1
|
Rampanti G, Cardinali F, Bande De León CM, Ferrocino I, Franciosa I, Milanović V, Foligni R, Tejada Portero L, Garofalo C, Osimani A, Aquilanti L. Onopordum platylepis (Murb.) Murb. as a novel source of thistle rennet: First application to the manufacture of traditional Italian raw ewe's milk cheese. Food Res Int 2024; 192:114838. [PMID: 39147526 DOI: 10.1016/j.foodres.2024.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
In this study, for the very first time, aqueous extracts obtained from flowers of spontaneously grown or cultivated Onopordum platylepis (Murb.) Murb. thistles were used as coagulating agents for the pilot-scale manufacture of Caciofiore, a traditional Italian raw ewe's milk cheese. Cheese prototypes were compared to control cheeses curdled with a commercial thistle rennet obtained from flowers of Cynara cardunculus L. After 45 days of ripening under controlled conditions, both the experimental and control cheese prototypes were analyzed for: cheese yield, physico-chemical (pH, titratable acidity, aw, proximate composition), morpho-textural (color and texture), and microbiological parameters (viable cell counts and species composition assessed by Illumina sequencing), as well as volatile profile by SPME-GC-MS. Slight variations in titratable acidity, color, and texture were observed among samples. Based on the results overall collected, neither the yield nor the proximate composition was apparently affected by the type of thistle coagulant. However, the experimental cheese prototypes curdled with extracts from flowers of both spontaneous or cultivated thistles showed 10 % higher values of water-soluble nitrogen compared to the control prototypes. On the other hand, these latter showed slightly higher loads of presumptive lactococci, thermophilic cocci, coliforms, and eumycetes, but lower counts of Escherichia coli. No statistically significant differences were revealed by the metataxonomic analysis of the bacterial and fungal biota. Though most volatile organic compounds (VOCs) were consistent among the prototypes, significant variability was observed in the abundance of some key aroma compounds, such as butanoic, hexanoic, and octanoic acids, ethanol, propan-2-ol, isobutyl acetate, 2-methyl butanoic acid, and 3-methyl butanal. However, further investigations are required to attribute these differences to either the type of coagulant or the metabolic activity of the microorganisms occurring in the analyzed cheese samples. The results overall collected support the potential exploitation of O. platylepis as a novel source of thistle coagulant to produce ewe's milk cheeses.
Collapse
Affiliation(s)
- Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cindy María Bande De León
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin (UNITO), Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Irene Franciosa
- Department of Agricultural, Forest, and Food Science, University of Turin (UNITO), Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Roberta Foligni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Luis Tejada Portero
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
2
|
Sterzi L, Nodari R, Di Marco F, Ferrando ML, Saluzzo F, Spitaleri A, Allahverdi H, Papaleo S, Panelli S, Rimoldi SG, Batisti Biffignandi G, Corbella M, Cavallero A, Prati P, Farina C, Cirillo DM, Zuccotti G, Bandi C, Comandatore F. Genetic barriers more than environmental associations explain Serratia marcescens population structure. Commun Biol 2024; 7:468. [PMID: 38632370 PMCID: PMC11023947 DOI: 10.1038/s42003-024-06069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Bacterial species often comprise well-separated lineages, likely emerged and maintained by genetic isolation and/or ecological divergence. How these two evolutionary actors interact in the shaping of bacterial population structure is currently not fully understood. In this study, we investigate the genetic and ecological drivers underlying the evolution of Serratia marcescens, an opportunistic pathogen with high genomic flexibility and able to colonise diverse environments. Comparative genomic analyses reveal a population structure composed of five deeply-demarcated genetic clusters with open pan-genome but limited inter-cluster gene flow, partially explained by Restriction-Modification (R-M) systems incompatibility. Furthermore, a large-scale research on hundred-thousands metagenomic datasets reveals only a partial habitat separation of the clusters. Globally, two clusters only show a separate gene composition coherent with ecological adaptations. These results suggest that genetic isolation has preceded ecological adaptations in the shaping of the species diversity, an evolutionary scenario coherent with the Evolutionary Extended Synthesis.
Collapse
Affiliation(s)
- Lodovico Sterzi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Riccardo Nodari
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Laura Ferrando
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Hamed Allahverdi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Stella Papaleo
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Simona Panelli
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Sara Giordana Rimoldi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, Milan, Italy
| | | | - Marta Corbella
- Department of Microbiology & Virology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | | | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Pavia, Italy
| | - Claudio Farina
- Laboratory of Microbiology and Virology, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
- Department of Paediatrics, Children's Hospital "V. Buzzi", Milano, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", University of Milan, 20133, Milan, Italy
| | - Francesco Comandatore
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy.
| |
Collapse
|
3
|
Mazwi KD, Kolo FB, Jaja IF, Byaruhanga C, Hassim A, van Heerden H. Polyphasic Characterization of Brucella spp. in Livestock Slaughtered from Abattoirs in Eastern Cape, South Africa. Microorganisms 2024; 12:223. [PMID: 38276208 PMCID: PMC10819803 DOI: 10.3390/microorganisms12010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
In livestock, brucellosis is mainly an asymptomatic disease except when abortion occurs; therefore, two serological tests are used for diagnosis as no single test is suitable. Abattoir samples enable a combination of culture, molecular, and serological tests to detect brucellosis. This study assessed Brucella-specific PCR (ITS-PCR) to detect brucellosis and to conduct a molecular characterization of Brucella spp. isolated from PCR-positive livestock (n = 565) slaughtered at abattoirs and the appropriate sample tissue(s). ITS-PCR detected Brucella DNA in 33.6% of cattle, 14.5% of sheep, and 4.7% of pig tissues. Impure Brucella cultures from PCR-positive tissues were 43.6% (44/94) of cattle, 51.7% (15/29) of sheep, and 50% (2/4) of pigs with predominantly B. abortus identification with AMOS-PCR and low isolation of mixed B. abortus and B. melitensis in all species. In cattle, 33% of isolates were from lymph nodes, while in sheep 38.0% were from the liver and kidney and only from tonsils in pigs (2/4). Brucella infections identified with AMOS-PCR were present in seropositive and mainly seronegative (75.6-100%) livestock with the potential to cause brucellosis during pregnancy or breeding. This study demonstrated the value of the polyphasic approach, especially with chronic infections and the potential risk of these asymptomatic animals.
Collapse
Affiliation(s)
- Koketso Desiree Mazwi
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
| | - Francis Babaman Kolo
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
- Department of Agriculture and Animal Health, University of South Africa, Roodepoort, Johannesburg 1709, South Africa
| | - Charles Byaruhanga
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- National Agricultural Research Organisation, Entebbe P.O. Box 259, Uganda
| | - Ayesha Hassim
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
| |
Collapse
|
4
|
Shikov AE, Merkushova AV, Savina IA, Nizhnikov AA, Antonets KS. The man, the plant, and the insect: shooting host specificity determinants in Serratia marcescens pangenome. Front Microbiol 2023; 14:1211999. [PMID: 38029097 PMCID: PMC10656689 DOI: 10.3389/fmicb.2023.1211999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Serratia marcescens is most commonly known as an opportunistic pathogen causing nosocomial infections. It, however, was shown to infect a wide range of hosts apart from vertebrates such as insects or plants as well, being either pathogenic or growth-promoting for the latter. Despite being extensively studied in terms of virulence mechanisms during human infections, there has been little evidence of which factors determine S. marcescens host specificity. On that account, we analyzed S. marcescens pangenome to reveal possible specificity factors. Methods We selected 73 high-quality genome assemblies of complete level and reconstructed the respective pangenome and reference phylogeny based on core genes alignment. To find an optimal pipeline, we tested current pangenomic tools and obtained several phylogenetic inferences. The pangenome was rich in its accessory component and was considered open according to the Heaps' law. We then applied the pangenome-wide associating method (pan-GWAS) and predicted positively associated gene clusters attributed to three host groups, namely, humans, insects, and plants. Results According to the results, significant factors relating to human infections included transcriptional regulators, lipoproteins, ABC transporters, and membrane proteins. Host preference toward insects, in its turn, was associated with diverse enzymes, such as hydrolases, isochorismatase, and N-acetyltransferase with the latter possibly exerting a neurotoxic effect. Finally, plant infection may be conducted through type VI secretion systems and modulation of plant cell wall synthesis. Interestingly, factors associated with plants also included putative growth-promoting proteins like enzymes performing xenobiotic degradation and releasing ammonium irons. We also identified overrepresented functional annotations within the sets of specificity factors and found that their functional characteristics fell into separate clusters, thus, implying that host adaptation is represented by diverse functional pathways. Finally, we found that mobile genetic elements bore specificity determinants. In particular, prophages were mainly associated with factors related to humans, while genetic islands-with insects and plants, respectively. Discussion In summary, functional enrichments coupled with pangenomic inferences allowed us to hypothesize that the respective host preference is carried out through distinct molecular mechanisms of virulence. To the best of our knowledge, the presented research is the first to identify specific genomic features of S. marcescens assemblies isolated from different hosts at the pangenomic level.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Anastasiya V. Merkushova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Iuliia A. Savina
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
5
|
Rodríguez J, Lobato C, Vázquez L, Mayo B, Flórez AB. Prodigiosin-Producing Serratia marcescens as the Causal Agent of a Red Colour Defect in a Blue Cheese. Foods 2023; 12:2388. [PMID: 37372599 DOI: 10.3390/foods12122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Technological defects in the organoleptic characteristics of cheese (odour, colour, texture, and flavour) reduce quality and consumer acceptance. A red colour defect in Cabrales cheese (a traditional, blue-veined, Spanish cheese made from raw milk) occurs infrequently but can have a notable economic impact on family-owned, artisanal cheesemaking businesses. This work reports the culture-based determination of Serratia marcescens as the microbe involved in the appearance of red spots on the surface and nearby inner areas of such cheese. Sequencing and analysis of the genome of one S. marcescens isolate, RO1, revealed a cluster of 16 genes involved in the production of prodigiosin, a tripyrrole red pigment. HPLC analysis confirmed the presence of prodigiosin in methanol extracts of S. marcescens RO1 cultures. The same was also observed in extracts from red areas of affected cheeses. The strain showed low survival rates under acidic conditions but was not affected by concentrations of up to 5% NaCl (the usual value for blue cheese). The optimal conditions for prodigiosin production by S. marscescens RO1 on agar plates were 32 °C and aerobic conditions. Prodigiosin has been reported to possess antimicrobial activity, which agrees with the here-observed inhibitory effect of RO1 supernatants on different bacteria, the inhibition of Enterobacteriaceae, and the delayed development of Penicillium roqueforti during cheesemaking. The association between S. marcescens and the red colour defect was strengthened by recreating the fault in experimental cheeses inoculated with RO1. The data gathered in this study point towards the starting milk as the origin of this bacterium in cheese. These findings should help in the development of strategies that minimize the incidence of pigmenting S. marcescens in milk, the red defect the bacterium causes in cheese, and its associated economic losses.
Collapse
Affiliation(s)
- Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Cristina Lobato
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| |
Collapse
|
6
|
Liang Z, Shen J, Liu J, Sun X, Yang Y, Lv Y, Zheng J, Mou X, Li H, Ding X, Yang F. Prevalence and Characterization of Serratia marcescens Isolated from Clinical Bovine Mastitis Cases in Ningxia Hui Autonomous Region of China. Infect Drug Resist 2023; 16:2727-2735. [PMID: 37168514 PMCID: PMC10166088 DOI: 10.2147/idr.s408632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Purpose This study aimed to investigate the prevalence and genetic characterization of Serratia marcescens isolates from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. Methods S. marcescens was identified by the polymerase-chain reaction of 16S rRNA gene and sequencing. Antimicrobial susceptibility was tested by the disk diffusion method. Genes of resistance and virulence were determined by the PCR. Results Overall, S. marcescens were confirmed from 32 of 2897 (1.1%) mastitis milk samples. These isolates showed high resistance to cefazolin (30/32, 93.8%) and chloramphenicol (28/32, 87.5%). A 12.5% (4/32) of the isolates displayed multidrug resistance (MDR). The most prevalent resistant genes found in S. marcescens were TEM (32/32, 100%) and CTX-M (24/32, 75.0%; CTX-M-15, 14/32, 43.8%; CTX-M-14, 8/32, 25.0%; CTX-M-65, 2/32, 6.3%) for extended-spectrum beta-lactamase, cmlA (28/32, 87.5%) and floR (16/32, 50.0%) for chloramphenicol resistance, SIM-1 (2/32, 6.3%) for carbapenemases, and sdeB (28/32, 87.5%), sdeY (26/32, 81.3%), sdeR (26/32, 81.3%) and sdeD (20/32, 62.5%) for efflux pumps. Moreover, all isolates carried virulence genes flhD, entB, and kpn, and most of them contained mrkD (30/32, 93.8%), ycfM (26/32, 81.3%), bsmB (26/32, 81.3%), pigP (26/32, 81.3%), kfu (24/32, 75.0%) and shlB (24/32, 75.0%). Conclusion To our knowledge, this is the first report of genetic determinants for antimicrobial resistance and virulence in S. marcescens isolated from bovine mastitis cases in China. These findings are useful for developing strategies for prevention and treatment of bovine mastitis caused by S. marcescens in China.
Collapse
Affiliation(s)
- Zeyi Liang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Jiahao Shen
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Jing Liu
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xu Sun
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Yayuan Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Yanan Lv
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Juanshan Zheng
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xiaoqing Mou
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Hongsheng Li
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xuezhi Ding
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Feng Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
- Correspondence: Feng Yang; Xuezhi Ding, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, No. 335 Jiangouyan, Qilihe District, Lanzhou, Gansu, 730050, People’s Republic of China, Tel +86-931-2115262, Fax +86-931-2114180, Email ;
| |
Collapse
|
7
|
Thompson JE. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in veterinary medicine: Recent advances (2019-present). Vet World 2022; 15:2623-2657. [PMID: 36590115 PMCID: PMC9798047 DOI: 10.14202/vetworld.2022.2623-2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) has become a valuable laboratory tool for rapid diagnostics, research, and exploration in veterinary medicine. While instrument acquisition costs are high for the technology, cost per sample is very low, the method requires minimal sample preparation, and analysis is easily conducted by end-users requiring minimal training. Matrix-assisted laser desorption ionization-time-of-flight MS has found widespread application for the rapid identification of microorganisms, diagnosis of dermatophytes and parasites, protein/lipid profiling, molecular diagnostics, and the technique demonstrates significant promise for 2D chemical mapping of tissue sections collected postmortem. In this review, an overview of the MALDI-TOF technique will be reported and manuscripts outlining current uses of the technology for veterinary science since 2019 will be summarized. The article concludes by discussing gaps in knowledge and areas of future growth.
Collapse
Affiliation(s)
- Jonathan E. Thompson
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas 79106, United States,Corresponding author: Jonathan E. Thompson, e-mail:
| |
Collapse
|
8
|
Environmental Bovine Mastitis Pathogens: Prevalence, Antimicrobial Susceptibility, and Sensitivity to Thymus vulgaris L., Thymus serpyllum L., and Origanum vulgare L. Essential Oils. Antibiotics (Basel) 2022; 11:antibiotics11081077. [PMID: 36009946 PMCID: PMC9405213 DOI: 10.3390/antibiotics11081077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mastitis is considered to be one of the most important diseases of dairy cows in terms of health, production, and economy. Being the most common cause of antibiotic consumption in dairy cows, treatment of this disease is one of the biggest challenges in the veterinary profession as an increasing number of pathogens develop resistance to antibiotics used in the treatment. Therefore, new alternative approaches for limiting the use of antibiotics in livestock are required. For this reason, our study aimed to investigate prevalence of environmental mastitis associated bacterial strains, as well as the sensitivity of isolated strains to different antibiotics. Additionally, the therapeutic potential of three essential oils (EOs) was tested against bovine Serratia spp. and Proteus spp. mastitis pathogens, based on their chemical composition, as well as antibacterial potential. The study was carried out on 81 milk samples collected from dairy cows with mastitis. In order to determine prevalence of S. marcescens and P. mirabilis, microbiological isolation and identification were performed. Antimicrobial susceptibility testing was performed by disk diffusion method and the microdilution method was used to determine the antibacterial activity of selected EOs. In the oregano EO, a total of 23 compounds were detected, with carvacrol as a dominant component (78.94%). A total of 26 components were present in the EO of common thyme, where thymol was the most abundant compound (46.37%). Thymol also dominated (55.11%) the wild thyme EO. All tested EOs displayed antibacterial activity against all strains to different extents, while wild and common thyme EOs were the most effective. It could be concluded that the tested EOs represent promising therapeutic candidates for effective non-antibiotic treatment of mastitis.
Collapse
|
9
|
Antibacterial, antibiofilm and cytotoxic properties of prodigiosin produced by a newly isolated Serratia sp. C6LB from a milk collection center. Microb Pathog 2022; 164:105449. [DOI: 10.1016/j.micpath.2022.105449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/23/2022]
|
10
|
Lopes TS, Fussieger C, Rizzo FA, Silveira S, Lunge VR, Streck AF. Species identification and antimicrobial susceptibility profile of bacteria associated with cow mastitis in southern Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2022. [DOI: 10.1590/1678-5150-pvb-6958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Bovine mastitis is the most common disease in dairy cattle and responsible for economic losses in the milk industry. The present study aimed to identify the main species and to evaluate the antimicrobial susceptibility of bacterial isolates from cow herds with mastitis in dairy farms from southern Brazil. A total of 107 milk samples were collected from different cow herds in one important dairy producing region in southern Brazil, including farms located in ten cities from the Northeast region in the Rio Grande do Sul state. Bacterial strains were isolated and submitted to presumptive identification by classical bacteriological methods. Bacterial species were also identified by MALDI-TOF MS and antimicrobial susceptibility testing was performed with 12 antimicrobials commonly used in dairy farms. Fifty-one bacterial strains were isolated and the presumptive identification demonstrated the occurrence of Staphylococcus spp. (82.3%), Bacillus spp. (3.9%), Klebsiella spp. (3.9%), Streptococcus spp. (3.9%), Corynebacterium sp. (2%), Enterococcus sp. (2%) and Serratia sp. (2%). Forty-one isolates were successfully identified in the MALDI-TOF analysis, including 35 isolates from eleven different bacterial species. Importantly, there were eight different Staphylococcus species, with a high frequency of Staphylococcus chromogenes (48.6%) and Staphylococcus aureus (20%). Overall, bacterial isolates demonstrated resistance to penicillin (46.3%), tetracycline (39%), amoxicillin (36.6%), ampicillin (34.1%) and sulfamethoxazole/trimethoprim (31.7%). Enrofloxacin was the unique antimicrobial that all isolates were susceptible. In addition, there were six multidrug resistant isolates (five S. chromogenes and one S. aureus). This study highlights that bacterial pathogens with resistance to several antimicrobials were identified in cows from dairy farms in a very important milk producing region located in southern Brazil. Microbial identification of the bovine mastitis pathogens and determination of the antimicrobial profile is necessary for the rational use of the medicines.
Collapse
|
11
|
McSharry S, Koolman L, Whyte P, Bolton D. Investigation of the Effectiveness of Disinfectants Used in Meat-Processing Facilities to Control Clostridium sporogenes and Clostridioides difficile Spores. Foods 2021; 10:foods10061436. [PMID: 34205779 PMCID: PMC8234884 DOI: 10.3390/foods10061436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022] Open
Abstract
Spore-forming bacteria are a major concern for the food industry as they cause both spoilage and food safety issues. Moreover, as they are more resistant than vegetative cells, their removal from the food processing environment may be difficult to achieve. This study investigated the efficacy of the ten most commonly used disinfectant agents (assigned 1–10), used at the recommended concentrations in the meat industry, for their ability to eliminate Clostridium sporogenes and Clostridioides difficile spores. Test-tube based suspension assays suggested that disinfectants 2 (10% v/v preparation of a mixture of hydrogen peroxide (10–30%), acetic acid (1–10%) and peracetic acid (1–10%)), 7 (4% w/v preparation of a mixture of peroxymonosulphate (30–50%), sulphamic acid (1–10%) and troclosene sodium (1–10%)) and 10 (2% v/v preparation of a mixture of glutaraldehyde (10–30%), benzalkonium chloride (1–10%)) were the most effective formulations. D-values for these ranged from 2.1 to 8.4 min at 20 °C for the target spores. Based on these findings, it is recommended that these disinfectants are used to control Clostridium spores in the meat plant environment.
Collapse
Affiliation(s)
- Siobhán McSharry
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Leonard Koolman
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
- Correspondence: ; Tel.: +353-0-1-805-9539
| |
Collapse
|
12
|
Tracing Mastitis Pathogens-Epidemiological Investigations of a Pseudomonas aeruginosa Mastitis Outbreak in an Austrian Dairy Herd. Animals (Basel) 2021; 11:ani11020279. [PMID: 33499389 PMCID: PMC7911987 DOI: 10.3390/ani11020279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
The present study describes an outbreak of Pseudomonas (P.) aeruginosa mastitis in a 20-cow dairy herd where throughout genotyping of isolates reusable udder towels were identified as the source of infection. Sampling of cows during three herd surveys and bacteriological culturing showed that P. aeruginosa was isolated from nine cows with a total of 13 infected quarters. Mastitis occurred as mild clinical or subclinical infection. P. aeruginosa was additionally isolated from a teat disinfectant solution, containing N-(3-aminopropyl)-N-dodécylpropane-1,3-diamine 1 as active component, and microfiber towels used for pre-milking teat preparation. Disc diffusion antimicrobial resistance testing revealed that all isolates were susceptible to piperacillin, piperacillin-tazobactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, tobramycin, amikacin, and ciprofloxacin. Thirty-two isolates of milk samples and 22 randomly selected isolates of one udder towel and of the teat disinfectant solution were confirmed as P. aeruginosa with matrix-assisted laser desorption, ionization time-of-flight mass spectrometry (MALDI Tof MS). Isolates were further characterized with rep-PCR and randomly amplified polymorphic DNA (RAPD) as well as with multiple locus variable-number tandem repeat analysis (MLVA). Results obtained in this study suggested that one single strain was responsible for the whole outbreak. The transmission occurred throughout a contaminated teat cleaning solution as a source of infection. The farmer was advised to change udder-preparing routine and to cull infected cows.
Collapse
|
13
|
Du B, Meng L, Liu H, Zheng N, Zhang Y, Guo X, Zhao S, Li F, Wang J. Impacts of Milking and Housing Environment on Milk Microbiota. Animals (Basel) 2020; 10:E2339. [PMID: 33316940 PMCID: PMC7763289 DOI: 10.3390/ani10122339] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to determine the effects of farming environments on microbiota in raw milk and to assess the relationship among microbes by 16S rRNA sequencing methods. Samples of raw milk, cow trough water, teat dip cup, teat, teat liner, dairy hall air, cowshed air, feces, feed, and bedding from two farms were collected. The two highest abundant bacterial groups of Moraxellaceae and Staphylococcaceae were found in milk and teat liner samples, respectively, at Zhengzhou farm, Henan Province. Moreover, the two highest abundant bacterial groups of Enterobacteriaceae and Moraxellaceae were found in milk and teat dip cup samples, respectively, at Qiqihar farm, Heilongjiang Province. Source Tracker analysis revealed that the teat liner and teat dip cup were the most important contributors of microbes in milk samples at Zhengzhou farm and Qiqihar farm, respectively, which could be attributed to the management level of the farm. Therefore, disinfection and cleaning procedures should be developed to improve the quality of raw milk.
Collapse
Affiliation(s)
- Bingyao Du
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (B.D.); (F.L.)
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.L.); (N.Z.); (Y.Z.); (X.G.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.L.); (N.Z.); (Y.Z.); (X.G.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.L.); (N.Z.); (Y.Z.); (X.G.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.L.); (N.Z.); (Y.Z.); (X.G.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.L.); (N.Z.); (Y.Z.); (X.G.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaodong Guo
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.L.); (N.Z.); (Y.Z.); (X.G.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.L.); (N.Z.); (Y.Z.); (X.G.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (B.D.); (F.L.)
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.L.); (N.Z.); (Y.Z.); (X.G.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Eklund M, Aaltonen K, Sironen T, Raunio-Saarnisto M, Grönthal T, Nordgren H, Pitkälä A, Vapalahti O, Rantala M. Comparison of Streptococcus halichoeri isolates from canine and fur animal infections: biochemical patterns, molecular characteristics and genetic relatedness. Acta Vet Scand 2020; 62:26. [PMID: 32493395 PMCID: PMC7271505 DOI: 10.1186/s13028-020-00525-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus halichoeri infections have been reported in grey seals, a European badger, a Stellar sea lion and humans, but its presence in companion and fur animals is unknown. Since 2010, S. halichoeri-like bacteria (SHL) have been isolated from fur animals and dogs in Finland. Our aim was to retrospectively investigate laboratory records for SHL from canine and fur animal infections, characterize the isolates and compare their genetic relatedness in relation to three reference strains: CCUG 48324T, originating from a grey seal, and strains 67100 and 61265, originally isolated from humans. Results A total of 138 and 36 SHLs from canine and fur animal infections, respectively, were identified in the laboratory records. SHL was commonly associated with skin infections, but rarely as the only species. A set of 49 canine and 23 fur animal SHLs were further characterized. MALDI-TOF confirmed them as being S. halichoeri. The growth characteristics were consistent with the original findings, but isolates were catalase positive. In total, 17 distinct API 20 Strep patterns were recorded among all 75 isolates tested, of which pattern 5563100 was the most common (n = 30). Antimicrobial resistance to erythromycin and clindamycin was common in canine isolates, but rare in fur animal isolates. Three clusters were observed by PFGE, and 16S rRNA sequencing revealed 98.1–100% similarities with the human strains and 98.1–99.5% with the seal strain. A phylogenetic tree of concatenated 16S rRNA and rpoB revealed closely related isolates with two clades. Fifteen canine isolates were identical to the human strains based on concatenated 16S rRNA and rpoB sequencing. Conclusions Streptococcus halichoeri appears to be quite a common bacterial species in the skin of dogs and fur animals. The clinical significance of S. halichoeri is uncertain, as it was rarely isolated as a monoculture. No apparent temporal or spatial clustering was detected, but isolates from different sources were genetically very similar. Because many canine isolates were genetically similar to the human reference strains, transmission between dogs and humans may be possible. WGS sequencing of strains from different sources is needed to further investigate the epidemiology and virulence of S. halichoeri.
Collapse
|