. METHODS We undertook an independent PubMed literature search, using the following search terms: ((ALS) OR (Amyotrophic Lateral Sclerosis) OR (Motor Neuron Disease)) AND ((Diabetes) OR (Glucose Intolerance) OR (Hyperglycemia)). Review and original articles were considered. RESULTS DM appears not to affect ALS severity, progression, and survival. Contrasting data suggested a protective role of DM on the occurrence of ALS in elderly and an opposite effect in younger subjects. CONCLUSIONS The actual clinical and pathophysiological correlation between DM and ALS is unclear. Large longitudinal prospective studies are needed. Achieving large sample sizes comparable to those of common complex diseases like DM is a challenge for a rare disease like ALS. Collaborative efforts could overcome this specific issue.
Collapse
|
14
|
Ali T, Rehman SU, Khan A, Badshah H, Abid NB, Kim MW, Jo MH, Chung SS, Lee HG, Rutten BPF, Kim MO. Adiponectin-mimetic novel nonapeptide rescues aberrant neuronal metabolic-associated memory deficits in Alzheimer's disease. Mol Neurodegener 2021; 16:23. [PMID: 33849621 PMCID: PMC8042910 DOI: 10.1186/s13024-021-00445-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background Recently, we and other researchers reported that brain metabolic disorders are implicated in Alzheimer’s disease (AD), a progressive, devastating and incurable neurodegenerative disease. Hence, novel therapeutic approaches are urgently needed to explore potential and novel therapeutic targets/agents for the treatment of AD. The neuronal adiponectin receptor 1 (AdipoR1) is an emerging potential target for intervention in metabolic-associated AD. We aimed to validate this hypothesis and explore in-depth the therapeutic effects of an osmotin-derived adiponectin-mimetic novel nonapeptide (Os-pep) on metabolic-associated AD. Methods We used an Os-pep dosage regimen (5 μg/g, i.p., on alternating days for 45 days) for APP/PS1 in amyloid β oligomer-injected, transgenic adiponectin knockout (Adipo−/−) and AdipoR1 knockdown mice. After behavioral studies, brain tissues were subjected to biochemical and immunohistochemical analyses. In separate cohorts of mice, electrophysiolocal and Golgi staining experiments were performed. To validate the in vivo studies, we used human APP Swedish (swe)/Indiana (ind)-overexpressing neuroblastoma SH-SY5Y cells, which were subjected to knockdown of AdipoR1 and APMK with siRNAs, treated with Os-pep and other conditions as per the mechanistic approach, and we proceeded to perform further biochemical analyses. Results Our in vitro and in vivo results show that Os-pep has good safety and neuroprotection profiles and crosses the blood-brain barrier. We found reduced levels of neuronal AdipoR1 in human AD brain tissue. Os-pep stimulates AdipoR1 and its downstream target, AMP-activated protein kinase (AMPK) signaling, in AD and Adipo−/− mice. Mechanistically, in all of the in vivo and in vitro studies, Os-pep rescued aberrant neuronal metabolism by reducing neuronal insulin resistance and activated downstream insulin signaling through regulation of AdipoR1/AMPK signaling to consequently improve the memory functions of the AD and Adipo−/− mice, which was associated with improved synaptic function and long-term potentiation via an AdipoR1-dependent mechanism. Conclusion Our findings show that Os-pep activates AdipoR1/AMPK signaling and regulates neuronal insulin resistance and insulin signaling, which subsequently rescues memory deficits in AD and adiponectin-deficient models. Taken together, the results indicate that Os-pep, as an adiponectin-mimetic novel nonapeptide, is a valuable and promising potential therapeutic candidate to treat aberrant brain metabolism associated with AD and other neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00445-4.
Collapse
Affiliation(s)
- Tahir Ali
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Amjad Khan
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Haroon Badshah
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Noman Bin Abid
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Woo Kim
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeung Hoon Jo
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seung Soo Chung
- Department of Physiology, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Hyoung-Gon Lee
- Department of Biology, The University of Texas at San Antonio, San Antonio, USA
| | - Bart P F Rutten
- Translational Neuroscience and Psychiatry, School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
15
|
Comprehensive metabolic profiling of Parkinson's disease by liquid chromatography-mass spectrometry. Mol Neurodegener 2021; 16:4. [PMID: 33485385 PMCID: PMC7825156 DOI: 10.1186/s13024-021-00425-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background Parkinson’s disease (PD) is a prevalent neurological disease in the elderly with increasing morbidity and mortality. Despite enormous efforts, rapid and accurate diagnosis of PD is still compromised. Metabolomics defines the final readout of genome-environment interactions through the analysis of the entire metabolic profile in biological matrices. Recently, unbiased metabolic profiling of human sample has been initiated to identify novel PD metabolic biomarkers and dysfunctional metabolic pathways, however, it remains a challenge to define reliable biomarker(s) for clinical use. Methods We presented a comprehensive metabolic evaluation for identifying crucial metabolic disturbances in PD using liquid chromatography-high resolution mass spectrometry-based metabolomics approach. Plasma samples from 3 independent cohorts (n = 460, 223 PD, 169 healthy controls (HCs) and 68 PD-unrelated neurological disease controls) were collected for the characterization of metabolic changes resulted from PD, antiparkinsonian treatment and potential interferences of other diseases. Unbiased multivariate and univariate analyses were performed to determine the most promising metabolic signatures from all metabolomic datasets. Multiple linear regressions were applied to investigate the associations of metabolites with age, duration time and stage of PD. The combinational biomarker model established by binary logistic regression analysis was validated by 3 cohorts. Results A list of metabolites including amino acids, acylcarnitines, organic acids, steroids, amides, and lipids from human plasma of 3 cohorts were identified. Compared with HC, we observed significant reductions of fatty acids (FFAs) and caffeine metabolites, elevations of bile acids and microbiota-derived deleterious metabolites, and alterations in steroid hormones in drug-naïve PD. Additionally, we found that L-dopa treatment could affect plasma metabolome involved in phenylalanine and tyrosine metabolism and alleviate the elevations of bile acids in PD. Finally, a metabolite panel of 4 biomarker candidates, including FFA 10:0, FFA 12:0, indolelactic acid and phenylacetyl-glutamine was identified based on comprehensive discovery and validation workflow. This panel showed favorable discriminating power for PD. Conclusions This study may help improve our understanding of PD etiopathogenesis and facilitate target screening for therapeutic intervention. The metabolite panel identified in this study may provide novel approach for the clinical diagnosis of PD in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00425-8.
Collapse
|
16
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
17
|
Medinas DB, Hazari Y, Hetz C. Disruption of Endoplasmic Reticulum Proteostasis in Age-Related Nervous System Disorders. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:239-278. [PMID: 34050870 DOI: 10.1007/978-3-030-67696-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endoplasmic reticulum (ER) stress is a prominent cellular alteration of diseases impacting the nervous system that are associated to the accumulation of misfolded and aggregated protein species during aging. The unfolded protein response (UPR) is the main pathway mediating adaptation to ER stress, but it can also trigger deleterious cascades of inflammation and cell death leading to cell dysfunction and neurodegeneration. Genetic and pharmacological studies in experimental models shed light into molecular pathways possibly contributing to ER stress and the UPR activation in human neuropathies. Most of experimental models are, however, based on the overexpression of mutant proteins causing familial forms of these diseases or the administration of neurotoxins that induce pathology in young animals. Whether the mechanisms uncovered in these models are relevant for the etiology of the vast majority of age-related sporadic forms of neurodegenerative diseases is an open question. Here, we provide a systematic analysis of the current evidence linking ER stress to human pathology and the main mechanisms elucidated in experimental models. Furthermore, we highlight the recent association of metabolic syndrome to increased risk to undergo neurodegeneration, where ER stress arises as a common denominator in the pathogenic crosstalk between peripheral organs and the nervous system.
Collapse
Affiliation(s)
- Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Younis Hazari
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
18
|
Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. J Neurol Sci 2020; 419:117185. [PMID: 33190068 DOI: 10.1016/j.jns.2020.117185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegenerative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua-Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazoxymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid β-N-methylamino-L-alanine, both of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to genotoxic chemicals ("slow toxins") in the early stages of life should be considered in the search for the etiology of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear palsy and Alzheimer's disease.
Collapse
|
19
|
Wannarong T, Ungprasert P. Diabetes mellitus is associated with a lower risk of amyotrophic lateral sclerosis: A systematic review and meta-analysis. Clin Neurol Neurosurg 2020; 199:106248. [PMID: 33031990 DOI: 10.1016/j.clineuro.2020.106248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Previous studies have suggested that diabetes mellitus (DM) could be a protective factor against amyotrophic lateral sclerosis (ALS) although the results are inconsistent. This study aimed to comprehensively investigate this relationship by identifying all available studies and summarizing their results. METHODS A systematic review was conducted in MEDLINE and EMBASE database from inception to January 1st, 2020 to identify cohort studies and case-control studies that investigated the risk of development of ALS among patients with DM versus individuals without DM. Point estimates and standard errors from eligible studies were pooled together using the generic inverse variance method, as described by DerSimonian and Laird. Visualization of the funnel plot was used to assess for the presence of publication bias. RESULTS A total of 1683 articles were identified by the search strategy. After two rounds of review, three cohort studies and eight case-control studies fulfilled the inclusion criteria and were included in the meta-analysis. The risk of developing ALS was significantly lower among patients with DM than individuals without DM with the pooled relative risk of 0.68 (95 % CI, 0.55 - 0.84; I2 81 %). The funnel plot was relatively symmetric and was not suggestive of the presence of publication bias. CONCLUSION A significantly decreased risk of ALS among patients with DM was observed in this meta-analysis.
Collapse
Affiliation(s)
- Thapat Wannarong
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, 11100 Euclid Ave, Cleveland, OH 44118, USA
| | - Patompong Ungprasert
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195 USA.
| |
Collapse
|
20
|
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19:609-633. [PMID: 32709961 PMCID: PMC7948516 DOI: 10.1038/s41573-020-0072-x] [Citation(s) in RCA: 504] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Research Center on Aging, Sherbrooke, QC, Canada.
| | | | - Cecilie Morland
- Department of Pharmaceutical Biosciences, Institute of Pharmacy, University of Oslo, Oslo, Norway
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University of Dusseldorf, Dusseldorf, Germany
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M Flint Beal
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Linda H Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | - Jenni Harvey
- Ninewells Hospital, University of Dundee, Dundee, UK
- Medical School, University of Dundee, Dundee, UK
| | - Ross Jeggo
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - Jack H Jhamandas
- Department of Medicine, University of Albeta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Albeta, Edmonton, AB, Canada
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Clothide Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - William F Martin
- Institute of Molecular Evolution, University of Dusseldorf, Dusseldorf, Germany
| | | | - Paula I Moreira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Klaus-Armin Nave
- Department of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tal Nuriel
- Columbia University Medical Center, New York, NY, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Frédéric Saudou
- University of Grenoble Alpes, Grenoble, France
- INSERM U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France.
| |
Collapse
|
21
|
Liscic RM, Alberici A, Cairns NJ, Romano M, Buratti E. From basic research to the clinic: innovative therapies for ALS and FTD in the pipeline. Mol Neurodegener 2020; 15:31. [PMID: 32487123 PMCID: PMC7268618 DOI: 10.1186/s13024-020-00373-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and Frontotemporal Degeneration (FTD) are neurodegenerative disorders, related by deterioration of motor and cognitive functions and short survival. Aside from cases with an inherited pathogenic mutation, the causes of the disorders are still largely unknown and no effective treatment currently exists. It has been shown that FTD may coexist with ALS and this overlap occurs at clinical, genetic, and molecular levels. In this work, we review the main pathological aspects of these complex diseases and discuss how the integration of the novel pathogenic molecular insights and the analysis of molecular interaction networks among all the genetic players represents a critical step to shed light on discovering novel therapeutic strategies and possibly tailoring personalized medicine approaches to specific ALS and FTD patients.
Collapse
Affiliation(s)
- Rajka Maria Liscic
- Department of Neurology, Johannes Kepler University, Linz, Austria
- School of Medicine, University of Osijek, Osijek, Croatia
| | - Antonella Alberici
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili-University of Brescia, Brescia, Italy
| | - Nigel John Cairns
- College of Medicine and Health and Living Systems Institute, University of Exeter, Exeter, UK
| | - Maurizio Romano
- Department of Life Sciences, Via Valerio 28, University of Trieste, 34127, Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.
| |
Collapse
|
22
|
Storm CS, Kia DA, Almramhi M, Wood NW. Using Mendelian randomization to understand and develop treatments for neurodegenerative disease. Brain Commun 2020; 2:fcaa031. [PMID: 32954289 PMCID: PMC7425289 DOI: 10.1093/braincomms/fcaa031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Common neurodegenerative diseases are thought to arise from a combination of environmental and genetic exposures. Mendelian randomization is a powerful way to leverage existing genetic data to investigate causal relationships between risk factors and disease. In recent years, Mendelian randomization has gathered considerable traction in neurodegenerative disease research, providing valuable insights into the aetiology of these conditions. This review aims to evaluate the impact of Mendelian randomization studies on translational medicine for neurodegenerative diseases, highlighting the advances made and challenges faced. We will first describe the fundamental principles and limitations of Mendelian randomization and then discuss the lessons from Mendelian randomization studies of environmental risk factors for neurodegeneration. We will illustrate how Mendelian randomization projects have used novel resources to study molecular pathways of neurodegenerative disease and discuss the emerging role of Mendelian randomization in drug development. Finally, we will conclude with our view of the future of Mendelian randomization in these conditions, underscoring unanswered questions in this field.
Collapse
Affiliation(s)
- Catherine S Storm
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Demis A Kia
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Mona Almramhi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
23
|
Honda S, Arakawa S, Yamaguchi H, Torii S, Tajima Sakurai H, Tsujioka M, Murohashi M, Shimizu S. Association Between Atg5-independent Alternative Autophagy and Neurodegenerative Diseases. J Mol Biol 2020; 432:2622-2632. [PMID: 31978398 DOI: 10.1016/j.jmb.2020.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular process that degrades intracellular components, including misfolded proteins and damaged organelles. Many neurodegenerative diseases are considered to progress via the accumulation of misfolded proteins and damaged organelles; therefore, autophagy functions in regulating disease severity. There are at least two types of autophagy (canonical autophagy and alternative autophagy), and canonical autophagy has been applied to therapeutic strategies against various types of neurodegenerative diseases. In contrast, the role of alternative autophagy has not yet been clarified, but it is speculated to be involved in the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hirofumi Yamaguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hajime Tajima Sakurai
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masatsune Tsujioka
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Michiko Murohashi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
24
|
Zhou Q, Zhu L, Qiu W, Liu Y, Yang F, Chen W, Xu R. Nicotinamide Riboside Enhances Mitochondrial Proteostasis and Adult Neurogenesis through Activation of Mitochondrial Unfolded Protein Response Signaling in the Brain of ALS SOD1 G93A Mice. Int J Biol Sci 2020; 16:284-297. [PMID: 31929756 PMCID: PMC6949147 DOI: 10.7150/ijbs.38487] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/28/2019] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, the brain stem, and the motor cortex. So far, there is still a lack of effective drugs. Nicotinamide adenine dinucleotide (NAD+) takes part in redox reactions and the NAD-dependent signaling pathway. The NAD+ decline is related with many neurological diseases, leading to the accumulation of neurotoxic protein in the central nervous system. Moreover, the NAD+ supplementation is shown to promote neural stem cells/neuronal precursor cells (NSCs/NPCs) pool maintenance. Regulatory mechanisms and functions of NAD+ metabolism in ALS are still unknown. Thus, we hypothesized the aggregation of human SOD1 toxic protein and the fate of NSCs/NPCs in the ALS disease could be improved by the administration of nicotinamide riboside (NR), an NAD+ precursor. In this study, we treated SOD1G93A transgenic and wild-type mice by the oral administration of 20 mg/ml NR starting at 50 days of age. Effects of NR on the body weight, the motor function, the onset and the survival were assessed during the experiment. The expression of mutant hSOD1 protein, mitochondrial unfolded protein response (UPRmt) related protein, mitophagy markers and NAD+ metabolism related protein were detected by immunoblotting. Effects of NR on the NSCs/NPCs in neurogenic niches of brain were identified by the immunofluorescence staining. Our investigation elucidated that the NR treatment exhibited better hanging wire endurance but did not postpone the onset or extend the life span of SOD1G93A mice. Besides, we observed that the NR repletion promoted the clearance of mitochondrial hSOD1 neurotoxic protein. Meanwhile, the mitochondrial function pathway was disrupted in the brain of SOD1G93A mice. What's more, we demonstrated that the inadequate function of NAD+ salvage synthesis pathway was the primary explanation behind the decline of NAD+, and the NR treatment enhanced the proliferation and migration of NSCs/NPCs in the brain of SOD1G93A mice. At last, we found that levels of UPRmt related protein were significantly increased in the brain of SOD1G93A mice after the NR treatment. In summary, these findings reveal that the administration of NR activates UPRmt signaling, modulates mitochondrial proteostasis and improves the adult neurogenesis in the brain of SOD1G93A mice.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lei Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Weiwen Qiu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yue Liu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fang Yang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wenzhi Chen
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Renshi Xu
- ✉ Corresponding author: Prof. Renshi Xu, or , Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China. Tel: +86 0791-88603798
| |
Collapse
|
25
|
Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol 2019; 138:363-387. [PMID: 30976975 PMCID: PMC6708608 DOI: 10.1007/s00401-019-01978-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023]
Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many "legacy" compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Richard F Seegal
- Professor Emeritus, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
26
|
Zhang QJ, Chen Y, Zou XH, Hu W, Lin XL, Feng SY, Chen F, Xu LQ, Chen WJ, Wang N. Prognostic analysis of amyotrophic lateral sclerosis based on clinical features and plasma surface-enhanced Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900012. [PMID: 30989810 DOI: 10.1002/jbio.201900012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 05/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a wide range of survival times. We aimed to explore prognostic factors related to short survival based on clinical features and plasma metabolic signatures using surface-enhanced Raman spectroscopy (SERS). One hundred and thirty-eight sporadic ALS cases were enrolled serially, including 62 for the short-duration group (≤3 years) and 76 for the long-duration group (>3 years). Multivariate analysis showed that an older age of onset (>60 years; odds ratio [OR] = 3.98, 95% CI: 1.09-14.53), lower body mass index (BMI) (<18.5; OR = 6.80, 95% CI: 1.36-33.92), and lower ALSFRS-R score (<35; OR = 6.03, 95% CI: 1.42-25.63) were associated with higher odds of tracheotomy or death, while a higher uric acid (UA) level showed a protective effect (>356.36 μmol/L; OR = 0.19, 95% CI: 0.05-0.73). SERS analysis showed significant differences between the two groups, and pathway analysis highlighted five main metabolic pathways, including metabolisms of glutathione, pyrimidine, phenylalanine, galactose, and phenylalanine-tyrosine-tryptophan biosynthesis. In conclusion, age of onset, BMI, ALSFRS-R score and UA, together with dysregulation of glucose, amino acid, nucleic acid, and antioxidant metabolism contributed to disease progression, and are therefore potential therapeutic targets for ALS.
Collapse
Affiliation(s)
- Qi-Jie Zhang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Xiao-Huan Zou
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wei Hu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xue-Liang Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Shang-Yuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Fa Chen
- Department of Epidemiology and Health Statistic, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Liu-Qing Xu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| |
Collapse
|
27
|
Type II diabetes mellitus and the incidence of amyotrophic lateral sclerosis. J Neurol 2019; 266:2233-2243. [PMID: 31152300 DOI: 10.1007/s00415-019-09405-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between type II diabetes mellitus (T2DM) and ALS incidence using the National Health Insurance Research Database and Serious Disabling Disease database of Taiwan. METHODS This was a population-based cohort study. The index date was the date of the first T2DM diagnosis + 365 days. We included T2DM patients diagnosis between 2000 and 2013 (n = 2,135,427). These patients were matched by sex, age, urbanization, and insurance premium at a ratio of 1:1 to include patients without diabetes mellitus. Competing risk-adjusted Cox regression analysis was performed to investigate the association between T2DM and the incidence of ALS. RESULTS In the patients not stratified by age, T2DM was not associated with the incidence of ALS after controlling for confounding factors. The interaction test of age subgroup (< 55 and ≥ 55 years) and T2DM on ALS risk was significance (p < 0.001). Subgroup analysis showed that T2DM was negatively associated with ALS in patients whose age at the first T2DM diagnosis was ≥ 55 years. Among T2DM patients, T2DM combined with hypertension was negatively associated with ALS among patients whose age at the first T2DM diagnosis was ≥ 55 years. Among T2DM patients, T2DM combined with hyperlipidemia was positively associated with ALS among patients whose age at the first T2DM diagnosis was < 55 years. CONCLUSIONS The late-onset of T2DM may exert negative association with ALS, especially when combined with hypertension. The early-onset of T2DM may exert positive association with ALS, especially when combined with hyperlipidemia.
Collapse
|