1
|
Pan Y, Zhang L, Ma W, Ibrahim YM, Zhang W, Wang M, Wang X, Xu Y, Gao C, Chen H, Zhang H, Xia C, Wang Y. miR-191-5p suppresses PRRSV replication by targeting porcine EGFR to enhance interferon signaling. Front Microbiol 2024; 15:1473504. [PMID: 39469460 PMCID: PMC11514493 DOI: 10.3389/fmicb.2024.1473504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major thread to the global swine industry, lack of effective control strategies. This study explores the regulatory role of a small non-coding RNA, miR-191-5p, in PRRSV infection. We observed that miR-191-5p significantly inhibits PRRSV in porcine alveolar macrophages (PAMs), contrasting with negligible effects in MARC-145 and HEK293-CD163 cells, suggesting a cell-specific antiviral effect. Further investigation unveiled that miR-191-5p directly targets the porcine epidermal growth factor receptor (EGFR), whose overexpression or EGF-induced activation suppresses type I interferon (IFN-I) signaling, promoting PRRSV replication. In contrast, siRNA-or miR-191-5p-induced EGFR downregulation or EGFR inhibitor boosts IFN-I signaling, reducing viral replication. Notably, this miRNA alleviates the suppressive effect of EGF on IFN-I signaling, underscoring its regulatory function. Further investigation revealed interconnections among miR-191-5p, EGFR and signal transducer and activator of transcription 3 (STAT3). Modulation of STAT3 activity influenced IFN-I signaling and PRRSV replication, with STAT3 knockdown countering EGFR activation-induced virus replication. Combination inhibition of STAT3 and miR-191-5p suggests that STAT3 acts downstream in EGFR's antiviral response. Furthermore, miR-191-5p's broad efficacy in restricting various PRRSV strains in PAMs was identified. Collectively, these findings elucidate a novel mechanism of miR-191-5p in activating host IFN-I signaling to inhibit PRRSV replication, highlighting its potential in therapeutic applications against PRRSV.
Collapse
Affiliation(s)
- Yu Pan
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Zhang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yassein M. Ibrahim
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Science, Chongqing, China
| | - Wenli Zhang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengjie Wang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yunfei Xu
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Science, Chongqing, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Hancox L, Balasch M, Angulo J, Scott-Baird E, Mah CK. Comparison of viraemia and nasal shedding after PRRSV-1 challenge following vaccination with three commercially available PRRS modified live virus vaccines. Res Vet Sci 2024; 180:105416. [PMID: 39293105 DOI: 10.1016/j.rvsc.2024.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
The effectiveness of three Porcine Reproductive and Respiratory Syndrome (PRRS) Modified Live Virus (MLV) vaccines against PRRSV viraemia and nasal shedding following experimental challenge was compared. The study comprised a negative control (T01), and three treatment groups (T02, T03 and T04) each vaccinated with a single dose of a commercial PRRS MLV vaccine, given in accordance with the vaccine's Summary of Product Characteristics (SPC). Pigs aged 21 days were vaccinated (day 0), challenged intranasally (day 28) with heterologous PRRSV-1-1 strain Olot/91, then monitored for PRRSV viraemia and nasal shedding for 12 days. After challenge, pigs were viraemic on fewer days in group T04 (0.67) than groups T01 (0.91), T02 (0.81) and T03 (0.97) (P < 0.0296). From day 34, inclusive, serum PRRSV titres were lower in group T04 than negative controls (P ≤ 0.0001) and groups T02 and T03 (P ≤ 0.0047); serum PRRSV titre Area Under the Curve (AUC) for group T04 (42.34) was lower than in T01 (65.49), T02 (60.67) and T03 (67.38) (P < 0.0100); pigs exhibited nasal shedding on fewer days in group T04 (0.40) than T01 (0.78), T02 (0.64) and T03 (0.56) (P < 0.0101); and nasal shedding AUC for group T04 (8.52) was lower than in groups T01 (23.59, P < 0.0001) and T02 (19.37, P = 0.0001). The ability of PRRS MLV vaccines to reduce the duration of viraemia and nasal shedding after intranasal challenge with a heterologous PRRSV-1-1 strain differ significantly.
Collapse
Affiliation(s)
- Laura Hancox
- Zoetis UK Ltd, Birchwood Building, Springfield Drive, Leatherhead KT22 7LP, United Kingdom.
| | - Monica Balasch
- Zoetis Manufacturing and Research Spain S.L., Carretera Camprodon s/n, Finca La Riba, Vall de Bianya, 17813 Girona, Spain
| | - Jose Angulo
- Zoetis Inc., 1040 Swabia Ct, Durham, NC 27703, United States
| | - Emer Scott-Baird
- Drayton Animal Health, Alcester Road, Stratford-upon-Avon, Warwickshire CV37 9RQ, UK
| | - Choew Kong Mah
- Zoetis Thailand Ltd., 323 United Center Building, 46th Floor, Silom Road, Silom Bangrak, Bangkok 10500, Thailand
| |
Collapse
|
3
|
Bálint Á, Jakab S, Kaszab E, Marton S, Bányai K, Kecskeméti S, Szabó I. Spatiotemporal Distribution of PRRSV-1 Clades in Hungary with a Focus on the Era of Disease Eradication. Animals (Basel) 2024; 14:175. [PMID: 38200906 PMCID: PMC10778080 DOI: 10.3390/ani14010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the cause of the most severe economic losses in the pig industry worldwide. PRRSV is extremely diverse in Europe, which poses a significant challenge to disease control within a country or any region. With the combination of phylogenetic reconstruction and network analysis, we aimed to uncover the major routes of the dispersal of PRRSV clades within Hungary. In brief, by analyzing >2600 ORF5 sequences, we identified at least 12 clades (including 6 clades within lineage 1 and 3 clades within lineage 3) common in parts of Western Europe (including Denmark, Germany and the Netherlands) and identified 2 novel clades (designated X1 and X2). Of interest, some genetic clades unique to other central European countries, such as the Czech Republic and Poland, were not identified. The pattern of PRRSV clade distribution is consistent with the route of the pig trade among countries, showing that most of the identified clades were introduced from Western Europe when fatteners were transported to Hungary. As a result of rigorous implementation of the national eradication program, the swine population was declared officially free from PRRSV. This map of viral diversity and clade distribution will serve as valuable baseline information for the maintenance of PRRSV-free status in the post-eradication era.
Collapse
Affiliation(s)
- Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143 Budapest, Hungary;
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, H-1143 Budapest, Hungary; (S.J.); (E.K.); (S.M.)
| | - Szilvia Jakab
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, H-1143 Budapest, Hungary; (S.J.); (E.K.); (S.M.)
- HUN-REN Veterinary Medicinal Research Institute, H-1143 Budapest, Hungary
| | - Eszter Kaszab
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, H-1143 Budapest, Hungary; (S.J.); (E.K.); (S.M.)
- HUN-REN Veterinary Medicinal Research Institute, H-1143 Budapest, Hungary
- One Health Institute, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Szilvia Marton
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, H-1143 Budapest, Hungary; (S.J.); (E.K.); (S.M.)
- HUN-REN Veterinary Medicinal Research Institute, H-1143 Budapest, Hungary
| | - Krisztián Bányai
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, H-1143 Budapest, Hungary; (S.J.); (E.K.); (S.M.)
- HUN-REN Veterinary Medicinal Research Institute, H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Sándor Kecskeméti
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143 Budapest, Hungary;
| | - István Szabó
- National PRRS Eradication Committee, H-1024 Budapest, Hungary;
| |
Collapse
|
4
|
Szabó I, Nemes I, Bognár L, Terjék Z, Molnár T, Abonyi T, Bálint Á, Horváth DG, Balka G. Eradication of PRRS from Hungarian Pig Herds between 2014 and 2022. Animals (Basel) 2023; 13:3747. [PMID: 38136786 PMCID: PMC10740787 DOI: 10.3390/ani13243747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a widespread infectious disease that is currently a major cause of economic losses in pig production. In Hungary, a National PRRS Eradication Program has been introduced to attain a more efficient, economic, and competitive international market position. The program has been also approved by the EU, but the resulting legal obligations have imposed a burden on Hungarian producers to comply with EU competition rules. The implementation of the program has been carried out by the veterinary authorities with the consent of, continuous support from and monitoring conducted by organisations within the pig sector as well as a scientific committee. The PRRS eradication program in Hungary was based on a regional territorial principle and was compulsory for all pig holdings within the regions. In Hungary, large fattening farms operate as all-in/all-out or continuous flow systems. Large-scale breeding herds are predominantly farrow-to-finish types. Although its significance has decreased in recent decades, 20% of the Hungarian pig population is still kept on small (backyard) farms (<100 animals). All PRRSV-infected large-scale farms had to develop a unit-adapted eradication plan, including external and internal biosecurity measures, vaccinations, etc. It was crucial to render each fattening unit free of the disease, as fattening units play a significant role in spreading the virus within the country. The eradication efforts mainly implemented were depopulation-repopulation methods, but on some farms a testing and removal method has been used. As the eradication progressed over the years, the introduction of infected fattening pigs was restricted. Thanks to these measures, Hungarian large-scale fattening farms became PRRSV-free by the end of 2018. The PRRSV-free status of small-scale herds was achieved by the end of 2015 and was maintained between 2016 and 2021. By 31 December 2021, all breeding pigs in large-scale farms in Hungary were free of wild-type PRRS virus. By 31 March 2022, the total pig population of the country, including all backyard farms and fattening units, achieved PRRSV-free status. The future goal is to ensure and maintain the PRRSV-free status of Hungary via strict import regulations of live animals combined with the continuous and thorough screening of incoming and resident herds for the presence of the virus.
Collapse
Affiliation(s)
- István Szabó
- National PRRS Eradication Committee, Keleti Károly. u. 24, 1024 Budapest, Hungary; (I.S.); (I.N.); (Z.T.); (T.A.)
| | - Imre Nemes
- National PRRS Eradication Committee, Keleti Károly. u. 24, 1024 Budapest, Hungary; (I.S.); (I.N.); (Z.T.); (T.A.)
| | - Lajos Bognár
- Chief Veterinary Officer of Hungary, Ministry of Agriculture, Kossuth Lajos t. 11, 1055 Budapest, Hungary;
| | - Zsolt Terjék
- National PRRS Eradication Committee, Keleti Károly. u. 24, 1024 Budapest, Hungary; (I.S.); (I.N.); (Z.T.); (T.A.)
| | - Tamás Molnár
- National PRRS Eradication Committee, Keleti Károly. u. 24, 1024 Budapest, Hungary; (I.S.); (I.N.); (Z.T.); (T.A.)
| | - Tamás Abonyi
- National PRRS Eradication Committee, Keleti Károly. u. 24, 1024 Budapest, Hungary; (I.S.); (I.N.); (Z.T.); (T.A.)
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok u. 2, 1143 Budapest, Hungary;
| | - Dávid G. Horváth
- Department of Pathology, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary;
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary;
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
5
|
Hu R, Zhang T, Lai R, Ding Z, Zhuang Y, Liu H, Cao H, Gao X, Luo J, Chen Z, Zhang C, Liu P, Guo X, Hu G, Ding N, Deng S. PRRSV Elimination in a Farrow-to-Finish Pig Herd Using Herd Closure and Rollover Approach. Viruses 2023; 15:1239. [PMID: 37376538 DOI: 10.3390/v15061239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
It is well established that PRRSV elimination is an effective strategy for PRRS control, but published reports concerning successful PRRSV elimination cases in farrow-to-finishing herds are rare. Here, we have reported a successful PRRSV elimination case in a farrow-to-finish herd by employing a "herd closure and rollover" approach with some modifications. Briefly, the introduction of pigs to the herd was stopped and normal production processes were maintained until the herd reached a PRRSV provisional negative status. During the herd closure, strict biosecurity protocols were implemented to prevent transmission between nursery pigs and sows. In the current case, introducing gilts before herd closure and live PRRSV exposure were skipped. In the 23rd week post-outbreak, the pre-weaning piglets started to show 100% PRRSV negativity in qPCR tests. In the 27th week, nursery and fattening barns fully launched depopulation. In the 28th week, nursery and fattening houses reopened and sentinel gilts were introduced into gestation barns. Sixty days post-sentinel gilt introduction, the sentinel pigs maintained being PRRSV antibody negative, manifesting that the herd matched the standard of the provisional negative status. The production performance of the herd took 5 months to bounce back to normal. Overall, the current study provided additional information for PRRSV elimination in farrow-to-finish pig herds.
Collapse
Affiliation(s)
- Ruiming Hu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tiansheng Zhang
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou 363000, China
| | - Rongbin Lai
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou 363000, China
| | - Zhen Ding
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Zhuang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hao Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
| | - Huabin Cao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junrong Luo
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zheng Chen
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caiying Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ping Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guoliang Hu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nengshui Ding
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou 363000, China
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shunzhou Deng
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, China
- Jiangxi Provincial Key Laboratory for Animal Disease Diagnosis and Control, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
6
|
Prajapati M, Acharya MP, Yadav P, Frossard J. Farm characteristics and sero-prevalence of porcine reproductive and respiratory syndrome virus (PRRSV) antibodies in pigs of Nepal. Vet Med Sci 2022; 9:174-180. [PMID: 36495175 PMCID: PMC9856976 DOI: 10.1002/vms3.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome is a highly infectious disease of swine caused by PRRS virus (PRRSV). OBJECTIVES To evaluate the prevalence of PRRSV antibodies in the four districts of hilly and terai regions of Nepal. Toassess the farm characteristics through a questionnaire interview of farmersregarding management practices and PRRS. METHODS A cross-sectional study was conducted from July 2020 to June 2021 to determine the sero-prevalence of PRRSV in pigs. A total of 180 porcine serum samples were collected from 23 pig farms and tested for PRRSV antibodies by ELISA. Alongside, farm characteristics were also assessed through questionnaire to determine the level of biosecurity measures in the farm, knowledge of the disease and possible control mechanisms. RESULTS Out of 180 samples, 37 were tested positive resulting the overall sero-prevalence of 20.5%. There was significant association between different districts (p < 0.05) and PRRS prevalence. Prevalence of PRRSV antibody was found higher in Kaski district (10.5%) followed by Sunsari (8.8%) district. Based on age groups, highest prevalence was found in age groups of above 18 months (9.4%), followed by 13-18 months age groups (7.7%). Regarding the knowledge level of the disease, 43% of the farmers responded that they have heard about the disease. Biosecurity practices in the farm was found very poor where only 40% of the farms had disinfectant at the entrance of the farm and 25% pig farmers were found using separate boots while dealing with pigs. CONCLUSIONS The findings of this study reveal the presence of PRRSV antibodies in pigs of Nepal. In addition poor biosecurity measures, management practices and poor knowledge level about the disease among farmers highly affect in the control and prevention of disease thereby affecting the pig production and productivity. Therefore, government should develop and implement effective control measures and biosecurity programs.
Collapse
Affiliation(s)
- Meera Prajapati
- National Animal Health Research CentreNepal Agricultural Research CouncilKathmanduNepal
| | | | | | | |
Collapse
|
7
|
Fornyos K, Szabó I, Lebhardt K, Bálint Á. Development of a farm-specific real-time quantitative RT-PCR assay for the detection and discrimination of wild-type porcine reproductive respiratory syndrome virus and the vaccine strain in a farm under eradication. Acta Vet Hung 2022; 70:254-261. [PMID: 36053720 DOI: 10.1556/004.2022.00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases of swine causing severe economic losses worldwide, therefore intensive efforts are taken to eliminate PRRS virus (PRRSV) from infected herds for complete eradication. The most efficient, fastest but at the same time the most expensive eradication method is depopulation-repopulation. In order to reduce costs, a number of farms prefer to perform their eradication process with continuous production using modified live vaccine (MLV) immunisation. However, the commercial PRRSV RT-PCR kits do not have the capacity to discriminate infected from vaccinated animals. In this paper, we describe a simple discriminatory duplex TaqMan RT-PCR assay based on common forward and reverse primers, as well as two differently labelled MLV- and wild-type PRRSV-specific probes. The discriminatory PCR test we designed is a fast and efficacious method for processing large quantities of samples. The assay is cheap, flexible, easy to apply in different herds using different MLVs, but should be checked, and can be modified based on the sequence data obtained during the permanent monitoring examinations. Owing to its simplicity the test can serve as a significant complementary assay for PRRS control and elimination/eradication.
Collapse
Affiliation(s)
| | - István Szabó
- 2 National PRRS Eradication Committee, Budapest, Hungary
| | | | - Ádám Bálint
- 3 Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, Tábornok u. 2, H-1143, Budapest, Hungary
| |
Collapse
|
8
|
Pertich A, Barna Z, Makai O, Farkas J, Molnár T, Bálint Á, Szabó I, Albert M. Elimination of porcine reproductive and respiratory syndrome virus infection using an inactivated vaccine in combination with a roll-over method in a Hungarian large-scale pig herd. Acta Vet Scand 2022; 64:12. [PMID: 35525978 PMCID: PMC9077950 DOI: 10.1186/s13028-022-00630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe economic losses worldwide and only four countries in Europe are free from PRRSV. Complete depopulation–repopulation is the safest and fastest, but also the most expensive method for eradicating PRRSV from a population. Another possible way to eliminate an endemic PRRSV infection is to replace the infected breeding stock by gilts reared isolated and protected from PRRSV on an infected farm. With this method it is possible to maintain continuous production on the farm. The authors report the first successful elimination of PRRSV in a Hungarian large-scale pig farm by using an inactivated vaccine and performing segregated rearing of the offspring. Case presentation The study was performed on a PRRSV infected farm (Farm A) with 1475 sows. The clinical signs of reproductive failure had been eliminated previously by using an inactivated vaccine (Progressis®, Ceva). At the beginning of the elimination programme, gilts intended for breeding were vaccinated at 60 and 90–100 days of age. After that, gilts selected for breeding were vaccinated at 6 months of age, on the 60–70th day of pregnancy and at weaning. Approximately 1200 piglets from vaccinated sows were transported at 7 weeks of age to a closed, empty farm (Farm B) after being tested negative for PRRSV by a polymerase chain reaction (PCR) method, and then were reared here until 14 weeks of age. At this age, all pigs were tested by PRRS ELISA. Seronegative gilts (n = 901) were subsequently transported from Farm B to a third, closed and empty farm (Farm C), and (having reached the breeding age) they were inseminated here after a second negative serological test (ELISA). At the same time, Farm A was depopulated, cleaned and disinfected. All pregnant gilts were transported from Farm C to Farm A after being re-tested negative for antibodies against PRRSV. Follow-up serology tests were performed after farrowing and results yielded only seronegative animals. Based on the subsequent negative test results, the herd was declared PRRSV free by the competent authority. Conclusions The presented farm was the first during the National PRRS Eradication Programme of Hungary to eradicate PRRSV successfully by vaccinating the sows with an inactivated vaccine and performing segregated rearing of the offspring. Production was almost continuous during the whole process of population replacement.
Collapse
|
9
|
Petersen GEL, Buntjer JB, Hely FS, Byrne TJ, Doeschl-Wilson A. Modeling suggests gene editing combined with vaccination could eliminate a persistent disease in livestock. Proc Natl Acad Sci U S A 2022; 119:2107224119. [PMID: 35217603 PMCID: PMC8892294 DOI: 10.1073/pnas.2107224119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
Recent breakthroughs in gene-editing technologies that can render individual animals fully resistant to infections may offer unprecedented opportunities for controlling future epidemics in farm animals. Yet, their potential for reducing disease spread is poorly understood as the necessary theoretical framework for estimating epidemiological effects arising from gene-editing applications is currently lacking. Here, we develop semistochastic modeling approaches to investigate how the adoption of gene editing may affect infectious disease prevalence in farmed animal populations and the prospects and time scale for disease elimination. We apply our models to the porcine reproductive and respiratory syndrome (PRRS), one of the most persistent global livestock diseases to date. Whereas extensive control efforts have shown limited success, recent production of gene-edited pigs that are fully resistant to the PRRS virus have raised expectations for eliminating this deadly disease. Our models predict that disease elimination on a national scale would be difficult to achieve if gene editing was used as the only disease control. However, from a purely epidemiological perspective, disease elimination may be achievable within 3 to 6 y, if gene editing were complemented with widespread and sufficiently effective vaccination. Besides strategic distribution of genetically resistant animals, several other key determinants underpinning the epidemiological impact of gene editing were identified.
Collapse
Affiliation(s)
| | - Jaap B Buntjer
- The Roslin Institute, University of Edinburgh, Easter Bush EH25 9RG, Scotland
| | | | - Timothy John Byrne
- AbacusBio International, Roslin Innovation Centre, The University of Edinburgh, Easter Bush EH25 9RG, Scotland
- The Global Academy of Agriculture and Food Security, The University of Edinburgh, Easter Bush EH25 9RG, Scotland
| | | |
Collapse
|
10
|
Magalhães ES, Zimmerman JJ, Holtkamp DJ, Classen DM, Groth DD, Glowzenski L, Philips R, Silva GS, Linhares DCL. Next Generation of Voluntary PRRS Virus Regional Control Programs. Front Vet Sci 2021; 8:769312. [PMID: 34805344 PMCID: PMC8602550 DOI: 10.3389/fvets.2021.769312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) became pandemic in the 1980's and today remains one of the most significant pathogens of the global swine industry. At the herd level, control of PRRSV is complicated by its extreme genetic diversity and its ability to persist in pigs, despite an active immune response. Ultimately, PRRSV control or elimination requires the coordination and active cooperation of producers and veterinarians at the regional level. Early voluntary PRRSV regional control programs focused on routine diagnostic testing and voluntary data-sharing regarding the PRRSV status of participants' herds, but no pre-defined action plans or decision trees were developed to secure project successes (or recover from failures). Given that control of PRRSV is paramount to producer profitability, we propose a coordinated approach for detecting, controlling, and ultimately eliminating wild-type PRRSV from herds participating in regional projects. Fundamental to project success is real-time, multi-platform communication of all data, information, and events that concern the regional project and project participants. New to this approach is the concept of agreed-upon action plans to be implemented by project participants in response to specific events or situations. The simultaneous and coordinated implementation of these strategies allows for early detection of wild-type PRRSV virus introductions and rapid intervention based on agreed-upon response plans. An example is given of a project in progress in the Midwest USA.
Collapse
Affiliation(s)
- Edison S Magalhães
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jeffrey J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Derald J Holtkamp
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | | | - Douglas D Groth
- Carthage Veterinary Service, Ltd., Carthage, IL, United States
| | | | - Reid Philips
- Boehringer Ingelheim Animal Health USA Inc., Atlanta, GA, United States
| | - Gustavo S Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Daniel C L Linhares
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Sykes AL, Silva GS, Holtkamp DJ, Mauch BW, Osemeke O, Linhares DCL, Machado G. Interpretable machine learning applied to on-farm biosecurity and porcine reproductive and respiratory syndrome virus. Transbound Emerg Dis 2021; 69:e916-e930. [PMID: 34719136 DOI: 10.1111/tbed.14369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/22/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Effective biosecurity practices in swine production are key in preventing the introduction and dissemination of infectious pathogens. Ideally, on-farm biosecurity practices should be chosen by their impact on bio-containment and bio-exclusion; however, quantitative supporting evidence is often unavailable. Therefore, the development of methodologies capable of quantifying and ranking biosecurity practices according to their efficacy in reducing disease risk has the potential to facilitate better-informed choices of biosecurity practices. Using survey data on biosecurity practices, farm demographics, and previous outbreaks from 139 herds, a set of machine learning algorithms were trained to classify farms by porcine reproductive and respiratory syndrome virus status, depending on their biosecurity practices and farm demographics, to produce a predicted outbreak risk. A novel interpretable machine learning toolkit, MrIML-biosecurity, was developed to benchmark farms and production systems by predicted risk and quantify the impact of biosecurity practices on disease risk at individual farms. By quantifying the variable impact on predicted risk, 50% of 42 variables were associated with fomite spread while 31% were associated with local transmission. Results from machine learning interpretations identified similar results, finding substantial contribution to predicted outbreak risk from biosecurity practices relating to the turnover and number of employees, the surrounding density of swine premises and pigs, the sharing of haul trailers, distance from the public road and farm production type. In addition, the development of individualized biosecurity assessments provides the opportunity to better guide biosecurity implementation on a case-by-case basis. Finally, the flexibility of the MrIML-biosecurity toolkit gives it the potential to be applied to wider areas of biosecurity benchmarking, to address biosecurity weaknesses in other livestock systems and industry-relevant diseases.
Collapse
Affiliation(s)
- Abagael L Sykes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Gustavo S Silva
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Derald J Holtkamp
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Broc W Mauch
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Onyekachukwu Osemeke
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Daniel C L Linhares
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
Correia-Gomes C, Duncan A, Ward A, Pearce M, Eppink L, Webster G, McGowan A, Thomson J. Porcine reproductive and respiratory syndrome virus seroprevalence in Scottish finishing pigs between 2006 and 2018. Vet Rec 2021; 190:e349. [PMID: 34057743 DOI: 10.1002/vetr.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is a major endemic pig disease worldwide and is associated with considerable economic costs. METHODS In Scotland, three abattoir surveys were conducted in 2006 (158 farms), 2012-2013 (94 farms) and 2017-2018 (97 farms) to estimate seroprevalence to PRRS virus (PRRSV) in commercial finishing pigs. These surveys covered around 79%, 59% and 66% of the Quality Meat Scotland assured farms slaughtering pigs in Scotland in 2006, 2012-13 and, 2017-18 respectively. In the 2006 survey, six pigs per farm were sampled and tested using the CIVTEST SUIS PRRS E/S test. In the 2012-2013 and 2017-2018 surveys, 10 pigs per farm were sampled and tested using the IDEXX PRRS X3 Ab test. A farm was considered positive if it had one or more seropositive samples. RESULTS The prevalence of positive farms was 45.6% (95% CI: 38.0-53.4), 47.8% (95% CI: 38.1-57.9) and 45.4% (95% CI: 35.8-55.3) in the 2006, 2012-2013 and 2017-2018 surveys, respectively, and 70%-75.5% farms did not change their status between sampling periods. CONCLUSION The prevalence of PRRSV exposure in Scottish pig herds was high and changed little from 2006 to 2018. These surveys have informed planning for a prospective PRRS control programme in Scotland.
Collapse
Affiliation(s)
- Carla Correia-Gomes
- Epidemiology Research Unit, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Inverness, Scotland
| | - Andrew Duncan
- Inverness College UHI, Inverness, Scotland.,Epidemiology Research Unit, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Inverness, Scotland
| | - Allan Ward
- Rural Centre, Quality Meat Scotland, Newbridge, UK
| | - Michael Pearce
- Epidemiology Research Unit, Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Inverness, Scotland
| | - Lysan Eppink
- Boehringer Ingelheim Animal Health UK Ltd, Berkshire, UK
| | | | - Andy McGowan
- Wholesome Pigs (Scotland) Ltd, Aberdeenshire, Scotland
| | - Jill Thomson
- SRUC Veterinary Services, Pentlands Science Park, Midlothian, UK
| |
Collapse
|
13
|
Honoré OL, Sebbelov I, Wallin A, Petersen A, Clausen T, Larsen PF, Hammer AS. Association between Fur Animal Necrotizing Pyoderma in breeding farm mink (Neovison vison) and reduced fertility. Acta Vet Scand 2020; 62:66. [PMID: 33272327 PMCID: PMC7713332 DOI: 10.1186/s13028-020-00564-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The disease Fur Animal Necrotizing Pyoderma (FNP) has since 2000 been reported in many fur producing countries including Canada, Finland and Denmark. Development of FNP is characterised by rapidly forming treatment-resistant wounds on paws and in the head region. Economic losses related to FNP have been associated with mortality and decreased fur quality as well as increased veterinary costs. Also it has been suggested that FNP may be associated with reduced production results for breeding mink. The aim of this study was to evaluate if there is an association between FNP lesions in breeding animals and reduced production results based on a retrospective cohort study. RESULTS 1465 breeding animals (244 males and 1221 females) were followed during the breeding season 2019 on five Danish mink farms. Two farms were removed from the analysis since no occurrence of FNP appeared in the observation group. After exclusion, 846 breeding animals (148 males and 698 females) remained in the analysis and were divided into two groups: exposed (EXP) or non-exposed (N-EXP) depending on the disease history of the males during mating. Females exposed to FNP positive males during breeding in average produce 14% fewer kits (P = 0.032) and these females were also more than double as likely to produce small litters (N ≥ 3) than N-EXP females. Female's from the EXP group were introduced more times to males than females in the N-EXP group (P = 0.0001, 2.5 more times in average). Females in the EXP group did not have a statistically higher risk of becoming barren (P = 0.138) though the relative risk of becoming barren was 77% higher after encountering a FNP male. CONCLUSIONS This study shows that FNP has more economic losses for the farms than direct loss of animals. Females in contact with males with FNP lesion during breeding have a higher risk of becoming barren, and produce significantly fewer kits compared to females whom haven't been in contact with a FNP positive male.
Collapse
|
14
|
Szabó PM, Szalay D, Kecskeméti S, Molnár T, Szabó I, Bálint Á. Investigations on spreading of PRRSV among swine herds by improved minimum spanning network analysis. Sci Rep 2020; 10:19217. [PMID: 33154401 PMCID: PMC7645787 DOI: 10.1038/s41598-020-75516-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
In Hungary, the economic losses caused by porcine reproductive and respiratory syndrome virus (PRRSV) led to the launching of a national PRRSV Eradication Program. An important element of the program was investigating the spread of PRRSV among swine herds and the possible ways of introduction by sequencing of the open reading frame 5 (ORF5) gene. However, the classical phylogenetic tree presentation cannot explain several genetic relationships clearly, while more precise visualization can be represented by network tree diagram. In this paper, we describe a practical and easy-to-follow enriched minimum spanning similarity network application for improved representation of phylogenetic relations among viral strains. This method eliminated the necessity of applying a predefined, arbitrary cut-off or computationally extensive algorithms. The network-based visualization allowed processing and visualizing large amount of data equally for the laboratory, private and official veterinarians, and helped identify the potential connections between different viral sequences that support data-driven decisions in the eradication program. By applying network analysis, previously unknown epidemiological connections between infected herds were identified, and virus spreading was analyzed within short period of time. In our study, we successfully built and applied network analysis tools in the course of the Hungarian PRRSV Eradication Program.
Collapse
Affiliation(s)
- Péter Márton Szabó
- Hungarian Academy of Sciences and Semmelweis University, Szigony u. 43., Budapest, 1083, Hungary
| | - Dóra Szalay
- Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, Tabornok u. 2., Budapest, 1143, Hungary
| | - Sándor Kecskeméti
- Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, Tabornok u. 2., Budapest, 1143, Hungary
| | - Tamás Molnár
- National PRRS Eradication Committee, Keleti Karoly u. 24., Budapest, 1024, Hungary
| | - István Szabó
- National PRRS Eradication Committee, Keleti Karoly u. 24., Budapest, 1024, Hungary
| | - Ádám Bálint
- Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, Tabornok u. 2., Budapest, 1143, Hungary.
| |
Collapse
|
15
|
Szabó I, Bognár L, Molnár T, Nemes I, Bálint Á. PRRS eradication from swine farms in five regions of Hungary. Acta Vet Hung 2020; 68:257-262. [PMID: 33185567 DOI: 10.1556/004.2020.00043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/07/2020] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes significant losses to the swine industry worldwide, which leads to launching eradication programmes. The PRRS eradication programme in Hungary is based on the territorial principle, and it is obligatory for each swine farm irrespective of the number of animals kept there. Hungary has an exceptionally large herd size in large-scale pig farms. Large fattening farms operate as all-in/all-out or continuous flow systems. The large-scale breeding herds are predominantly farrow-to-finish types. In large-scale breeding farms, PRRS eradication was carried out by the depopulation-repopulation method in 33 farms, of which 23 received state compensation, 18 farm units either finished production or changed to producing fatteners only. Two farms used the test and removal method for eradication. One farm was classified as 'vaccinated free'. At this farm the breeding animals are vaccinated continuously but there is no vaccination of the progeny at any age, and the PRRS-free status of the farm is strictly controlled and monitored. By 31 December 2019, all pigs in five euroregions of Hungary had become free from PRRS virus, while the PRRS eradication process is still ongoing in the remaining two regions.
Collapse
Affiliation(s)
- István Szabó
- 1National PRRS Eradication Committee, Budapest, Hungary
| | | | - Tamás Molnár
- 1National PRRS Eradication Committee, Budapest, Hungary
| | - Imre Nemes
- 1National PRRS Eradication Committee, Budapest, Hungary
| | - Ádám Bálint
- 3Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, Tábornok u. 2, H-1143 Budapest, Hungary
| |
Collapse
|
16
|
Jara M, Rasmussen DA, Corzo CA, Machado G. Porcine reproductive and respiratory syndrome virus dissemination across pig production systems in the United States. Transbound Emerg Dis 2020; 68:667-683. [PMID: 32657491 DOI: 10.1111/tbed.13728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains widespread in the North American pig population. Despite improvements in virus characterization, it is unclear whether PRRSV infections are a product of viral circulation within production systems (local) or across production systems (external). Here, we examined the local and external dissemination dynamics of PRRSV and the processes facilitating its spread in three production systems. Overall, PRRSV genetic diversity has declined since 2018, while phylodynamic results support frequent external transmission. We found that PRRSV dissemination predominantly occurred mostly through transmission between farms of different production companies for several months, especially from November until May, a timeframe already established as PRRSV season. Although local PRRSV dissemination occurred mainly through regular pig flow (from sow to nursery and then to finisher farms), an important flux of PRRSV dissemination also occurred in the opposite direction, from finisher to sow and nursery farms, highlighting the importance of downstream farms as sources of the virus. Our results also showed that farms with pig densities of 500 to 1,000 pig/km2 and farms located at a range within 0.5 km and 0.7 km from major roads were more likely to be infected by PRRSV, whereas farms at an elevation of 41 to 61 meters and surrounded by denser vegetation were less likely to be infected, indicating their role as dissemination barriers. In conclusion, our results demonstrate that external dissemination was intense, and reinforce the importance of farm proximity on PRRSV spread. Thus, consideration of farm location, geographic characteristics and animal densities across production systems may help to forecast PRRSV collateral dissemination.
Collapse
Affiliation(s)
- Manuel Jara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Cesar A Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
17
|
Chai W, Liu Z, Sun Z, Su L, Zhang C, Huang L. Efficacy of two porcine reproductive and respiratory syndrome (PRRS) modified-live virus (MLV) vaccines against heterologous NADC30-like PRRS virus challenge. Vet Microbiol 2020; 248:108805. [PMID: 32828938 DOI: 10.1016/j.vetmic.2020.108805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/13/2020] [Indexed: 11/27/2022]
Abstract
The emergence of novel and variant porcine reproductive and respiratory syndrome virus (PRRSV) strains has made controlling this disease a challenge in China. Several NADC30-like PRRSV outbreaks have occurred in mainland China since 2013. The objective of the present study was to evaluate the cross-protection efficacy of two commercial PRRS modified-live virus (MLV) vaccines, derived from classical PRRSV (VR2332) and highly pathogenic (HP) PRRSV (TJM-F92), against an increasingly circulating NADC30-like lineage in pigs. Thirty-five PRRSV- and antibody-free pigs were randomly divided into the following four groups: strict control (SC), negative control (NC), Boehringer control (BC), and Zoetis control (ZC) groups. The NADC30-like PRRSV used in this study caused fever, clinical respiratory signs, and gross and microscopic lung lesions in inoculated pigs in the NC group. Vaccination with the VR2332 vaccine significantly reduced the percentage of viremic pigs as well as gross lung lesions and improved average daily weight gain compared to the ZC and NC groups, suggesting that this MLV vaccine provides cross-protection against the NADC30-like virus. There were no significant differences in the efficacy of the two MLV vaccines based on clinical scores, immunological responses, or pathological outcomes. This study demonstrated that VR2332 MLV was effective against circulating NADC30-like PRRSV and could be used to control NADC30-like virus infections in the field.
Collapse
Affiliation(s)
- Weidong Chai
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai 200040, China
| | - Zhicheng Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhi Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Liangke Su
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai 200040, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lv Huang
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai 200040, China.
| |
Collapse
|
18
|
Nemes I, Molnár T, Abonyi T, Terjék Z, Bálint Á, Szabó I. Eradication of PRRS from backyard swine herds in Hungary between 2012 and 2018. Acta Vet Hung 2019; 67:543-552. [PMID: 31842601 DOI: 10.1556/004.2019.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the EU Member States with a traditionally significant pig industry, the prevalence of PRRS infections is high. Therefore, the Pig Strategy of the Government of Hungary prioritises eradication of PRRSV in Hungary. For the first time among the EU Member States, a National PRRS Eradication Programme was introduced in order to reach a more efficient, economical and competitive international market position. Although its significance has decreased in recent decades, 20% of the Hungarian pig population is still kept on small-scale (backyard) farms (< 100 animals). The prevalence of PRRSV in backyard farms was 3.9% at the beginning of the programme. The present paper details the measures applied during the different phases of the programme in backyard farms. During all the phases, serological testing of the breeding animals of the registered small-scale herds was performed, including the highest number of individual animals. Seropositive individuals were tested by PCR and were removed from the backyard farm within the framework of official measures. By sequencing the identified PRRS strains, the possible epidemic relationships between small-scale and large-scale farms were continuously monitored. As a result of the programme, PRRS-free status of the small-scale herds was achieved by the end of 2015, and this status was maintained in 2016-2018.
Collapse
Affiliation(s)
| | | | | | | | - Ádám Bálint
- 2Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, Tábornok u. 2, H-1134 Budapest, Hungary
| | | |
Collapse
|
19
|
Szabó I, Molnár T, Nemes I, Abonyi T, Terjék Z, Bálint Á. PRRSV eradication on large-scale fattening pig farms in Hungary between 2014 and 2019. Acta Vet Hung 2019; 67:529-542. [PMID: 31842600 DOI: 10.1556/004.2019.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eradication of porcine reproductive and respiratory syndrome virus (PRRSV) from the pig population of Hungary started in 2014 on the basis of the territorial principle. In order to reach this goal it was crucial to render each fattening unit free of this disease, since fattening units play a significant role in spreading the virus all over the country. In 2015, 188 out of 307 large-scale fattening farms (61.2%) kept PRRS-positive animals. The main source of infection of these farms was the import of PRRS-infected fattening pigs. The following methods were used during the eradication from 2017: (1) Only pigs coming from PRRS-free farms were allowed to be used for fattening in Hungary; (2) Quarantine of all herds for 60 days; (3) PCR test for PRRS 48 hours after the arrival of the prefattening animals; (4) Serological test for PRRS at the end of the quarantine period. If any diagnostic test gave even one positive result and the result was confirmed by another test, the stock had to be sold for slaughter within 15 days or placed outside Hungary, so that the infected stock would not compromise the PRRS status of that area. PRRSV eradication on large-scale fattening units applying all-in/all-out operation was relatively simple, using the depopulation-repopulation method. On permanently operating farms, the infected herd was sold from time to time, without having to be repopulated until the last delivery. After cleaning, disinfection and restocking, the repopulation was done with PRRS-free animals. As the eradication progressed over the years, a ban on the import of infected fattening pigs was imposed. As a consequence of these measures, by the end of 2018, Hungarian large-scale fattening farms became free of PRRS. Maintaining the national-level PRRS-free status of large-scale pig fattening units contributes to eliminating a significant cost factor from the Hungarian pork production industry, and opens the way for a significant reduction in antibiotic consumption as well.
Collapse
Affiliation(s)
| | | | | | | | | | - Ádám Bálint
- 2Department of Virology, National Food Chain Safety Office Veterinary Diagnostic Directorate, Tábornok u. 2, H-1143 Budapest, Hungary
| |
Collapse
|
20
|
Haiwick G, Hermann J, Roof M, Fergen B, Philips R, Patterson A. Examination of viraemia and clinical signs after challenge with a heterologous PRRSV strain in PRRS Type 2 MLV vaccinated pigs: A challenge-dose study. PLoS One 2018; 13:e0209784. [PMID: 30592764 PMCID: PMC6310246 DOI: 10.1371/journal.pone.0209784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 12/01/2022] Open
Abstract
Vaccination with porcine reproductive and respiratory syndrome (PRRS) Type 2 modified-live vaccines (MLVs) has been shown to improve clinical signs and survival rates in PRRS virus (PRRSV)-challenged pigs. This study evaluated the dose of PRRSV challenge needed to cause and maintain viraemia in PRRS Type 2 MLV-vaccinated pigs and assessed clinical responses to various doses of virulent challenge. This controlled, randomised, blinded vaccination-challenge study involved 95 pigs who were either vaccinated with 2 mL of a PRRS Type 2 MLV on Day 0 or left unvaccinated. On Day 28, pigs were challenged intranasally with virulent PRRSV isolate (dose range <1.5 to 4 log10 50% tissue culture infectious dose/mL). Five pigs were left unchallenged and served as environmental controls. Viraemia levels, pyrexia, average daily weight gain and clinical signs were assessed. At all challenge doses, vaccinated groups had reduced viraemia levels and clinical signs, and higher average daily weight gain compared with non-vaccinated groups. Vaccinated groups challenged with ≤2 log had similar viraemia levels and clinical performance (days pyrexic and average daily weight gain) as the non-challenged group. Vaccinated groups had significantly reduced pyrexic days compared with non-vaccinated groups across all challenge doses (P <.05). Vaccinated pigs challenged with <3 log had significantly improved average daily weight gain (P <.05). In vaccinated groups, challenge dose correlated positively with viraemia levels and number of days pyrexic, and negatively with average daily weight gain. This is the first study to use a challenge-dose model to evaluate the efficacy of vaccination against PRRSV. PRRS Type 2 MLV was shown to mitigate the consequences of PRRSV infection at all evaluated PRRSV challenge doses. Lower levels of challenge had minimal impact on health and performance of vaccinated pigs, supporting the benefit of vaccinating swine with PRRS Type 2 MLV.
Collapse
Affiliation(s)
- Greg Haiwick
- Boehringer Ingelheim Animal Health Research and Development, Ames, Iowa, United States of America
- * E-mail:
| | - Joseph Hermann
- Boehringer Ingelheim Animal Health Research and Development, Ames, Iowa, United States of America
| | - Michael Roof
- Boehringer Ingelheim Animal Health Research and Development, Ames, Iowa, United States of America
| | - Brian Fergen
- Boehringer Ingelheim Animal Health Research and Development, Ames, Iowa, United States of America
| | - Reid Philips
- Boehringer Ingelheim Animal Health, Duluth, Georgia, United States of America
| | - Abby Patterson
- Boehringer Ingelheim Animal Health Research and Development, Ames, Iowa, United States of America
| |
Collapse
|
21
|
Liu P, Bai Y, Jiang X, Zhou L, Yuan S, Yao H, Yang H, Sun Z. High reversion potential of a cell-adapted vaccine candidate against highly pathogenic porcine reproductive and respiratory syndrome. Vet Microbiol 2018; 227:133-142. [PMID: 30473344 DOI: 10.1016/j.vetmic.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022]
Abstract
Modified live vaccine (MLV) based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is prone to quick reversion of virulence upon circulating in host animals. The objective of this study was to evaluate the virulence reversion potential of HP-PRRSV MLV and to identify elements within the HP-PRRSV genome contributing to this phenomenon. A blind passage, cell-adaptation strategy was attempted to attenuate a HP-PRRSV strain JX143, which was isolated during the atypical PRRS outbreak in 2006. Two attenuated candidates passage 87 (JXM87) and passage 105 (JXM105) used as MLVs showed the best balance of safety and efficacy in 4 week-old piglets (unpublished data). Two studies were performed during which the candidates were assessed for reversion to virulence through five back passages in susceptible piglets (21 ± 3 days of age). Both study results showed increase in clinical signs, pyrexia and lung lesions as well as decreased average daily weight gain as of passage 3 in susceptible pigs clearly, and it indicated that both candidates regained virulence, irrespective of the passage level. Increase in respective parameters was accompanied by increase in viremia in piglets: JXM87 virus titer increased from Passage 1 (P1) 4.40 Lg TCID50/mL to P4 5.75 Lg TCID50/mL, and JXM105 virus titer increased from P1 3.78 Lg TCID50/mL to P4 6.42 Lg TCID50/mL. Next generation sequencing (NGS) was performed on clinical samples (serum, lung tissue) from P4 animals. Sequence analysis comparing P4 materials with their parental strains revealed 10 amino acid mutations in 4 proteins for JXM87 and 14 amino acid mutations in 9 proteins for JXM105, respectively. Interestingly, five amino acid mutations were identical for the two candidates, which were located in nsp1β, GP5a and nsp10 coding regions, suggesting nsp1β, GP5a and nsp10 could contribute to virulence in HP-PRRSV.
Collapse
Affiliation(s)
- Ping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, 210095, China; Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Yajun Bai
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Xiaohong Jiang
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Lei Zhou
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Shishan Yuan
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, 210095, China.
| | - Hanchun Yang
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China.
| | - Zhi Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China.
| |
Collapse
|
22
|
Guo Z, Chen XX, Li R, Qiao S, Zhang G. The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: a molecular epidemiological perspective. Virol J 2018; 15:2. [PMID: 29301547 PMCID: PMC5753475 DOI: 10.1186/s12985-017-0910-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been epidemic more than 30 years in America and 20 years in China. It is still one of the most important causative agents to the worldwide swine industry. Here, we systematically analyzed the prevalence status of PRRSV in China by a molecular epidemiological perspective. Now both PRRSV-1 and PRRSV-2 are circulating and approximately more than 80% of pig farms are seropositive for PRRSV. For PRRSV-2, there are four lineages (lineage 1, lineage 3, lineage 5, lineage 8) circulating in the fields. Lineage 8 (CH-1a-like) and lineage 5 (BJ-4-like) appeared almost at the same time during 1995-1996. Notably, BJ-4 shares 99.6% and 99.8% identity with VR2332 and RespPRRS MLV, respectively. It means that lineage 5 is likely to be imported from America. Now highly pathogenic PRRSV (HP-PRRSV) which was considered to be evolved from local diversity of lineage 8 strains is predominant with different variants. Lineage 3 appeared in 2010 which is mainly sporadic in south of China. Lineage 1, also known as NADC30-like strains in China, has been prevalent since 2013 and leads to PRRS pandemic again. For PRRSV-1, although sporadic at present, more than 9 provinces/regions have been reported. All the circulating strains belong to subtype I. It should be paid more attention since there are no vaccines available. Our analysis would help to deeply understand the prevalent status of PRRSV in China and provide useful information for prevention and control of porcine reproductive and respiratory syndrome (PRRS).
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
23
|
Balasuriya UB, Carossino M. Reproductive effects of arteriviruses: equine arteritis virus and porcine reproductive and respiratory syndrome virus infections. Curr Opin Virol 2017; 27:57-70. [PMID: 29172072 DOI: 10.1016/j.coviro.2017.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/29/2022]
Abstract
Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are the most economically important members of the family Arteriviridae. EAV and PRRSV cause reproductive and respiratory disease in equids and swine, respectively and constitute a significant economic burden to equine and swine industries around the world. Furthermore, they both cause abortion in pregnant animals and establish persistent infection in their natural hosts, which fosters viral shedding in semen leading to sexual transmission. The primary focus of this article is to provide an update on the effects of these two viruses on the reproductive tract of their natural hosts and provide a comparative analysis of clinical signs, virus-host interactions, mechanisms of viral pathogenesis and viral persistence.
Collapse
Affiliation(s)
- Udeni Br Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - Mariano Carossino
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
24
|
Epidemiological investigations of the introduction of porcine reproductive and respiratory syndrome virus in Chile, 2013-2015. PLoS One 2017; 12:e0181569. [PMID: 28742879 PMCID: PMC5526545 DOI: 10.1371/journal.pone.0181569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/23/2017] [Indexed: 01/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is endemic in most pork producing countries. In Chile, eradication of PRRS virus (PRRSV) was successfully achieved in 2009 as a result of the combined efforts of producers and the animal health authorities. In October 2013, after several years without detecting PRRSV under surveillance activities, suspected cases were confirmed on a commercial swine farm. Here, we describe the PRRS epidemic in Chile between October 2013 and April 2015, and we studied the origins and spread of PRRSV throughout the country using official surveillance data and Bayesian phylogenetic analysis. Our results indicate that the outbreaks were caused by a PRRSV closely related to viruses present in swine farms in North America, and different from the strain that circulated in the country before 2009. Using divergence time estimation analysis, we found that the 2013–2015 PRRSV may have been circulating in Chile for at least one month before the first detection. A single strain of PRRSV spread into a limited number of commercial and backyard swine farms. New infections in commercial systems have not been reported since October 2014, and eradication is underway by clearing the disease from the few commercial and backyard farms that remain positive. This is one of the few documented experiences of PRRSV introduction into a disease-free country.
Collapse
|