1
|
Gupta A, Choudhary P, Ranjan S, Singh S. Exploring the therapeutic potential of Diosgenin as a Semaphorin-4D antagonist against neurodegenerative disorders. Arch Biochem Biophys 2025; 768:110356. [PMID: 40015468 DOI: 10.1016/j.abb.2025.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Neurodegenerative disorders represent a significant health challenge for the population, with their mechanisms of action being poorly understood. The development of inhibitory pharmaceuticals has encountered several obstacles, resulting in therapies that lacks the necessary efficacy. Neurodegenerative disorders are marked by a gradual deterioration of neurons, leading to a decline in various functions directed by central nervous system (CNS) including motor and non-motor symptoms. Recent focus has turned towards targeting Sema4D as a potential target for mitigating neuroinflammation and inhibiting demyelination, prevalent in various neurodegenerative disorders like Alzheimer's, Parkinson's, Huntington's, multiple sclerosis, etc. A potential answer to this is Ayurvedic phytochemicals. Phytochemicals of the Piperaceae family have been known to reverse the adversities caused by neurodegeneration. In pursuit of effective interventions, this study has conducted In-silico and In-vitro studies to evaluate the efficacy of Piper nigrum and Piper betle bioactive phytochemicals as antagonists against Sema4D. Among these, Diosgenin has emerged with notable promise, demonstrating a remarkable binding affinity of -8.84 kcal/mol with Sema4D. Molecular dynamics simulations (RMSF, RMSD, PCA, SASA, FEL, etc.) have further underscored its stability, exhibiting a consistent complex structure over 100 ns. In addition to its favourable binding properties, Diosgenin has exhibited compelling effects In-vitro. It's not only enhanced cellular viability and proliferation but also exerts protective effects against oxidative stress-induced injury in PC12 cells. These findings suggest Diosgenin's potential as a therapeutic agent against Sema4D, offering a promising avenue in the battle against neurodegenerative diseases. However, further studies are required to elucidate its precise molecular mechanisms, assess its bioavailability and toxicity in vivo, and validate its therapeutic efficacy in animal models and clinical settings.
Collapse
Affiliation(s)
- Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India.
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India; National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India.
| | - Sneha Ranjan
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India.
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India.
| |
Collapse
|
2
|
Ghadge SR, Shimpi PH, Kumbhar VV, Khairnar BB, Nikam VS. Comprehensive evaluation of AChE inhibition by Eulophia ochreata extract utilizing in silico, ex vivo, and in vivo zebrafish models. Brain Res 2025; 1854:149531. [PMID: 40010626 DOI: 10.1016/j.brainres.2025.149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Dementia commonly accompanies various neurodegenerative conditions, notably Alzheimer's disease. The pursuit of natural therapies for these diseases and their related symptoms has garnered widespread global interest. The present study aimed to explore the potential of Eulophia ochreata L. extract, containing phenanthrene active compounds, as an acetylcholinesterase (AChE) inhibitor. Analytical techniques confirmed the presence of phenanthrene compounds in the extract, which were then screened for AChE inhibition through molecular docking, ex vivo assays, and scopolamine-induced cognitive deficits in zebrafish larvae. These phenanthrene compounds, found in the extract of Eulophia ochreata L., exhibited a similar affinity for AChE as the standard drug Donepezil, with comparable interactions. Ex vivo assays using zebrafish larvae lysate and mouse brain homogenate indicated dose-dependent AChE inhibition with increasing extract concentrations. Behavioral assessments, including T and Y maze tests, revealed significant cognition improvement in extract-treated larvae having scopolamine-induced cognitive dysfunction, particularly at 1.3 µg/mL concentration. The combined results from molecular docking, ex vivo assays, and in vivo cognition deficit models underscored the potential of Eulophia ochreata L. extract as an AChE inhibitor, suggesting its phytochemicals could hold therapeutic promise, indicating further validation in mammalian models for translation into clinical therapies.
Collapse
Affiliation(s)
- Shivani R Ghadge
- Department of Pharmacology, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048 MS, India
| | - Pooja H Shimpi
- Department of Pharmacology, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048 MS, India
| | - Vikrant V Kumbhar
- Interdisciplinary School of Science (IDSS), Savitribai Phule Pune University, Ganeshkhind, Pune 411007 MS, India
| | - Bhushan B Khairnar
- Interdisciplinary School of Science (IDSS), Savitribai Phule Pune University, Ganeshkhind, Pune 411007 MS, India
| | - Vandana S Nikam
- Department of Pharmacology, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048 MS, India.
| |
Collapse
|
3
|
Oyovwi MO, Chijiokwu EA, Ben-Azu B, Atere AD, Joseph UG, Ogbutor UG, Udi OA. Potential Roles of Natural Antioxidants in Modulating Neurodegenerative Disease Pathways. Mol Neurobiol 2025:10.1007/s12035-025-04874-w. [PMID: 40202704 DOI: 10.1007/s12035-025-04874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Neurodegenerative diseases, including Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, are increasingly prevalent among aging populations. Oxidative stress contributes to these diseases, leading to cellular damage and neuronal death. Natural antioxidants are being explored as preventive measures. This study aims to assess the effectiveness of natural antioxidants in delaying the onset or progression of neurodegenerative diseases by identifying their specific mechanisms of action. A comprehensive review of existing literature was conducted, focusing on studies that examine the role of natural antioxidants in neuroprotection. Key natural antioxidants, including flavonoids, polyphenls, vitamins C and E, and omega-3 fatty acids, were reviewed and analyzed for their bioavailability, mechanisms of action, and outcomes in both in vitro and in vivo studies. Additionally, clinical trials involving human subjects were considered to provide insights into the translational implications of antioxidant consumption. The findings suggest that several natural antioxidants exhibit neuroprotective properties by modulating oxidative stress, reducing inflammation, and promoting neuronal survival. For instance, flavonoids such as quercetin and resveratrol have shown promise in enhancing cognitive function and mitigating the pathophysiological alterations associated with neurodegeneration. In clinical studies, higher intakes of dietary antioxidants were correlated with a reduced risk of developing neurodegenerative disorders. Natural antioxidants offer potential for preventing neurodegenerative diseases by counteracting oxidative stress and maintaining cellular integrity. Overall, our report recommends that further research is needed to optimize dosages and understand their long-term benefits.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria.
| | - Ejime A Chijiokwu
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Adedeji David Atere
- Department of Medical Laboratory Science, College of Health Sciences, Osun State University, Osogbo, Nigeria
- Neurotoxicology Laboratory, Sefako Makgatho Health Sciences University, Molotlegi St, Ga-Rankuwa Zone 1, Ga-Rankuwa, 0208, South Africa
| | - Uchechukwu Gregory Joseph
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | | | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Yenagoa, Bayelsa State, Nigeria
| |
Collapse
|
4
|
Cheng M, Dou Y. Nanomaterial-based approaches to neurotoxin neutralization in neurodegenerative diseases. Nanomedicine (Lond) 2025:1-13. [PMID: 40181662 DOI: 10.1080/17435889.2025.2487409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Neurodegenerative diseases (NDs) are intricately linked to the accumulation of various neurotoxins, mainly including toxic proteins, inflammatory mediators, excess metal ions, and viral pathogens. Biological neutralization strategies that use agents to competitively bind harmful substances and thus inhibit their pathogenic activity hold promise for direct removal of neurotoxins but face many limitations and challenges in NDs. Nanomaterials provide a potential solution for neurotoxin neutralization in NDs due to their unique physicochemical and biological properties. This review summarizes recent advancements in nanomaterial-based approaches to neurotoxin neutralization in NDs, highlighting the diverse design principles and mechanisms of action. We also discuss the critical role of targeted delivery to optimize neutralization efficiency and the advantages of combining different neutralization mechanisms or introducing other therapeutic components to exert the synergistic effects. Furthermore, we reveal current limitations and future research directions aimed at paving the way for nanomedicine development based on neurotoxin neutralization for the treatment of NDs.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Yan Dou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, P. R. China
| |
Collapse
|
5
|
Kola A, Costanti F, Kahfi J, Emwas AH, Jaremko M, Valensin D. NMR Metabolomic Profiling of Differentiated SH-SY5Y Neuronal Cells: Amyloid-β Toxicity and Protective Effects of Galantamine and Lycorine. Cells 2025; 14:525. [PMID: 40214479 PMCID: PMC11988681 DOI: 10.3390/cells14070525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by metabolic dysregulation, oxidative stress, amyloid-β (Aβ) aggregation, metal dyshomeostasis, and mitochondrial dysfunction. Current treatments provide only symptomatic relief, highlighting the need for novel therapeutic strategies. This study investigates the metabolic effects of the alkaloids galantamine (GAL) and lycorine (LYC) in differentiated SH-SY5Y neuroblastoma cells, an established in vitro model for AD, which acquire a neuronal phenotype upon differentiation. Using untargeted and targeted NMR-based metabolomics combined with multivariate statistical analysis, we analyzed extracellular metabolic profiles under basal conditions and following Aβ42 exposure, both in the presence and absence of GAL and LYC. Our findings reveal distinct metabolic responses to Aβ toxicity, with significant alterations in pyruvate and glutamine metabolism. Both GAL and LYC contributed to the restoration of glutamine and lysine homeostasis, but LYC had a more pronounced effect, better sustaining cellular energy balance and mitochondrial function. Unlike LYC, GAL treatment was associated with pyruvate accumulation, highlighting a distinct metabolic response between the two compounds. These variations may reflect distinct mechanisms of action, potentially influencing their therapeutic roles in counteracting Aβ-induced toxicity. This study highlights the value of metabolic profiling for assessing neuroprotective agents and reinforces the potential of natural alkaloids in this context.
Collapse
Affiliation(s)
- Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Filippo Costanti
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy;
| | - Jordan Kahfi
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (J.K.); (M.J.)
| | - Abdul-Hamid Emwas
- KAUST Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (J.K.); (M.J.)
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Firenze, Italy
| |
Collapse
|
6
|
Alshammari QA. Redox modulatory role of DJ-1 in Parkinson's disease. Biogerontology 2025; 26:81. [PMID: 40159591 DOI: 10.1007/s10522-025-10227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
In particular, oxidative stress, generated by excessive reactive oxygen species (ROS), plays a major role in the neurodegenerative component of Parkinson's disease (PD) in aged neurons. DJ-1 (PARK7) is a key factor for maintaining redox homeostasis and modulation of mitochondrial function to preserve the cellular survival pathways. DJ-1 also plays a role in redox signaling independently of its antioxidant capacity by preventing the redox chain disulfide formation and stabilizing the master regulator of cellular antioxidant defense, Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2). In the DJ-1 or Nrf2 axis, expression of key antioxidant enzymes (glutathione peroxidase (GPx), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in response to oxidative stress is increased, and decreased neuronal damage resulting from oxidative stress is achieved. It has been demonstrated that DJ-1 functions as an oxidative stress sensor, and mutations like L166P cause loss of antioxidant activity and increased Reactive Oxygen Species (ROS) accumulation with subsequent mitochondrial dysfunction in dopaminergic neurons. The highly conserved cysteine residue at position 106 (Cys106) of DJ-1 becomes stepwise oxidized (Cys-SOH → Cys-SO₂H → Cys-SO3H), functioning as a redox sensor as well as redox modulator of cellular stress responses. Furthermore, by protecting against α-synuclein aggregation, DJ-1 also protects in models lacking DJ-1, whereby DJ-1 deficiency promotes protein misfolding and neurotoxicity. In addition, DJ-1 participates in regulating neuroinflammation since its diminution provokes NF-κB-mediated exacerbation of proinflammatory cytokine production, leading to neuronal death. Oxidized DJ-1 (OxiDJ-1) is generated in aging brains, particularly in the substantia nigra (SN), and is correlated with PD progression both as a biomarker for disease monitoring and diagnosis of PD early in its course. The therapeutic strategies aimed at DJ-1 include small molecular activators, protein supplementation (Tat-DJ-1, ND-13), and gene therapy aiming to restore the neuroprotective function of DJ-1. Since DJ-1 is multitasking to protect neurons from oxidative damage, mitochondrial dysfunction, and even inflammation, it remains a promising therapeutic target. This review highlights the molecular mechanisms through which DJ-1 can protect from PD and aging-related neurodegeneration and has potential utility as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Qamar A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
7
|
Bu F, Zhong J, Guan R. Biomarkers in glioblastoma and degenerative CNS diseases: defining new advances in clinical usefulness and therapeutic molecular target. Front Mol Biosci 2025; 12:1506961. [PMID: 40171042 PMCID: PMC11959069 DOI: 10.3389/fmolb.2025.1506961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Background Discovering biomarkers is central to the research and treatment of degenerative central nervous system (CNS) diseases, playing a crucial role in early diagnosis, disease monitoring, and the development of new treatments, particularly for challenging conditions like degenerative CNS diseases and glioblastoma (GBM). Methods This study analyzed gene expression data from a public database, employing differential expression analyses and Gene Co-expression Network Analysis (WGCNA) to identify gene modules associated with degenerative CNS diseases and GBM. Machine learning methods, including Random Forest, Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine - Recursive Feature Elimination (SVM-RFE), were used for case-control differentiation, complemented by functional enrichment analysis and external validation of key genes. Results Ninety-five commonly altered genes related to degenerative CNS diseases and GBM were identified, with RELN and GSTO2 emerging as significant through machine learning screening. Receiver operating characteristic (ROC) analysis confirmed their diagnostic value, which was further validated externally, indicating their elevated expression in controls. Conclusion The study's integration of WGCNA and machine learning uncovered RELN and GSTO2 as potential biomarkers for degenerative CNS diseases and GBM, suggesting their utility in diagnostics and as therapeutic targets. This contributes new perspectives on the pathogenesis and treatment of these complex conditions.
Collapse
Affiliation(s)
- Fan Bu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jifa Zhong
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Harbin, China
| | - Ruiqian Guan
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Harbin, China
| |
Collapse
|
8
|
Vaida C, Rus G, Pisla D. A Sensor-Based Classification for Neuromotor Robot-Assisted Rehabilitation. Bioengineering (Basel) 2025; 12:287. [PMID: 40150751 PMCID: PMC11939770 DOI: 10.3390/bioengineering12030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Neurological diseases leading to motor deficits constitute significant challenges to healthcare systems. Despite technological advancements in data acquisition, sensor development, data processing, and virtual reality (VR), a suitable framework for patient-centered neuromotor robot-assisted rehabilitation using collective sensor information does not exist. An extensive literature review was achieved based on 124 scientific publications regarding different types of sensors and the usage of the bio-signals they measure for neuromotor robot-assisted rehabilitation. A comprehensive classification of sensors was proposed, distinguishing between specific and non-specific parameters. The classification criteria address essential factors such as the type of sensors, the data they measure, their usability, ergonomics, and their overall impact on personalized treatment. In addition, a framework designed to collect and utilize relevant data for the optimal rehabilitation process efficiently is proposed. The proposed classifications aim to identify a set of key variables that can be used as a building block for a dynamic framework tailored for personalized treatments, thereby enhancing the effectiveness of patient-centered procedures in rehabilitation.
Collapse
Affiliation(s)
- Calin Vaida
- CESTER—Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (C.V.)
| | - Gabriela Rus
- CESTER—Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (C.V.)
| | - Doina Pisla
- CESTER—Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (C.V.)
- Technical Sciences Academy of Romania, B-dul Dacia, 26, 030167 Bucharest, Romania
| |
Collapse
|
9
|
Erboz A, Kesekler E, Gentili PL, Uversky VN, Coskuner-Weber O. Electromagnetic radiation and biophoton emission in neuronal communication and neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:87-99. [PMID: 39732343 DOI: 10.1016/j.pbiomolbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions. This dual signaling system is analyzed for its potential in synchronizing neuronal activity and improving information transfer, with implications for brain-like computing systems. The clinical relevance is explored through the lens of neurodegenerative diseases and intrinsically disordered proteins, where oxidative stress may alter biophoton emission, offering clues for pathological conditions, such as Alzheimer's and Parkinson's diseases. The potential therapeutic use of Low-Level Laser Therapy (LLLT) is also examined for its ability to modulate biophoton activity and mitigate oxidative stress, presenting new opportunities for treatment. Here, we invite further exploration into the intricate roles the electromagnetic phenomena play in brain function, potentially leading to breakthroughs in computational neuroscience and medical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysin Erboz
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Elif Kesekler
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123, Perugia, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
10
|
Faraji N, Ebadpour N, Abavisani M, Gorji A. Unlocking Hope: Therapeutic Advances and Approaches in Modulating the Wnt Pathway for Neurodegenerative Diseases. Mol Neurobiol 2025; 62:3630-3652. [PMID: 39313658 PMCID: PMC11790780 DOI: 10.1007/s12035-024-04462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Neurodegenerative diseases (NDs) are conditions characterized by sensory, motor, and cognitive impairments due to alterations in the structure and function of neurons in the central nervous system (CNS). Despite their widespread occurrence, the exact causes of NDs remain largely elusive, and existing treatments fall short in efficacy. The Wnt signaling pathway is an emerging molecular pathway that has been linked to the development and progression of various NDs. Wnt signaling governs numerous cellular processes, such as survival, polarity, proliferation, differentiation, migration, and fate specification, via a complex network of proteins. In the adult CNS, Wnt signaling regulates synaptic transmission, plasticity, memory formation, neurogenesis, neuroprotection, and neuroinflammation, all essential for maintaining neuronal function and integrity. Dysregulation of both canonical and non-canonical Wnt signaling pathways contributes to neurodegeneration through various mechanisms, such as amyloid-β accumulation, tau protein hyperphosphorylation, dopaminergic neuron degeneration, and synaptic dysfunction, prompting investigations into Wnt modulation as a therapeutic target to restore neuronal function and prevent or delay neurodegenerative processes. Modulating Wnt signaling has the potential to restore neuronal function and impede or postpone neurodegenerative processes, offering a therapeutic approach for targeting NDs. In this article, the current knowledge about how Wnt signaling works in Alzheimer's disease and Parkinson's disease is discussed. Our study aims to explore the molecular mechanisms, recent discoveries, and challenges involved in developing Wnt-based therapies.
Collapse
Affiliation(s)
- Navid Faraji
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Epilepsy Research Center, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neurosurgery Department, Münster University, Münster, Germany.
| |
Collapse
|
11
|
Chang KJ, Wu HY, Chiang PH, Hsu YT, Weng PY, Yu TH, Li CY, Chen YH, Dai HJ, Tsai HY, Chang YJ, Wu YR, Yang YP, Li CT, Hsu CC, Chen SJ, Chen YC, Cheng CY, Hsieh AR, Chiou SH. Decoding and reconstructing disease relations between dry eye and depression: a multimodal investigation comprising meta-analysis, genetic pathways and Mendelian randomization. J Adv Res 2025; 69:197-213. [PMID: 38548265 PMCID: PMC11954816 DOI: 10.1016/j.jare.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION The clinical presentations of dry eye disease (DED) and depression (DEP) often comanifest. However, the robustness and the mechanisms underlying this association were undetermined. OBJECTIVES To this end, we set up a three-segment study that employed multimodality results (meta-analysis, genome-wide association study [GWAS] and Mendelian randomization [MR]) to elucidate the association, common pathways and causality between DED and DEP. METHODS A meta-analysis comprising 26 case-control studies was first conducted to confirm the DED-DEP association. Next, we performed a linkage disequilibrium (LD)-adjusted GWAS and targeted phenotype association study (PheWAS) in East Asian TW Biobank (TWB) and European UK Biobank (UKB) populations. Single-nucleotide polymorphisms (SNPs) were further screened for molecular interactions and common pathways at the functional gene level. To further elucidate the activated pathways in DED and DEP, a systemic transcriptome review was conducted on RNA sequencing samples from the Gene Expression Omnibus. Finally, 48 MR experiments were implemented to examine the bidirectional causation between DED and DEP. RESULTS Our meta-analysis showed that DED patients are associated with an increased DEP prevalence (OR = 1.83), while DEP patients have a concurrent higher risk of DED (OR = 2.34). Notably, cross-disease GWAS analysis revealed that similar genetic architecture (rG = 0.19) and pleiotropic functional genes contributed to phenotypes in both diseases. Through protein-protein interaction and ontology convergence, we summarized the pleiotropic functional genes under the ontology of immune activation, which was further validated by a transcriptome systemic review. Importantly, the inverse variance-weighted (IVW)-MR experiments in both TWB and UKB populations (p value <0.001) supported the bidirectional exposure-outcome causation for DED-to-DEP and DEP-to-DED. Despite stringent LD-corrected instrumental variable re-selection, the bidirectional causation between DED and DEP remained. CONCLUSION With the multi-modal evidence combined, we consolidated the association and causation between DED and DEP.
Collapse
Affiliation(s)
- Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Medical Education, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Hsin-Yu Wu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Pin-Hsuan Chiang
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan
| | - Yu-Tien Hsu
- Department of Social & Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, 02115 No.677 Huntington Avenue, MA, USA
| | - Pei-Yu Weng
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Ting-Han Yu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Cheng-Yi Li
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Yu-Hsiang Chen
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - He-Jhen Dai
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Han-Ying Tsai
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan
| | - Yu-Jung Chang
- Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan
| | - You-Ren Wu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Cognitive Neuroscience, National Central University, 320317 No. 300, Zhongda Rd., Zhongli District, Jhongli, Taiwan
| | - Chih-Chien Hsu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Shih-Jen Chen
- Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Yu-Chun Chen
- School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751 No.11 Third Hospital Ave, Singapore; Department of Ophthalmology, Yong Loo Lin school of Medicine, National University of Singapore, 119228 No.21 Lower Kent Ridge Road, Singapore
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan.
| |
Collapse
|
12
|
Alrehaili J, Anwer R, Qais FA. Nalidixic acid inhibits the aggregation of HSA: Utilizing the molecular simulations to uncover the detailed insights. Comput Biol Chem 2025; 117:108415. [PMID: 40031372 DOI: 10.1016/j.compbiolchem.2025.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Neurodegenerative diseases such as Parkinson's and Alzheimer's lead to the gradual decline of the nervous system, resulting in cognitive and motor impairments. With an aging population, the prevalence and associated healthcare costs are anticipated to rise. Misfolded protein aggregates are central to these diseases, disrupting cellular function and causing neuronal death. Preventing these toxic aggregates could preserve neurons and slow disease progression. Understanding how to inhibit protein aggregation is crucial for developing effective treatments. We explored the effect of nalidixic acid (NA) on protein aggregation using human serum albumin (HSA) as model protein. In vitro assays demonstrated that NA significantly reduced ThT fluorescence by 47.10 % and decreased turbidity by 63.07 %. NA also protected the protein's hydrophobic surfaces. The α-helical content of HSA dropped from 56.23 % to 11.43 % but was restored to 38.53 % with NA. We then utilized advanced molecular simulations to understand the kinetics and mechanism of aggregation inhibition by NA. Binding studies showed that NA attaches to HSA's subdomain IIA with a binding energy of -7.8 kcal/mol through hydrogen bonds, Van der Waals forces, and hydrophobic interactions. Molecular simulations confirmed the stability of HSA-NA complex. Additionally, NA increased solvent accessibility of HSA282-292 oligomers, reduced hydrogen bonding, and prevented β-sheet formation. Compared to existing anti-aggregation strategies, NA offers a promising alternative with its potential therapeutic applications in neurodegenerative diseases by stabilizing protein structures and preventing misfolding. These findings highlight NA's potential as a candidate for inhibiting protein aggregation and offer insights for therapeutic approaches. Further experimental studies utilizing in vivo models are needed to validate the anti-aggregation potential of NA.
Collapse
Affiliation(s)
- Jihad Alrehaili
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 4233-13317, Saudi Arabia
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 4233-13317, Saudi Arabia
| | - Faizan Abul Qais
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
13
|
Negi N, Ayyannan SR, Tripathi RKP. Multi-targeted benzylpiperidine-isatin hybrids: Design, synthesis, biological and in silico evaluation as monoamine oxidases and acetylcholinesterase inhibitors for neurodegenerative disease therapies. J Comput Aided Mol Des 2025; 39:10. [PMID: 40021503 DOI: 10.1007/s10822-025-00588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's and Parkinson's, characterized by gradual loss of neuronal structure and function, results in cognitive and motor impairments. These complex disorders involve multiple pathogenic mechanisms, including neurotransmitter imbalances, oxidative stress, and protein misfolding, necessitating multifunctional therapeutic approaches. Piperidine and isatin are valuable scaffolds in drug design due to their favorable pharmacokinetic profiles, ability to cross blood-brain barrier, and ease of modification. This study focuses on design, synthesis, and evaluation of benzylpiperidine-isatin hybrids as dual inhibitors targeting key enzymes implicated in NDDs: monoamine oxidases (MAO-A/B) and acetylcholinesterase (AChE). Strategic hybridization of piperidine and isatin produced novel benzylpiperidine-isatin hybrids, combining pharmacological benefits of both scaffolds. Synthesized hybrids were tested for MAO-A/B and AChE inhibitory effects. 15 emerged as a lead inhibitor for both MAO-A (IC50 = 0.108 ± 0.004 μM, competitive and reversible) and AChE (IC50 = 0.034 ± 0.002 μM, mixed and reversible), outperforming donepezil in AChE inhibition. 4 showed significant MAO-B inhibition (IC50 = 0.057 ± 0.001 μM, competitive and reversible). SAR studies identified crucial structural elements for potency and selectivity, while molecular docking revealed key interactions stabilizing the enzyme-inhibitor complexes. MD simulations of lead molecules demonstrate the ligand's suitability for strong and consistent binding to the respective proteins. Lead compounds were non-neurotoxic, exhibited good antioxidant properties, and had favorable in silico ADMET predictions. These findings suggest that benzylpiperidine-isatin hybrids hold promise as multifunctional agents against NDDs, warranting further refinement to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Nikita Negi
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Senthil R Ayyannan
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Rati K P Tripathi
- Department of Pharmaceutical Sciences, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India.
| |
Collapse
|
14
|
da Conceição Francisquini J, Toro LF, Azevedo RG, Tessarin GWL. Association between apical periodontitis and brain inflammation: a systematic review from animals and human studies. Odontology 2025:10.1007/s10266-025-01069-6. [PMID: 40011389 DOI: 10.1007/s10266-025-01069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Apical periodontitis (AP) is an oral inflammatory disease induced by dental pulp infection. It is characterized by inflammation, destruction, and resorption of mineralized tissues located around the dental apex. Although this is a local infection, pathogens and their products in the periapical area, as well as inflammatory cytokines, can reach other regions of the body and trigger a systemic immune/inflammatory response in the host. This condition has been associated with several types of systemic diseases. This systematic review aimed to explore the association between AP and neuroinflammation, providing insights into this relationship and discussing potential pathways used by AP microorganisms to reach the central nervous system. Extensive searches in electronic databases (PubMed, Embase, and Cochrane) and hand searches were conducted from January 2013 until May 2024, using the keywords apical periodontitis, endodontic infection, periapical abscess, periodontitis apical, brain inflammation, brain disorders, and neuroinflammation. Initially, 394 studies were selected. After exclusion and inclusion criteria were applied, 12 studies (7 case reports and 1 case series, 3 experimental studies using animal models, and 1 cohort study) were included in this systematic review. All studies showed the presence of AP in upper and/or lower teeth and brain disorders with neuroinflammation. It is important to mention that some cases reported the death of the patient. This systematic review indicates a significant relationship between AP and neuroinflammation based on animal and human studies. Moreover, this study suggests there may be pathways connecting upper and lower teeth with apical periodontitis to the brain, inducing neuroinflammation. Additionally, the oral cavity can become easily accessible when AP is present, allowing for the invasion of microorganisms that are usually non-invasive. This contributes to the development of systemic disorders and/or strengthens their effect, worsening brain pathologies by causing or enhancing neuroinflammation, potentially leading to death. Based on these inferences, periapex health care is essential to improve the health of the world population.Registration number: Prospero registration nº. CRD42023453543.
Collapse
Affiliation(s)
| | | | - Renato Gomes Azevedo
- University Center in the North of São Paulo (UNORTE), School of Dentistry, São José Do Rio Preto, São Paulo, Brazil
| | - Gestter Willian Lattari Tessarin
- University Center in the North of São Paulo (UNORTE), School of Dentistry, São José Do Rio Preto, São Paulo, Brazil.
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
15
|
Xavier-de-Britto I, Gomes-da-Silva NC, Gomes Soares MA, Follmer C, Dabkiewicz D, Alencar LMR, Sant’Anna C, Ferreira TPT, Martins PRES, Ricci-Junior E, Fechine PBA, Santos-Oliveira R. Therapeutic Potential of Arimoclomol Nanomicelles: In Vitro Impact on Alzheimer's and Parkinson's Pathology and Correlation with In Vivo Inflammatory Response. ACS Chem Neurosci 2025; 16:699-710. [PMID: 39907698 PMCID: PMC11843614 DOI: 10.1021/acschemneuro.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
This study investigates the potential of arimoclomol-loaded nanomicelles for the treatment of neurodegenerative diseases like Alzheimer's and Parkinson's, as well as their anti-inflammatory properties. Arimoclomol, a coinducer of heat shock proteins (HSPs), has shown clinical promise in mitigating protein misfolding, a hallmark of these diseases. In this work, arimoclomol nanomicelles significantly reduced the aggregation of β-amyloid (Aβ1-42) and α-synuclein (α-syn), key pathological proteins in Alzheimer's and Parkinson's. Additionally, the nanomicelles demonstrated potent anti-inflammatory effects, reducing leukocyte and neutrophil counts in an acute inflammation model. These results suggest that arimoclomol nanomicelles could enhance clinical outcomes by targeting both neurodegenerative and inflammatory processes, offering a promising therapeutic strategy for long-term disease management.
Collapse
Affiliation(s)
- Isabelle Xavier-de-Britto
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Natália Cristina Gomes-da-Silva
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Marilia Amável Gomes Soares
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Cristian Follmer
- Laboratory
of Biological Chemistry of Neurodegenerative Disorders, Department
of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - David Dabkiewicz
- Laboratory
of Biological Chemistry of Neurodegenerative Disorders, Department
of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Biophysics
and Nanosystems Laboratory, Federal University of Maranhão, Department of Physics, São Luis, Maranhão 65065690, Brazil
| | - Celso Sant’Anna
- Laboratory
of Microscopy Applied to Life Science–Lamav, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de
Janeiro 25250-020, Brazil
| | | | | | - Eduardo Ricci-Junior
- Federal
University of Rio de Janeiro, School of
Pharmacy, Rio de Janeiro, Rio de Janeiro 21941900, Brazil
| | - Pierre Basílio Almeida Fechine
- Group
of Chemistry of Advanced Materials (GQMat)–Department of Analytical
Chemistry and Physical-Chemistry, Federal
University of Ceará, Fortaleza, Ceará 451-970, Brazil
| | - Ralph Santos-Oliveira
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
- Rio
de Janeiro State University, Laboratory
of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro 23070200, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Chen Q, Chen G, Wang Q. Application of Network Pharmacology in the Treatment of Neurodegenerative Diseases with Traditional Chinese Medicine. PLANTA MEDICA 2025. [PMID: 39778593 DOI: 10.1055/a-2512-8928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In recent years, the incidence of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, has exhibited a steadily rising trend, which has posed a major challenge to the global public health. Traditional Chinese medicine, with its multicomponent and multitarget characteristics, offers a promising approach to treating neurodegenerative diseases. However, comprehensively elucidating the complex mechanisms underlying traditional Chinese medicine formulations remains challenging. As an emerging systems biology method, network pharmacology has provided a vital tool for revealing the multitarget mechanisms of traditional Chinese medicine through high-throughput technologies, molecular docking, and network analysis. This paper reviews the advancements in the application of network pharmacology in treating neurodegenerative diseases using traditional Chinese medicine, analyzes the current status of relevant databases and technological methods, discusses the limitations, and proposes future directions to promote the modernization of traditional Chinese medicine and the development of precision medicine.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guanghui Chen
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Qianyan Wang
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Mahakalakar N, Mohariya G, Taksande B, Kotagale N, Umekar M, Vinchurney M. "Nattokinase as a potential therapeutic agent for preventing blood-brain barrier dysfunction in neurodegenerative disorders". Brain Res 2025; 1849:149352. [PMID: 39592088 DOI: 10.1016/j.brainres.2024.149352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/11/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by progressive destruction of neurons and cognitive impairment, and thorough studies have provided evidence that these pathologies have a close relationship to the failure of the blood-brain barrier (BBB). Nattokinase (NK), a protease found in fermented soybeans, has been extensively studied because it displays powerful neuroprotective abilities, which is why current research was reviewed in the present article. It was concluded that there is enough evidence in preclinical studies using experimental animals that NK supplementation can alleviate the condition related to BBB dysfunction, reduce brain inflammation, and improve cognitive ability. Furthermore, the study of NK on the cardiovascular system leads to certain assumptions, which include the impact on vasculature function and the ability to manage blood flow, which is the key feature of BBB integrity. Such assumed mechanisms are fibrinolytic action, anti-inflammatory and antioxidant action, and endothelium function modulation. There are many positive research findings, and it seems that NK may serve as an effective opponent for BBB breakdown; however, a new research level should be taken to disclose the application and therapeutic use of NK in brain neurodegenerative disease.
Collapse
Affiliation(s)
- Nivedita Mahakalakar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441 002, India
| | - Gunjan Mohariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy (GCOP), Kathora Naka, V.M.V. Road, Amravati (M.S.) 444604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441 002, India
| | - Madhura Vinchurney
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441 002, India.
| |
Collapse
|
18
|
Echeverry C, Pazos M, Torres-Pérez M, Prunell G. Plant-derived compounds and neurodegenerative diseases: Different mechanisms of action with therapeutic potential. Neuroscience 2025; 566:149-160. [PMID: 39725267 DOI: 10.1016/j.neuroscience.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of discrete groups of neurons causing severe disability. The main risk factor is age, hence their incidence is rapidly increasing worldwide due to the rise in life expectancy. Although the causes of the disease are not identified in about 90% of the cases, in the last decades there has been great progress in understanding the basis for neurodegeneration. Different pathological mechanisms including oxidative stress, mitochondrial dysfunction, alteration in proteostasis and inflammation have been addressed as important contributors to neuronal death. Despite our better understanding of the pathophysiology of these diseases, there is still no cure and available therapies only provide symptomatic relief. In an effort to discover new therapeutic approaches, natural products have aroused interest among researchers given their structural diversity and wide range of biological activities. In this review, we focus on three plant-derived compounds with promising neuroprotective potential that have been traditionally used by folk medicine: the flavonoid quercetin (QCT), the phytocannabinoid cannabidiol (CBD)and the tryptamine N,N-dimethyltryptamine (DMT). These compounds exert neuroprotective effects through different mechanisms of action, some overlapping, but each demonstrating a principal biological activity: QCT as an antioxidant, CBD as an anti-inflammatory, and DMT as a promoter of neuroplasticity. This review summarizes current knowledge on these activities, potential therapeutic benefits of these compounds and their limitations as candidates for neuroprotective therapies. We envision that treatments with QCT, CBD, and DMT could be effective either when combined or when targeting different stages of these diseases.
Collapse
Affiliation(s)
- Carolina Echeverry
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Mariana Pazos
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Maximiliano Torres-Pérez
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
19
|
Kalsariya RA, Kavila D, Shorter S, Negi D, Goodall ICA, Boussios S, Ovsepian SV. Molecular biomarkers of glial activation and injury in epilepsy. Drug Discov Today 2025; 30:104289. [PMID: 39799990 DOI: 10.1016/j.drudis.2025.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Increasing evidence from fluid biopsies suggests activation and injury of glial cells in epilepsy. The prevalence of clinical and subclinical seizures in neurodegenerative conditions such as Alzheimer's disease, frontotemporal dementia, and others merits review and comparison of the effects of seizures on glial markers in epilepsy and neurodegenerative diseases with concomitant seizures. Herein, we revisit preclinical and clinical reports of alterations in glial proteins in cerebrospinal fluid and blood associated with various types of epilepsy. We consider shared and distinct characteristics of changes in different age groups and sexes, in humans and animal models of epilepsy, and compare them with those reported in biofluids in neurodegenerative diseases. Our analysis indicates a significant overlap of glial response in these prevalent neurological conditions.
Collapse
Affiliation(s)
- Reema A Kalsariya
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK
| | - Dave Kavila
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK
| | - Deepika Negi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK
| | - Iain C A Goodall
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, ME7 5NY, UK; Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK; Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, Strand, London WC2R 2LS, UK; Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK; AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK; Faculty of Medicine, Tbilisi State University, Tbilisi 0179, Georgia.
| |
Collapse
|
20
|
Cueva-Vargas JL, Belforte N, Vidal-Paredes IA, Dotigny F, Vande Velde C, Quintero H, Di Polo A. Stress-induced mitochondrial fragmentation in endothelial cells disrupts blood-retinal barrier integrity causing neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.21.629919. [PMID: 39975311 PMCID: PMC11838204 DOI: 10.1101/2024.12.21.629919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Increased vascular leakage and endothelial cell (EC) dysfunction are major features of neurodegenerative diseases. Here, we investigated the mechanisms leading to EC dysregulation and asked whether altered mitochondrial dynamics in ECs impinge on vascular barrier integrity and neurodegeneration. We show that ocular hypertension, a major risk factor to develop glaucoma, induced mitochondrial fragmentation in retinal capillary ECs accompanied by increased oxidative stress and ultrastructural defects. Analysis of EC mitochondrial components revealed overactivation of dynamin-related protein 1 (DRP1), a central regulator of mitochondrial fission, during glaucomatous damage. Pharmacological inhibition or EC-specific in vivo gene delivery of a dominant negative DRP1 mutant was sufficient to rescue mitochondrial volume, reduce vascular leakage, and increase expression of the tight junction claudin-5 (CLDN5). We further demonstrate that EC-targeted CLDN5 gene augmentation restored blood-retinal-barrier integrity, promoted neuronal survival, and improved light-evoked visual behaviors in glaucomatous mice. Our findings reveal that preserving mitochondrial homeostasis and EC function are valuable strategies to enhance neuroprotection and improve vision in glaucoma.
Collapse
Affiliation(s)
- Jorge L. Cueva-Vargas
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Isaac A. Vidal-Paredes
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Heberto Quintero
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Adriana Di Polo
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
- Department of Ophthalmology, Maisonneuve-Rosemont Research Centre, University of Montreal, Quebec H1T 2M4, Canada
| |
Collapse
|
21
|
Xu W, Li L, Cao Z, Ye J, Gu X. Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence. Aging Dis 2025:AD.2024.1188. [PMID: 39812541 DOI: 10.14336/ad.2024.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body. Both aging and the circadian clock are highly interlinked phenomena with a bidirectional relationship. The process of aging leads to circadian disruptions while dysfunctional circadian rhythms promote age-related complications. Both processes involve diverse physiological, molecular, and cellular changes such as modifications in the DNA repair mechanisms, mechanisms, ROS generation, apoptosis, and cell proliferation. This review aims to examine the role of aging and circadian rhythms in the context of lung cancer. This will also review the existing literature on the role of circadian disruptions in the process of aging and vice versa. Various molecular pathways and genes such as BMAL1, SIRT1, HLF, and PER1 and their implications in aging, circadian rhythms, and lung cancer will also be discussed.
Collapse
Affiliation(s)
- Wenhui Xu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Jinghong Ye
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Xuyu Gu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Mairuae N, Noisa P, Palachai N. Phytosome-Encapsulated 6-Gingerol- and 6-Shogaol-Enriched Extracts from Zingiber officinale Roscoe Protect Against Oxidative Stress-Induced Neurotoxicity. Molecules 2024; 29:6046. [PMID: 39770133 PMCID: PMC11677370 DOI: 10.3390/molecules29246046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The rising prevalence of neurodegenerative disorders underscores the urgent need for effective interventions to prevent neuronal cell death. This study evaluates the neuroprotective potential of phytosome-encapsulated 6-gingerol- and 6-shogaol-enriched extracts from Zingiber officinale Roscoe (6GS), bioactive compounds renowned for their antioxidant and anti-inflammatory properties. The novel phytosome encapsulation technology employed enhances the bioavailability and stability of these compounds, offering superior therapeutic potential compared to conventional formulations. Additionally, the study investigates the role of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)-signaling pathway, a key mediator of the neuroprotective effects of 6GS. Neurotoxicity was induced in SH-SY5Y cells (a human neuroblastoma cell line) using 200 μM of hydrogen peroxide (H2O2), following pretreatment with 6GS at concentrations of 15.625 and 31.25 μg/mL. Cell viability was assessed via the MTT assay alongside evaluations of reactive oxygen species (ROS), antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px]), oxidative stress markers (malondialdehyde [MDA]), and molecular mechanisms involving the PI3K/Akt pathway, apoptotic factors (B-cell lymphoma-2 [Bcl-2] and caspase-3), and inflammatory markers (tumor necrosis factor-alpha [TNF-α]). The results demonstrated that 6GS significantly improved cell viability, reduced ROS, MDA, TNF-α, and caspase-3 levels, and enhanced antioxidant enzyme activities. Furthermore, 6GS treatment upregulated PI3K, Akt, and Bcl-2 expression while suppressing caspase-3 activation. Activation of the PI3K/Akt pathway by 6GS led to phosphorylated Akt-mediated upregulation of Bcl-2, promoting neuronal survival and attenuating oxidative stress and inflammation. Moreover, Bcl-2 inhibited ROS generation, further mitigating neurotoxicity. These findings suggest that phytosome encapsulation enhances the bioavailability of 6GS, which through activation of the PI3K/Akt pathway, exhibits significant neuroprotective properties. Incorporating these compounds into functional foods or dietary supplements could offer a promising strategy for addressing oxidative stress and neuroinflammation associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Nootchanat Mairuae
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand;
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Nut Palachai
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand;
| |
Collapse
|
23
|
Shiga Y, Rangel Olguin AG, El Hajji S, Belforte N, Quintero H, Dotigny F, Alarcon-Martinez L, Krishnaswamy A, Di Polo A. Endoplasmic reticulum stress-related deficits in calcium clearance promote neuronal dysfunction that is prevented by SERCA2 gene augmentation. Cell Rep Med 2024; 5:101839. [PMID: 39615485 PMCID: PMC11722116 DOI: 10.1016/j.xcrm.2024.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Disruption of calcium (Ca2+) homeostasis in neurons is a hallmark of neurodegenerative diseases. Here, we investigate the mechanisms leading to Ca2+ dysregulation and ask whether altered Ca2+ dynamics impinge on neuronal stress and circuit dysfunction. Using two-photon microscopy, we show that ocular hypertension, a major risk factor in glaucoma, and optic nerve crush injury disrupt the capacity of retinal neurons to clear cytosolic Ca2+ leading to impaired light-evoked responses. Gene- and protein expression analysis reveal the loss of the sarco-endoplasmic reticulum (ER) Ca2+-ATPase2 pump (SERCA2/ATP2A2) in injured retinal neurons from mice and patients with primary open-angle glaucoma. Pharmacological activation or neuron-specific gene delivery of SERCA2 is sufficient to rescue single-cell Ca2+ dynamics and promote robust survival of damaged neurons. Furthermore, SERCA2 gene supplementation reduces ER stress, reestablishes circuit balance, and restores visual behaviors. Our findings reveal that enhancing the Ca2+ clearance capacity of vulnerable neurons alleviates organelle stress and promotes neurorecovery.
Collapse
Affiliation(s)
- Yukihiro Shiga
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | | | - Sana El Hajji
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Arjun Krishnaswamy
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, PO box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada.
| |
Collapse
|
24
|
Liu S, Matsuo T, Matsuo C, Abe T, Chen J, Sun C, Zhao Q. Perspectives of traditional herbal medicines in treating retinitis pigmentosa. Front Med (Lausanne) 2024; 11:1468230. [PMID: 39712182 PMCID: PMC11660805 DOI: 10.3389/fmed.2024.1468230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Medicinal plants, also known as herbs, have been discovered and utilized in traditional medical practice since prehistoric times. Medicinal plants have been proven rich in thousands of natural products that hold great potential for the development of new drugs. Previously, we reviewed the types of Chinese traditional medicines that a Tang Dynasty monk Jianzhen (Japanese: Ganjin) brought to Japan from China in 742. This article aims to review the origin of Kampo (Japanese traditional medicine), and to present the overview of neurodegenerative diseases and retinitis pigmentosa as well as medicinal plants in some depth. Through the study of medical history of the origin of Kampo, we found that herbs medicines contain many neuroprotective ingredients. It provides us a new perspective on extracting neuroprotective components from herbs medicines to treat neurodegenerative diseases. Retinitis pigmentosa (one of the ophthalmic neurodegenerative diseases) is an incurable blinding disease and has become a popular research direction in global ophthalmology. To date, treatments for retinitis pigmentosa are very limited worldwide. Therefore, we intend to integrate the knowledge and skills from different disciplines, such as medical science, pharmaceutical science and plant science, to take a new therapeutic approach to treat neurodegenerative diseases. In the future, we will use specific active ingredients extracted from medicinal plants to treat retinitis pigmentosa. By exploring the potent bioactive ingredients present in medicinal plants, a valuable opportunity will be offered to uncover novel approaches for the development of drugs which target for retinitis pigmentosa.
Collapse
Affiliation(s)
- Shihui Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Ophthalmology, Okayama University Hospital, Okayama, Japan
| | - Chie Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jinghua Chen
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
25
|
Wang H, Shi C, Jiang L, Liu X, Tang R, Tang M. Neuroimaging techniques, gene therapy, and gut microbiota: frontier advances and integrated applications in Alzheimer's Disease research. Front Aging Neurosci 2024; 16:1485657. [PMID: 39691161 PMCID: PMC11649678 DOI: 10.3389/fnagi.2024.1485657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder marked by cognitive decline, for which effective treatments remain elusive due to complex pathogenesis. Recent advances in neuroimaging, gene therapy, and gut microbiota research offer new insights and potential intervention strategies. Neuroimaging enables early detection and staging of AD through visualization of biomarkers, aiding diagnosis and tracking of disease progression. Gene therapy presents a promising approach for modifying AD-related genetic expressions, targeting amyloid and tau pathology, and potentially repairing neuronal damage. Furthermore, emerging evidence suggests that the gut microbiota influences AD pathology through the gut-brain axis, impacting inflammation, immune response, and amyloid metabolism. However, each of these technologies faces significant challenges, including concerns about safety, efficacy, and ethical considerations. This article reviews the applications, advantages, and limitations of neuroimaging, gene therapy, and gut microbiota research in AD, with a particular focus on their combined potential for early diagnosis, mechanistic insights, and therapeutic interventions. We propose an integrated approach that leverages these tools to provide a multi-dimensional framework for advancing AD diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Haitao Wang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chen Shi
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Jiang
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaozhu Liu
- Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Rui Tang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxi Tang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Yaan People’s Hospital (Yaan Hospital of West China Hospital of Sichuan University), Yaan, Sichuan, China
| |
Collapse
|
26
|
Lavanya M, Namasivayam SKR, Priyanka S, Abiraamavalli T. Microencapsulation and nanoencapsulation of bacterial probiotics: new frontiers in Alzheimer's disease treatment. 3 Biotech 2024; 14:313. [PMID: 39611008 PMCID: PMC11599650 DOI: 10.1007/s13205-024-04158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative disorder marked by cognitive decline, affects millions worldwide. The presence of amyloid plaques and neurofibrillary tangles in the brain is the key pathological feature, leading to neuronal dysfunction and cell death. Current treatment options include pharmacological approaches such as cholinesterase inhibitors, as well as non-pharmacological strategies like cognitive training and lifestyle modifications. Recently, the potential role of probiotics, particularly strains, such as Lactobacillus and Bifidobacterium, in managing neurodegenerative diseases through the gut-brain axis has garnered significant attention. Probiotics can modulate inflammation, produce neurotransmitters, and support neuronal health, potentially slowing disease progression and alleviating symptoms, such as stress and anxiety. Optimizing the pharmacotherapeutic effects of probiotics is critical and involves advanced formulation techniques, such as microencapsulation and nanoencapsulation. Microencapsulation employs natural or synthetic polymers to protect probiotic cells, enhancing their viability and stability against environmental stressors. Methods like extrusion, emulsion, and spray-drying are used to create microcapsules suited for various applications. Nanoencapsulation, on the other hand, operates at the nanoscale, utilizing polymeric or lipid-based nanoparticles to improve the bioavailability and shelf life of probiotics. Techniques, such as nanoprecipitation and emulsification, are employed to ensure stable nanocapsule formation, thereby augmenting the therapeutic potential of probiotics as nutraceutical agents. This study delves into the essential formulation aspects of microencapsulation and nanoencapsulation for beneficial probiotic strains, aimed at managing Alzheimer's disease by optimizing the gut-brain axis. The insights gained from these advanced techniques promise to enhance probiotic delivery efficacy, potentially leading to improved health outcomes for patients suffering from neurodegenerative disorders.
Collapse
Affiliation(s)
- M. Lavanya
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| | - S. Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| | - S. Priyanka
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| | - T. Abiraamavalli
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105 India
| |
Collapse
|
27
|
Maurya S, Lin M, Karnam S, Singh T, Kumar M, Ward E, Sivak J, Flanagan JG, Gronert K. Regulation of disease-associated microglia in the optic nerve by lipoxin B 4 and ocular hypertension. Mol Neurodegener 2024; 19:86. [PMID: 39568070 PMCID: PMC11580672 DOI: 10.1186/s13024-024-00775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The resident astrocyte-retinal ganglion cell (RGC) lipoxin circuit is impaired during retinal stress, which includes ocular hypertension-induced neuropathy. Lipoxin B4 produced by homeostatic astrocytes directly acts on RGCs to increase survival and function in ocular hypertension-induced neuropathy. RGC death in the retina and axonal degeneration in the optic nerve are driven by the complex interactions between microglia and macroglia. Whether LXB4 neuroprotective actions include regulation of other cell types in the retina and/or optic nerve is an important knowledge gap. METHODS Cellular targets and signaling of LXB4 in the retina were defined by single-cell RNA sequencing. Retinal neurodegeneration was induced by injecting silicone oil into the anterior chamber of mouse eyes, which induced sustained and stable ocular hypertension. Morphological characterization of microglia populations in the retina and optic nerve was established by MorphOMICs and pseudotime trajectory analyses. The pathways and mechanisms of action of LXB4 in the optic nerve were investigated using bulk RNA sequencing. Transcriptomics data was validated by qPCR and immunohistochemistry. Differences between experimental groups were assessed by Student's t-test and one-way ANOVA. RESULTS Single-cell transcriptomics identified microglia as a primary target for LXB4 in the healthy retina. LXB4 downregulated genes that drive microglia environmental sensing and reactivity responses. Analysis of microglial function revealed that ocular hypertension induced distinct, temporally defined, and dynamic phenotypes in the retina and, unexpectedly, in the distal myelinated optic nerve. Microglial expression of CD74, a marker of disease-associated microglia in the brain, was only induced in a unique population of optic nerve microglia, but not in the retina. Genetic deletion of lipoxin formation correlated with the presence of a CD74 optic nerve microglia population in normotensive eyes, while LXB4 treatment during ocular hypertension shifted optic nerve microglia toward a homeostatic morphology and non-reactive state and downregulated the expression of CD74. Furthermore, we identified a correlation between CD74 and phospho-phosphoinositide 3-kinases (p-PI3K) expression levels in the optic nerve, which was reduced by LXB4 treatment. CONCLUSION We identified early and dynamic changes in the microglia functional phenotype, reactivity, and induction of a unique CD74 microglia population in the distal optic nerve as key features of ocular hypertension-induced neurodegeneration. Our findings establish microglia regulation as a novel LXB4 target in the retina and optic nerve. LXB4 maintenance of a homeostatic optic nerve microglia phenotype and inhibition of a disease-associated phenotype are potential neuroprotective mechanisms for the resident LXB4 pathway.
Collapse
Affiliation(s)
- Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Maggie Lin
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Shruthi Karnam
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Tanirika Singh
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Matangi Kumar
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
- Vision Science Program, University of California, Berkeley, CA, USA
| | - Emily Ward
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
- Vision Science Program, University of California, Berkeley, CA, USA
| | - Jeremy Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
- Vision Science Program, University of California, Berkeley, CA, USA
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA.
- Vision Science Program, University of California, Berkeley, CA, USA.
- Infectious Disease and Immunity Program, University of California, Berkeley, CA, USA.
| |
Collapse
|
28
|
Tong B, Long C, Zhang J, Zhang X, Li Z, Qi H, Su K, Zhang D, Chen Y, Ling J, Liu J, Hu Y, Yu P. Associations of human blood metabolome with optic neurodegenerative diseases: a bi-directionally systematic mendelian randomization study. Lipids Health Dis 2024; 23:359. [PMID: 39497194 PMCID: PMC11533396 DOI: 10.1186/s12944-024-02337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Metabolic disruptions were observed in patients with optic neurodegenerative diseases (OND). However, evidence for the causal association between metabolites and OND is limited. METHODS Two-sample Mendelian randomization (MR). Summary data for 128 blood metabolites was selected from three genome-wide association study (GWASs) involving 147,827 participants of European descent. GWASs Data for glaucoma (20906 cases and 391275 controls) and age-related macular degeneration (AMD, 9721 cases and 381339 controls) came from FinnGen consortium. A bi-directional MR was conducted to assess causality, and a Mediation MR was further applied to explore the indirect effect, a phenome-wide MR analysis was then performed to identify possible side-effects of the therapies. RESULTS All the results underwent correction for multiple testing and rigorous sensitivity analyses. We identified N-acetyl glycine, serine, uridine were linked to an elevated risk of glaucoma. 1-arachidonic-glycerol-phosphate-ethanolamine, 4-acetamido butanoate, o-methylascorbate, saturated fatty acids, monounsaturated fatty acids, VLDL cholesterol, serum total cholesterol, X-11,529 were linked to reduced risk of glaucoma. There were 4 metabolites linked to a reduced risk of AMD, including tryptophan betaine, 4-androsten-3beta-17beta-diol disulfate, apolipoprotein B, VLDL cholesterol. We discovered IOP, AS, T2D as glaucoma risk factors, while BMI, AS, GCIPL as AMD factors. And 6 metabolites showed associations with risk factors in the same direction as their associations with glaucoma/AMD. Phenome-wide MR indicated that selected metabolites had protective/adverse effects on other diseases. CONCLUSIONS By integrating genomics and metabolomics, this study supports new insights into the intricate mechanisms, and helps prevent and screen glaucoma and AMD.
Collapse
Affiliation(s)
- Bin Tong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chubing Long
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xin Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengyang Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Haodong Qi
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Kangtai Su
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yunwei Hu
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
29
|
Jui J, Goldman D. Müller Glial Cell-Dependent Regeneration of the Retina in Zebrafish and Mice. Annu Rev Genet 2024; 58:67-90. [PMID: 38876121 DOI: 10.1146/annurev-genet-111523-102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Sight is one of our most precious senses. People fear losing their sight more than any other disability. Thus, restoring sight to the blind is an important goal of vision scientists. Proregenerative species, such as zebrafish, provide a system for studying endogenous mechanisms underlying retina regeneration. Nonregenerative species, such as mice, provide a system for testing strategies for stimulating retina regeneration. Key to retina regeneration in zebrafish and mice is the Müller glial cell, a malleable cell type that is amenable to a variety of regenerative strategies. Here, we review cellular and molecular mechanisms used by zebrafish to regenerate a retina, as well as the application of these mechanisms, and other strategies to stimulate retina regeneration in mice. Although our focus is on Müller glia (MG), niche components and their impact on MG reprogramming are also discussed.
Collapse
Affiliation(s)
- Jonathan Jui
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Daniel Goldman
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
30
|
Jari S, Ratne N, Tadas M, Katariya R, Kale M, Umekar M, Taksande B. Imidazoline receptors as a new therapeutic target in Huntington's disease: A preclinical overview. Ageing Res Rev 2024; 101:102482. [PMID: 39236858 DOI: 10.1016/j.arr.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
An autosomal dominant neurodegenerative disease called Huntington's disease (HD) is characterized by motor dysfunction, cognitive decline, and a variety of psychiatric symptoms due to the expansion of polyglutamine in the Huntingtin gene. The disease primarily affects the striatal neurons within the basal ganglia, leading to significant neuronal loss and associated symptoms such as chorea and dystonia. Current therapeutic approaches focus on symptom management without altering the disease's progression, highlighting a pressing need for novel treatment strategies. Recent studies have identified imidazoline receptors (IRs) as promising targets for neuroprotective and disease-modifying interventions in HD. IRs, particularly the I1 and I2 subtypes, are involved in critical physiological processes such as neurotransmission, neuronal excitability, and cell survival. Activation of these receptors has been shown to modulate neurotransmitter release and provide neuroprotective effects in preclinical models of neurodegeneration. This review discusses the potential of IR-targeted therapies to not only alleviate multiple symptoms of HD but also possibly slow the progression of the disease. We emphasize the necessity for ongoing research to further elucidate the role of IRs in HD and develop selective ligands that could lead to effective and safe treatments, thereby significantly improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sakshi Jari
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Nandini Ratne
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
31
|
Liu Y, Fu R, Jia H, Yang K, Ren F, Zhou MS. GHRH and its analogues in central nervous system diseases. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09920-x. [PMID: 39470866 DOI: 10.1007/s11154-024-09920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Growth hormone-releasing hormone (GHRH) is primarily produced by the hypothalamus and stimulates the release of growth hormone (GH) in the anterior pituitary gland, which subsequently regulates the production of hepatic insulin-like growth factor-1 (IGF-1). GH and IGF-1 have potent effects on promoting cell proliferation, inhibiting cell apoptosis, as well as regulating cell metabolism. In central nerve system (CNS), GHRH/GH/IGF-1 promote brain development and growth, stimulate neuronal proliferation, and regulate neurotransmitter release, thereby participating in the regulation of various CNS physiological activities. In addition to hypothalamus-pituitary gland, GHRH and GHRH receptor (GHRH-R) are also expressed in other brain cells or tissues, such as endogenous neural stem cells (NSCs) and tumor cells. Alternations in GHRH/GH/IGF-1 axis are associated with various CNS diseases, for example, Alzheimer's disease, amyotrophic lateral sclerosis and emotional disorders manifest GHRH, GH or IGF-1 deficiency, and GH or IGF-1 supplementation exerts beneficial therapeutic effects on these diseases. CNS tumors, such as glioma, can express GHRH and GHRH-R, and activating this signaling pathway promotes tumor cell growth. The synthesized GHRH antagonists have shown to inhibit glioma cell growth and may hold promising as an adjuvant therapy for treating glioma. In addition, we have shown that GHRH agonist MR-409 can improve neurological sequelae after ischemic stroke by activating extrapituitary GHRH-R signaling and promoting endogenous NSCs-derived neuronal regeneration. This article reviews the involvement of GHRH/GH/IGF-1 in CNS diseases, and potential roles of GHRH agonists and antagonists in treating CNS diseases.
Collapse
Affiliation(s)
- Yueyang Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China
| | - Rong Fu
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, 110034, China
| | - Kefan Yang
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, 110034, China.
| | - Ming-Sheng Zhou
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China.
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
32
|
Zemer A, Samaei S, Yoel U, Biderman A, Pincu Y. Ketogenic diet in clinical populations-a narrative review. Front Med (Lausanne) 2024; 11:1432717. [PMID: 39534224 PMCID: PMC11554467 DOI: 10.3389/fmed.2024.1432717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Ketogenic diet (KD) is a high-fat, low-carbohydrate (CHO) diet, designed to induce a metabolic state of ketosis in which the body metabolizes primarily lipids for energy production. Various forms of KD are being promoted as promising treatments for numerous health conditions from chronic headaches to weight-loss and even different forms of cancer and are becoming increasingly more popular. KD appears to be an efficacious approach for weight-loss, and maintenance, improved glycemia, cognitive function and cancer prognosis. However, there is a controversy regarding the safety of KD, and the potential health risks that might be associated with long-term exposure to KD. There is a gap between the acceptance and utilization of KD in individuals with health conditions and the criticism and negative attitudes toward KD by some clinicians. Many individuals choose to follow KD and are encouraged by the positive results they experience. Although the medical establishment does not endorse KD as a first line of treatment, clinicians need to be informed about KD, and offer support and medical supervision for patients who self-select to follow KD. This can ensure that within the boundaries of KD, patients will make good and healthy dietary choices and prevent clinical disengagement in extreme cases. To that end, there is an urgent need for good quality research to address the issues of long-term safety of KD in different clinical populations and for standardization of KD both in research and in the clinic.
Collapse
Affiliation(s)
- Alon Zemer
- Department of Pharmacology and Clinical Biochemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shabnam Samaei
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Uri Yoel
- Endocrinology Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Aya Biderman
- Department of Family Medicine, Goldman Medical School, Ben-Gurion University of the Negev and Clalit Health Services, Beer Sheva, Israel
| | - Yair Pincu
- Department of Pharmacology and Clinical Biochemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- Harold Hamm Diabetes Center, Oklahoma City, OK, United States
| |
Collapse
|
33
|
Maurya S, Lin M, Karnam S, Singh T, Kumar M, Ward E, Sivak J, Flanagan JG, Gronert K. Regulation of Diseases-Associated Microglia in the Optic Nerve by Lipoxin B 4 and Ocular Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585452. [PMID: 38562864 PMCID: PMC10983965 DOI: 10.1101/2024.03.18.585452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The resident astrocyte-retinal ganglion cell (RGC) lipoxin circuit is impaired during retinal stress, which includes ocular hypertension-induced neuropathy. Lipoxin B4 produced by homeostatic astrocytes directly acts on RGCs to increase survival and function in ocular hypertension-induced neuropathy. RGC death in the retina and axonal degeneration in the optic nerve are driven by the complex interactions between microglia and macroglia. Whether LXB4 neuroprotective actions include regulation of other cell types in the retina and/or optic nerve is an important knowledge gap. Methods Cellular targets and signaling of LXB4 in the retina were defined by single-cell RNA sequencing. Retinal neurodegeneration was induced by injecting silicone oil into the anterior chamber of the mouse eyes, which induced sustained and stable ocular hypertension. Morphological characterization of microglia populations in the retina and optic nerve was established by MorphOMICs and pseudotime trajectory analyses. The pathways and mechanisms of action of LXB4 in the optic nerve were investigated using bulk RNA sequencing. Transcriptomics data was validated by qPCR and immunohistochemistry. Differences between experimental groups were assessed by Student's t-test and one-way ANOVA. Results Single-cell transcriptomics identified microglia as a primary target for LXB4 in the healthy retina. LXB4 downregulated genes that drive microglia environmental sensing and reactivity responses. Analysis of microglial function revealed that ocular hypertension induced distinct, temporally defined, and dynamic phenotypes in the retina and, unexpectedly, in the distal myelinated optic nerve. Microglial expression of CD74, a marker of disease-associated microglia in the brain, was only induced in a unique population of optic nerve microglia, but not in the retina. Genetic deletion of lipoxin formation correlated with the presence of a CD74 optic nerve microglia population in normotensive eyes, while LXB4 treatment during ocular hypertension shifted optic nerve microglia toward a homeostatic morphology and non-reactive state and downregulated the expression of CD74. Furthermore, we identified a correlation between CD74 and phospho-phosphoinositide 3-kinases (p-PI3K) expression levels in the optic nerve, which was reduced by LXB4 treatment. Conclusion We identified early and dynamic changes in the microglia functional phenotype, reactivity, and induction of a unique CD74 microglia population in the distal optic nerve as key features of ocular hypertension-induced neurodegeneration. Our findings establish microglia regulation as a novel LXB4 target in the retina and optic nerve. LXB4 maintenance of a homeostatic optic nerve microglia phenotype and inhibition of a disease-associated phenotype are potential neuroprotective mechanisms for the resident LXB4 pathway.
Collapse
Affiliation(s)
- Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Maggie Lin
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Shruthi Karnam
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Tanirika Singh
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Matangi Kumar
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Emily Ward
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Jeremy Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
- Infectious Disease and Immunity Program, University of California Berkeley, CA, United States
| |
Collapse
|
34
|
Huang KC, Gomes C, Shiga Y, Belforte N, VanderWall KB, Lavekar SS, Fligor CM, Harkin J, Hetzer SM, Patil SV, Di Polo A, Meyer JS. Acquisition of neurodegenerative features in isogenic OPTN(E50K) human stem cell-derived retinal ganglion cells associated with autophagy disruption and mTORC1 signaling reduction. Acta Neuropathol Commun 2024; 12:164. [PMID: 39425218 PMCID: PMC11487784 DOI: 10.1186/s40478-024-01872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) has led to numerous advances in the field of retinal research, with great potential for the use of hPSC-derived RGCs for studies of human retinal development, in vitro disease modeling, drug discovery, as well as their potential use for cell replacement therapeutics. Of all these possibilities, the use of hPSC-derived RGCs as a human-relevant platform for in vitro disease modeling has received the greatest attention, due to the translational relevance as well as the immediacy with which results may be obtained compared to more complex applications like cell replacement. While several studies to date have focused upon the use of hPSC-derived RGCs with genetic variants associated with glaucoma or other optic neuropathies, many of these have largely described cellular phenotypes with only limited advancement into exploring dysfunctional cellular pathways as a consequence of the disease-associated gene variants. Thus, to further advance this field of research, in the current study we leveraged an isogenic hPSC model with a glaucoma-associated mutation in the Optineurin (OPTN) protein, which plays a prominent role in autophagy. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor AMPK, along with subsequent neurodegeneration in OPTN(E50K) RGCs differentiated from hPSCs, and have further validated some of these findings in a mouse model of ocular hypertension. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs, while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN(E50K) RGCs. Taken together, these results highlighted that autophagy disruption resulted in increased autophagic demand which was associated with downregulated signaling through mTORC1, contributing to the degeneration of RGCs.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yukihiro Shiga
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Nicolas Belforte
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Kirstin B VanderWall
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sailee S Lavekar
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Clarisse M Fligor
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jade Harkin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shelby M Hetzer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shruti V Patil
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Jason S Meyer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
35
|
Salehpour A, Karimi Z, Ghasemi Zadeh M, Afshar M, Kameli A, Mooseli F, Zare M, Afshar A. Therapeutic potential of mesenchymal stem cell-derived exosomes and miRNAs in neuronal regeneration and rejuvenation in neurological disorders: a mini review. Front Cell Neurosci 2024; 18:1427525. [PMID: 39429946 PMCID: PMC11486650 DOI: 10.3389/fncel.2024.1427525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have gained considerable attention in the field of regenerative medicine due to their ability to secrete small extracellular vesicles (EVs) known as exosomes. This review delves into the various biological activities of MSCs and the cell interactions enabled by these exosomes, with a focus on their potential for neuronal regeneration and the treatment of neurological disorders. We scrutinize findings from multiple studies that underscore the neuroprotective and neuro-regenerative effects of exosomes derived from MSCs, illuminating their mechanisms of action and therapeutic applications. This review thoroughly investigates all related pathways, miRNAs, and factors to suggest potential strategies for enhancing therapy for neurological disorders using exosomes and miRNAs, and for boosting neuronal regeneration.
Collapse
Affiliation(s)
- Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Karimi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mokhtar Ghasemi Zadeh
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammadreza Afshar
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Kameli
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Mooseli
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masoud Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Afshar
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
36
|
Cooper ML, Calkins DJ. Beyond hypertrophy: Changing views of astrocytes in glaucoma. Vision Res 2024; 223:108461. [PMID: 39059109 DOI: 10.1016/j.visres.2024.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Astrocytes serve multiple roles in helping to maintain homeostatic physiology of central nervous system tissue, ranging from metabolic support to coupling between vascular and neural elements. Astrocytes are especially critical in axonal tracts such as the optic nerve, where axons propagate energy-demanding action potentials great distances. In disease, astrocyte remodeling is a dynamic, multifaceted process that is often over-simplified between states of quiescence and reactivity. In glaucoma, axon degeneration in the optic nerve is characterized by progressive stages. So too is astrocyte remodeling. Here, using quantitative analysis of light and electron micrographs of myelinated optic nerve sections from the DBA/2J mouse model of glaucoma, we offer further insight into how astrocyte organization reflects stages of degeneration. This analysis indicates that even as axons degenerate, astrocyte gliosis in the nerve increases without abject proliferation, similar to results in the DBA/2J retina. Gliosis is accompanied by reorganization. As axons expand prior to frank degeneration, astrocyte processes retract from the extra-axonal space and reorient towards the nerve edge. After a critical threshold of expansion, axons drop out, and astrocyte processes distribute more evenly across the nerve reflecting gliosis. This multi-stage process likely reflects local rather than global cues from axons and the surrounding tissue that induce rapid reorganization to promote axon survival and extend functionality of the nerve.
Collapse
Affiliation(s)
- Melissa L Cooper
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
37
|
Vicente-Acosta A, Herranz-Martín S, Pazos MR, Galán-Cruz J, Amores M, Loria F, Díaz-Nido J. Glial cell activation precedes neurodegeneration in the cerebellar cortex of the YG8-800 murine model of Friedreich ataxia. Neurobiol Dis 2024; 200:106631. [PMID: 39111701 DOI: 10.1016/j.nbd.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Friedreich ataxia is a hereditary neurodegenerative disorder resulting from reduced levels of the protein frataxin due to an expanded GAA repeat in the FXN gene. This deficiency causes progressive degeneration of specific neuronal populations in the cerebellum and the consequent loss of movement coordination and equilibrium, which are some of the main symptoms observed in affected individuals. Like in other neurodegenerative diseases, previous studies suggest that glial cells could be involved in the neurodegenerative process and disease progression in patients with Friedreich ataxia. In this work, we followed and characterized the progression of changes in the cerebellar cortex in the latest version of Friedreich ataxia humanized mouse model, YG8-800 (Fxnnull:YG8s(GAA)>800), which carries a human FXN transgene containing >800 GAA repeats. Comparative analyses of behavioral, histopathological, and biochemical parameters were conducted between the control strain Y47R and YG8-800 mice at different time points. Our findings revealed that YG8-800 mice exhibit an ataxic phenotype characterized by poor motor coordination, decreased body weight, cerebellar atrophy, neuronal loss, and changes in synaptic proteins. Additionally, early activation of glial cells, predominantly astrocytes and microglia, was observed preceding neuronal degeneration, as was increased expression of key proinflammatory cytokines and downregulation of neurotrophic factors. Together, our results show that the YG8-800 mouse model exhibits a stronger phenotype than previous experimental murine models, reliably recapitulating some of the features observed in humans. Accordingly, this humanized model could represent a valuable tool for studying Friedreich ataxia molecular disease mechanisms and for preclinical evaluation of possible therapies.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Saúl Herranz-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Jorge Galán-Cruz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Mario Amores
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain
| | - Frida Loria
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Budapest 1, Alcorcón, 28922 Madrid, Spain.
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Francisco Tomás y Valiente, 7, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Puerta de Hierro, Segovia de Arana, Hospital Universitario Puerta de Hierro, Joaquín Rodrigo 1, Majadahonda, 28222 Madrid, Spain.
| |
Collapse
|
38
|
Tessarin GWL, Toro LF, Pereira RF, Dos Santos RM, Azevedo RG. Peri-implantitis with a potential axis to brain inflammation: an inferential review. Odontology 2024; 112:1033-1046. [PMID: 38630323 DOI: 10.1007/s10266-024-00936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 09/21/2024]
Abstract
Peri-implantitis (PI) is a chronic, inflammatory, and infectious disease which affects dental implants and has certain similarities to periodontitis (PD). Evidence has shown that PD may be related to several types of systemic disorders, such as diabetes and insulin resistance, cardiovascular diseases, respiratory tract infections, adverse pregnancy outcomes, and neurological disorders. Furthermore, some types of bacteria in PD can also be found in PI, leading to certain similarities in the immunoinflammatory responses in the host. This review aims to discuss the possible connection between PI and neuroinflammation, using information based on studies about periodontal disorders, a topic whose connection with systemic alterations has been gaining the interest of the scientific community. Literature concerning PI, PD, and systemic disorders, such as neuroinflammation, brain inflammation, and neurological disorder, was searched in the PubMed database using different keyword combinations. All studies found were included in this narrative review. No filters were used. Eligible studies were analyzed and reviewed carefully. This study found similarities between PI and PD development, maintenance, and in the bacterial agents located around the teeth (periodontitis) or dental implants (peri-implantitis). Through the cardiovascular system, these pathologies may also affect blood-brain barrier permeability. Furthermore, scientific evidence has suggested that microorganisms from PI (as in PD) can be recognized by trigeminal fiber endings and start inflammatory responses into the trigeminal ganglion. In addition, bacteria can traverse from the mouth to the brain through the lymphatic system. Consequently, the immune system increases inflammatory mediators in the brain, affecting the homeostasis of the nervous tissue and vice-versa. Based on the interrelation of microbiological, inflammatory, and immunological findings between PD and PI, it is possible to infer that immunoinflammatory changes observed in PD can imply systemic changes in PI. This, as discussed, could lead to the development or intensification of neuroinflammatory changes, contributing to neurodegenerative diseases.
Collapse
Affiliation(s)
- Gestter Willian Lattari Tessarin
- University Center in the North of São Paulo (UNORTE), São José Do Rio Preto, SP, 15020-040, Brazil.
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| | - Luan Felipe Toro
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Marilia Medical School (FAMEMA), Marília, São Paulo, Brazil
| | - Renato Felipe Pereira
- Union of Colleges of the Great Lakes (UNILAGO), São José Do Rio Preto, São Paulo, Brazil
| | - Rodrigo Martins Dos Santos
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Renato Gomes Azevedo
- University Center in the North of São Paulo (UNORTE), São José Do Rio Preto, SP, 15020-040, Brazil
| |
Collapse
|
39
|
Angelopoulou E, Kitani RA, Stroggilos R, Lygirou V, Vasilakis IA, Letsou K, Vlahou A, Zoidakis J, Samiotaki M, Kanaka-Gantenbein C, Nicolaides NC. Tear Proteomics in Children and Adolescents with Type 1 Diabetes: A Promising Approach to Biomarker Identification of Diabetes Pathogenesis and Complications. Int J Mol Sci 2024; 25:9994. [PMID: 39337483 PMCID: PMC11432293 DOI: 10.3390/ijms25189994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of the current study was to investigate the tear proteome in children and adolescents with type 1 diabetes (T1D) compared to healthy controls, and to identify differences in the tear proteome of children with T1D depending on different characteristics of the disease. Fifty-six children with T1D at least one year after diagnosis, aged 6-17 years old, and fifty-six healthy age- and sex-matched controls were enrolled in this cross-sectional study. The proteomic analysis was based on liquid chromatography tandem mass spectrometry (LC-MS/MS) enabling the identification and quantification of the protein content via Data-Independent Acquisition by Neural Networks (DIA-NN). Data are available via ProteomeXchange with the identifier PXD052994. In total, 3302 proteins were identified from tear samples. Two hundred thirty-nine tear proteins were differentially expressed in children with T1D compared to healthy controls. Most of them were involved in the immune response, tissue homeostasis and inflammation. The presence of diabetic ketoacidosis at diagnosis and the level of glycemic control of children with T1D influenced the tear proteome. Tear proteomics analysis revealed a different proteome pattern in children with T1D compared to healthy controls offering insights on deregulated biological processes underlying the pathogenesis of T1D. Differences within the T1D group could unravel biomarkers for early detection of long-term complications of T1D.
Collapse
Affiliation(s)
- Eleni Angelopoulou
- Diabetes Center, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (E.A.); (I.-A.V.); (C.K.-G.)
| | - Rosa-Anna Kitani
- Postgraduate Course of the Science of Stress and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.-A.K.); (K.L.)
| | - Rafael Stroggilos
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (R.S.); (V.L.); (A.V.); (J.Z.)
| | - Vasiliki Lygirou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (R.S.); (V.L.); (A.V.); (J.Z.)
| | - Ioannis-Anargyros Vasilakis
- Diabetes Center, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (E.A.); (I.-A.V.); (C.K.-G.)
| | - Konstantina Letsou
- Postgraduate Course of the Science of Stress and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.-A.K.); (K.L.)
| | - Antonia Vlahou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (R.S.); (V.L.); (A.V.); (J.Z.)
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (R.S.); (V.L.); (A.V.); (J.Z.)
| | - Martina Samiotaki
- Institute for Bio-Innovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece;
| | - Christina Kanaka-Gantenbein
- Diabetes Center, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (E.A.); (I.-A.V.); (C.K.-G.)
- Postgraduate Course of the Science of Stress and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.-A.K.); (K.L.)
| | - Nicolas C. Nicolaides
- Diabetes Center, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (E.A.); (I.-A.V.); (C.K.-G.)
- Postgraduate Course of the Science of Stress and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.-A.K.); (K.L.)
| |
Collapse
|
40
|
Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Karsuntseva EK, Chadin AV, Reshetov IV, Stepanova OV, Chekhonin VP. The Use of Neurotrophic Factors as a Promising Strategy for the Treatment of Neurodegenerative Diseases (Review). Bull Exp Biol Med 2024:10.1007/s10517-024-06218-5. [PMID: 39266924 DOI: 10.1007/s10517-024-06218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 09/14/2024]
Abstract
The review considers the use of exogenous neurotrophic factors in the treatment of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and others. This group of diseases is associated with the death of neurons and dysfunction of the nervous tissue. Currently, there is no effective therapy for neurodegenerative diseases, and their treatment remains a serious problem of modern medicine. A promising strategy is the use of exogenous neurotrophic factors. Targeted delivery of these factors to the nervous tissue can improve survival of neurons during the development of neurodegenerative processes and ensure neuroplasticity. There are methods of direct injection of neurotrophic factors into the nervous tissue, delivery using viral vectors, as well as the use of gene cell products. The effectiveness of these approaches has been studied in numerous experimental works and in a number of clinical trials. Further research in this area could provide the basis for the creation of an alternative treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- G A Fursa
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - S S Andretsova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Shishkina
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A D Voronova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E K Karsuntseva
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Academy of Postgraduate Education, Federal Research and Clinical Center of Specialized Types of Health Care and Medical Technology of the Federal Medical and Biological Agency, Moscow, Russia
| | - O V Stepanova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
41
|
Farrell K, Humphrey J, Chang T, Zhao Y, Leung YY, Kuksa PP, Patil V, Lee WP, Kuzma AB, Valladares O, Cantwell LB, Wang H, Ravi A, De Sanctis C, Han N, Christie TD, Afzal R, Kandoi S, Whitney K, Krassner MM, Ressler H, Kim S, Dangoor D, Iida MA, Casella A, Walker RH, Nirenberg MJ, Renton AE, Babrowicz B, Coppola G, Raj T, Höglinger GU, Müller U, Golbe LI, Morris HR, Hardy J, Revesz T, Warner TT, Jaunmuktane Z, Mok KY, Rademakers R, Dickson DW, Ross OA, Wang LS, Goate A, Schellenberg G, Geschwind DH, Crary JF, Naj A. Genetic, transcriptomic, histological, and biochemical analysis of progressive supranuclear palsy implicates glial activation and novel risk genes. Nat Commun 2024; 15:7880. [PMID: 39251599 PMCID: PMC11385559 DOI: 10.1038/s41467-024-52025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
Progressive supranuclear palsy (PSP), a rare Parkinsonian disorder, is characterized by problems with movement, balance, and cognition. PSP differs from Alzheimer's disease (AD) and other diseases, displaying abnormal microtubule-associated protein tau by both neuronal and glial cell pathologies. Genetic contributors may mediate these differences; however, the genetics of PSP remain underexplored. Here we conduct the largest genome-wide association study (GWAS) of PSP which includes 2779 cases (2595 neuropathologically-confirmed) and 5584 controls and identify six independent PSP susceptibility loci with genome-wide significant (P < 5 × 10-8) associations, including five known (MAPT, MOBP, STX6, RUNX2, SLCO1A2) and one novel locus (C4A). Integration with cell type-specific epigenomic annotations reveal an oligodendrocytic signature that might distinguish PSP from AD and Parkinson's disease in subsequent studies. Candidate PSP risk gene prioritization using expression quantitative trait loci (eQTLs) identifies oligodendrocyte-specific effects on gene expression in half of the genome-wide significant loci, and an association with C4A expression in brain tissue, which may be driven by increased C4A copy number. Finally, histological studies demonstrate tau aggregates in oligodendrocytes that colocalize with C4 (complement) deposition. Integrating GWAS with functional studies, epigenomic and eQTL analyses, we identify potential causal roles for variation in MOBP, STX6, RUNX2, SLCO1A2, and C4A in PSP pathogenesis.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy Chang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yi Zhao
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pavel P Kuksa
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishakha Patil
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Wan-Ping Lee
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda B Kuzma
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura B Cantwell
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Wang
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashvin Ravi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia De Sanctis
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Han
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas D Christie
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robina Afzal
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shrishtee Kandoi
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret M Krassner
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadley Ressler
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - SoongHo Kim
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana Dangoor
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan A Iida
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alicia Casella
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa J Nirenberg
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan E Renton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bergan Babrowicz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Günter U Höglinger
- Department of Neurology, Ludwig-Maximilians-Universität Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ulrich Müller
- Institute of Human Genetics, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Lawrence I Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- CurePSP, Inc., New York, NY, USA
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
| | - John Hardy
- Queen Square Institute of Neurology, University College London, London, UK
- Dementia Research Institute, University College London, London, UK
| | - Tamas Revesz
- Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, University College London, London, UK
| | - Tom T Warner
- Department of Clinical and Movement Neurosciences, University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, University College London, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, University College London, London, UK
| | - Kin Y Mok
- Queen Square Institute of Neurology, University College London, London, UK
- Dementia Research Institute, University College London, London, UK
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison Goate
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics & Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerard Schellenberg
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Center for Autism Research and Treatment Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Adam Naj
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Ortigoza-Escobar JD, Zamani M, Dorison N, Sadeghian S, Azizimalamiri R, Alvi JR, Sultan T, Galehdari H, Shariati G, Saberi A, Leeuwen L, Zifarelli G, Bauer P, d'Hardemare V, Doummar D, Roze E, Travaglini L, Nicita F, Ojea Ponce N, Zahraei SM, Alabdi L, Tamim A, Hashem MO, Ababneh F, Morrow MM, Curry C, Tam A, Ruedy J, Bhambhani V, Veith R, Strømme P, Efthymiou S, Alkuraya FS, Moreno-De-Luca A, Burglen L, Houlden H, Maroofian R. Biallelic ZBTB11 Variants: A Neurodevelopmental Condition with Progressive Complex Movement Disorders. Mov Disord 2024; 39:1624-1630. [PMID: 38899514 DOI: 10.1002/mds.29883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Biallelic ZBTB11 variants have previously been associated with an ultrarare subtype of autosomal recessive intellectual developmental disorder (MRT69). OBJECTIVE The aim was to provide insights into the clinical and genetic characteristics of ZBTB11-related disorders (ZBTB11-RD), with a particular emphasis on progressive complex movement abnormalities. METHODS Thirteen new and 16 previously reported affected individuals, ranging in age from 2 to 50 years, with biallelic ZBTB11 variants underwent clinical and genetic characterization. RESULTS All patients exhibited a range of neurodevelopmental phenotypes with varying severity, encompassing ocular and neurological features. Eleven new patients presented with complex abnormal movements, including ataxia, dystonia, myoclonus, stereotypies, and tremor, and 7 new patients exhibited cataracts. Deep brain stimulation was successful in treating 1 patient with generalized progressive dystonia. Our analysis revealed 13 novel variants. CONCLUSIONS This study provides additional insights into the clinical features and spectrum of ZBTB11-RD, highlighting the progressive nature of movement abnormalities in the background of neurodevelopmental phenotype.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Mina Zamani
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Nathalie Dorison
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, The Children's Hospital and the University of Child Health Sciences, Lahore, Pakistan
| | - Tipu Sultan
- Department of Pediatric Neurology, The Children's Hospital and the University of Child Health Sciences, Lahore, Pakistan
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alihossein Saberi
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Lisette Leeuwen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Vincent d'Hardemare
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | - Diane Doummar
- AP-HP. Sorbonne Université, Service de Neuropédiatrie et Centre de Référence Neurogénétique, Hôpital Armand Trousseau, FHU I2D2, Paris, France
| | - Emmanuel Roze
- Assistance Publique-Hôpitaux de Paris CHU Pitié-Salpêtrière DMU Neurosciences et Sorbonne Université, INSERM, CNRS, Institut du Cerveau, Paris, France
| | - Lorena Travaglini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS, Bambino Gesù Children's Hospital of Rome, Rome, Italy
| | - Núria Ojea Ponce
- Department of Statistics, Institut de Recerca Sant Joan de Déu Barcelona, Barcelona, Spain
| | | | - Lama Alabdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdullah Tamim
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, MNGHA, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Faroug Ababneh
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, MNGHA, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Cynthia Curry
- Department of Pediatrics, Genetic Medicine, UCSF/Fresno, Fresno, California, USA
| | - Allison Tam
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Jessica Ruedy
- Genetics Clinic, Children's MN, Minneapolis, Minnesota, USA
| | | | - Regan Veith
- Genetics Clinic, Children's MN, Minneapolis, Minnesota, USA
| | - Petter Strømme
- Division of Pediatrics and Adolescent Medicine, Oslo, University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Andres Moreno-De-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Lydie Burglen
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet," Hôpital Trousseau, APHP, Sorbonne University, Paris, France
- Département de Génétique, APHP, Sorbonne University, Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR, Paris, France
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
43
|
Persson PB, Hillmeister P, Buschmann I, Bondke Persson A. Aging. Acta Physiol (Oxf) 2024; 240:e14192. [PMID: 38872423 DOI: 10.1111/apha.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Pontus B Persson
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Hillmeister
- Department for Angiology, Faculty of Health Sciences (FGW), Deutsches Angiologie Zentrum (DAZB), Brandenburg Medical School (MHB) Theodor Fontane, University Clinic Brandenburg, Center for Internal Medicine 1, Brandenburg/Havel, Germany
| | - Ivo Buschmann
- Department for Angiology, Faculty of Health Sciences (FGW), Deutsches Angiologie Zentrum (DAZB), Brandenburg Medical School (MHB) Theodor Fontane, University Clinic Brandenburg, Center for Internal Medicine 1, Brandenburg/Havel, Germany
| | - Anja Bondke Persson
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
44
|
Munteanu C, Galaction AI, Turnea M, Blendea CD, Rotariu M, Poștaru M. Redox Homeostasis, Gut Microbiota, and Epigenetics in Neurodegenerative Diseases: A Systematic Review. Antioxidants (Basel) 2024; 13:1062. [PMID: 39334720 PMCID: PMC11429174 DOI: 10.3390/antiox13091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases encompass a spectrum of disorders marked by the progressive degeneration of the structure and function of the nervous system. These conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Multiple sclerosis (MS), often lead to severe cognitive and motor deficits. A critical component of neurodegenerative disease pathologies is the imbalance between pro-oxidant and antioxidant mechanisms, culminating in oxidative stress. The brain's high oxygen consumption and lipid-rich environment make it particularly vulnerable to oxidative damage. Pro-oxidants such as reactive nitrogen species (RNS) and reactive oxygen species (ROS) are continuously generated during normal metabolism, counteracted by enzymatic and non-enzymatic antioxidant defenses. In neurodegenerative diseases, this balance is disrupted, leading to neuronal damage. This systematic review explores the roles of oxidative stress, gut microbiota, and epigenetic modifications in neurodegenerative diseases, aiming to elucidate the interplay between these factors and identify potential therapeutic strategies. We conducted a comprehensive search of articles published in 2024 across major databases, focusing on studies examining the relationships between redox homeostasis, gut microbiota, and epigenetic changes in neurodegeneration. A total of 161 studies were included, comprising clinical trials, observational studies, and experimental research. Our findings reveal that oxidative stress plays a central role in the pathogenesis of neurodegenerative diseases, with gut microbiota composition and epigenetic modifications significantly influencing redox balance. Specific bacterial taxa and epigenetic markers were identified as potential modulators of oxidative stress, suggesting novel avenues for therapeutic intervention. Moreover, recent evidence from human and animal studies supports the emerging concept of targeting redox homeostasis through microbiota and epigenetic therapies. Future research should focus on validating these targets in clinical settings and exploring the potential for personalized medicine strategies based on individual microbiota and epigenetic profiles.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700115 Iasi, Romania
| |
Collapse
|
45
|
El Hajji S, Shiga Y, Belforte N, Solorio YC, Tastet O, D’Onofrio P, Dotigny F, Prat A, Arbour N, Fortune B, Di Polo A. Insulin restores retinal ganglion cell functional connectivity and promotes visual recovery in glaucoma. SCIENCE ADVANCES 2024; 10:eadl5722. [PMID: 39110798 PMCID: PMC11305393 DOI: 10.1126/sciadv.adl5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Dendrite pathology and synaptic loss result in neural circuit dysfunction, a common feature of neurodegenerative diseases. There is a lack of strategies that target dendritic and synaptic regeneration to promote neurorecovery. We show that daily human recombinant insulin eye drops stimulate retinal ganglion cell (RGC) dendrite and synapse regeneration during ocular hypertension, a risk factor to develop glaucoma. We demonstrate that the ribosomal protein p70S6 kinase (S6K) is essential for insulin-dependent dendritic regrowth. Furthermore, S6K phosphorylation of the stress-activated protein kinase-interacting protein 1 (SIN1), a link between the mammalian target of rapamycin complexes 1 and 2 (mTORC1/2), is required for insulin-induced dendritic regeneration. Using two-photon microscopy live retinal imaging, we show that insulin rescues single-RGC light-evoked calcium (Ca2+) dynamics. We further demonstrate that insulin enhances neuronal survival and retina-brain connectivity leading to improved optomotor reflex-elicited behaviors. Our data support that insulin is a compelling pro-regenerative strategy with potential clinical implications for the treatment and management of glaucoma.
Collapse
Affiliation(s)
- Sana El Hajji
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nicolas Belforte
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Olivier Tastet
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Philippe D’Onofrio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Florence Dotigny
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Jayawickreme DK, Ekwosi C, Anand A, Andres-Mach M, Wlaź P, Socała K. Luteolin for neurodegenerative diseases: a review. Pharmacol Rep 2024; 76:644-664. [PMID: 38904713 PMCID: PMC11294387 DOI: 10.1007/s43440-024-00610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis affect millions of people around the world. In addition to age, which is a key factor contributing to the development of all neurodegenerative diseases, genetic and environmental components are also important risk factors. Current methods of treating neurodegenerative diseases are mostly symptomatic and do not eliminate the cause of the disease. Many studies focus on searching for natural substances with neuroprotective properties that could be used as an adjuvant therapy in the inhibition of the neurodegeneration process. These compounds include flavonoids, such as luteolin, showing significant anti-inflammatory, antioxidant, and neuroprotective activity. Increasing evidence suggests that luteolin may confer protection against neurodegeneration. In this review, we summarize the scientific reports from preclinical in vitro and in vivo studies regarding the beneficial effects of luteolin in neurodegenerative diseases. Luteolin was studied most extensively in various models of Alzheimer's disease but there are also several reports showing its neuroprotective effects in models of Parkinson's disease. Though very limited, studies on possible protective effects of luteolin against Huntington's disease and multiple sclerosis are also discussed here. Overall, although preclinical studies show the potential benefits of luteolin in neurodegenerative disorders, clinical evidence on its therapeutic efficacy is still deficient.
Collapse
Affiliation(s)
| | - Cletus Ekwosi
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Apurva Anand
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-950, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland.
| |
Collapse
|
47
|
Gadhave DG, Sugandhi VV, Jha SK, Nangare SN, Gupta G, Singh SK, Dua K, Cho H, Hansbro PM, Paudel KR. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev 2024; 99:102357. [PMID: 38830548 DOI: 10.1016/j.arr.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual. Moreover, the tight junction of the brain, blood-brain barrier (BBB)has a protective feature, functioning as a biological barrier that can prevent medicines, toxins, and foreign substances from entering the brain. However, delivering any medicinal agent to the brain in NDs (i.e., Multiple sclerosis, Alzheimer's, Parkinson's, etc.) is enormously challenging. There are many approved therapies to address NDs, but most of them only help treat the associated manifestations. The available therapies have failed to control the progression of NDs due to certain factors, i.e., BBB and drug-associated undesirable effects. NDs have extremely complex pathology, with many pathogenic mechanisms involved in the initiation and progression; thereby, a limited survival rate has been observed in ND patients. Hence, understanding the exact mechanism behind NDs is crucial to developing alternative approaches for improving ND patients' survival rates. Thus, the present review sheds light on different cellular mechanisms involved in NDs and novel therapeutic approaches with their clinical relevance, which will assist researchers in developing alternate strategies to address the limitations of conventional ND therapies. The current work offers the scope into the near future to improve the therapeutic approach of NDs.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vrashabh V Sugandhi
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sopan N Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| | - Keshav Raj Paudel
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun; Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
48
|
Liu Y, Guo J, Matoga M, Korotkova M, Jakobsson PJ, Aguzzi A. NG2 glia protect against prion neurotoxicity by inhibiting microglia-to-neuron prostaglandin E2 signaling. Nat Neurosci 2024; 27:1534-1544. [PMID: 38802591 PMCID: PMC11303249 DOI: 10.1038/s41593-024-01663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Oligodendrocyte-lineage cells, including NG2 glia, undergo prominent changes in various neurodegenerative disorders. Here, we identify a neuroprotective role for NG2 glia against prion toxicity. NG2 glia were activated after prion infection in cerebellar organotypic cultured slices (COCS) and in brains of prion-inoculated mice. In both model systems, depletion of NG2 glia exacerbated prion-induced neurodegeneration and accelerated prion pathology. Loss of NG2 glia enhanced the biosynthesis of prostaglandin E2 (PGE2) by microglia, which augmented prion neurotoxicity through binding to the EP4 receptor. Pharmacological or genetic inhibition of PGE2 biosynthesis attenuated prion-induced neurodegeneration in COCS and mice, reduced the enhanced neurodegeneration in NG2-glia-depleted COCS after prion infection, and dampened the acceleration of prion disease in NG2-glia-depleted mice. These data unveil a non-cell-autonomous interaction between NG2 glia and microglia in prion disease and suggest that PGE2 signaling may represent an actionable target against prion diseases.
Collapse
Affiliation(s)
- Yingjun Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Maja Matoga
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Marina Korotkova
- Karolinska Institutet, Department of Medicine Solna, Division of Rheumatology, Stockholm, Sweden
- Karolinska University Hospital at Solna, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Karolinska Institutet, Department of Medicine Solna, Division of Rheumatology, Stockholm, Sweden
- Karolinska University Hospital at Solna, Stockholm, Sweden
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Pang Y, Bang JW, Kasi A, Li J, Parra C, Fieremans E, Wollstein G, Schuman JS, Wang M, Chan KC. Contributions of Brain Microstructures and Metabolism to Visual Field Loss Patterns in Glaucoma Using Archetypal and Information Gain Analyses. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38975942 PMCID: PMC11232899 DOI: 10.1167/iovs.65.8.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Purpose To investigate the contributions of the microstructural and metabolic brain environment to glaucoma and their association with visual field (VF) loss patterns by using advanced diffusion magnetic resonance imaging (dMRI), proton magnetic resonance spectroscopy (MRS), and clinical ophthalmic measures. Methods Sixty-nine glaucoma and healthy subjects underwent dMRI and/or MRS at 3 Tesla. Ophthalmic data were collected from VF perimetry and optical coherence tomography. dMRI parameters of microstructural integrity in the optic radiation and MRS-derived neurochemical levels in the visual cortex were compared among early glaucoma, advanced glaucoma, and healthy controls. Multivariate regression was used to correlate neuroimaging metrics with 16 archetypal VF loss patterns. We also ranked neuroimaging, ophthalmic, and demographic attributes in terms of their information gain to determine their importance to glaucoma. Results In dMRI, decreasing fractional anisotropy, radial kurtosis, and tortuosity and increasing radial diffusivity correlated with greater overall VF loss bilaterally. Regionally, decreasing intra-axonal space and extra-axonal space diffusivities correlated with greater VF loss in the superior-altitudinal area of the right eye and the inferior-altitudinal area of the left eye. In MRS, both early and advanced glaucoma patients had lower gamma-aminobutyric acid (GABA), glutamate, and choline levels than healthy controls. GABA appeared to associate more with superonasal VF loss, and glutamate and choline more with inferior VF loss. Choline ranked third for importance to early glaucoma, whereas radial kurtosis and GABA ranked fourth and fifth for advanced glaucoma. Conclusions Our findings highlight the importance of non-invasive neuroimaging biomarkers and analytical modeling for unveiling glaucomatous neurodegeneration and how they reflect complementary VF loss patterns.
Collapse
Affiliation(s)
- Yueyin Pang
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Ji Won Bang
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Anisha Kasi
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Jeremy Li
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Carlos Parra
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Els Fieremans
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
- Center for Neural Science, New York University, New York, New York, United States
- Wills Eye Hospital, Philadelphia, Pennsylvania, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Joel S Schuman
- Wills Eye Hospital, Philadelphia, Pennsylvania, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
- Drexel University School of Biomedical Engineering, Science and Health Studies, Philadelphia, Pennsylvania, United States
| | - Mengyu Wang
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
- Center for Neural Science, New York University, New York, New York, United States
- Neuroscience Institute and Tech4Health Institute, New York University Grossman School of Medicine, New York, New York, United States
| |
Collapse
|
50
|
Helgudóttir SS, Mørkholt AS, Lichota J, Bruun-Nyzell P, Andersen MC, Kristensen NMJ, Johansen AK, Zinn MR, Jensdóttir HM, Nieland JDV. Rethinking neurodegenerative diseases: neurometabolic concept linking lipid oxidation to diseases in the central nervous system. Neural Regen Res 2024; 19:1437-1445. [PMID: 38051885 PMCID: PMC10883494 DOI: 10.4103/1673-5374.387965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Currently, there is a lack of effective medicines capable of halting or reversing the progression of neurodegenerative disorders, including amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis, or Alzheimer's disease. Given the unmet medical need, it is necessary to reevaluate the existing paradigms of how to target these diseases. When considering neurodegenerative diseases from a systemic neurometabolic perspective, it becomes possible to explain the shared pathological features. This innovative approach presented in this paper draws upon extensive research conducted by the authors and researchers worldwide. In this review, we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases. We provide an overview of the risk factors associated with developing neurodegenerative disorders, including genetic, epigenetic, and environmental factors. Additionally, we examine pathological mechanisms implicated in these diseases such as oxidative stress, accumulation of misfolded proteins, inflammation, demyelination, death of neurons, insulin resistance, dysbiosis, and neurotransmitter disturbances. Finally, we outline a proposal for the restoration of mitochondrial metabolism, a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
Collapse
Affiliation(s)
| | | | - Jacek Lichota
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Mads Christian Andersen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nanna Marie Juhl Kristensen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Amanda Krøger Johansen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mikela Reinholdt Zinn
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Hulda Maria Jensdóttir
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- 2N Pharma ApS, NOVI Science Park, Aalborg, Denmark
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|