1
|
Huang M, Ji J, Xu X, Jin D, Wu T, Lin R, Huang Y, Qian J, Tan Z, Jiang F, Hu X, Xu W, Xiao M. Known and unknown: Exosome secretion in tumor microenvironment needs more exploration. Genes Dis 2025; 12:101175. [PMID: 39524543 PMCID: PMC11550746 DOI: 10.1016/j.gendis.2023.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2024] Open
Abstract
Exosomes, extracellular vesicles originating from endosomes, were discovered in the late 1980s and their function in intercellular communication has since garnered considerable interest. Exosomes are lipid bilayer-coated vesicles that range in size from 30 to 150 nm and appear as sacs under the electron microscope. Exosome secretion is crucial for cell-to-cell contact in both normal physiology and the development and spread of tumors. Furthermore, cancer cells can secrete more exosomes than normal cells. Scientists believe that intercellular communication in the complex tissue environment of the human body is an important reason for cancer cell invasion and metastasis. For example, some particles containing regulatory molecules are secreted in the tumor microenvironment, including exosomes. Then the contents of exosomes can be released by donor cells into the environment and interact with recipient cells to promote the migration and invasion of tumor cells. Therefore, in this review, we summarized the biogenesis of exosome, as well as exosome cargo and related roles. More importantly, this review introduces and discusses the factors that have been reported to affect exosome secretion in tumors and highlights the important role of exosomes in tumors.
Collapse
Affiliation(s)
- Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Tong Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Renjie Lin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuxuan Huang
- Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jiawen Qian
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Zhonghua Tan
- Department of Nuclear Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaogang Hu
- Department of Respiratory Medicine, Rudong County People's Hospital, Nantong, Jiangsu 226400, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
2
|
Xia C, Alliey-Rodriguez N, Tamminga CA, Keshavan MS, Pearlson GD, Keedy SK, Clementz B, McDowell JE, Parker D, Lencer R, Hill SK, Bishop JR, Ivleva EI, Wen C, Dai R, Chen C, Liu C, Gershon ES. Genetic analysis of psychosis Biotypes: shared Ancestry-adjusted polygenic risk and unique genomic associations. Mol Psychiatry 2024:10.1038/s41380-024-02876-z. [PMID: 39709506 DOI: 10.1038/s41380-024-02876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples. Applied to schizophrenia PRS, we found the Khera AAPRS method to show superior portability and comparable prediction accuracy as compared with the Ge method. The three Biotypes of psychosis disorders had similar AAPRSs across ancestries. In genomic analysis of Biotypes, 12 genes, and isoforms showed significant genomic associations with specific Biotypes in a Transcriptome-Wide Association Study (TWAS) of genetically regulated expression (GReX) in the adult brain and fetal brain. TWAS inflation was addressed by the inclusion of genotype principal components in the association analyses. Seven of these 12 genes/isoforms satisfied Mendelian Randomization (MR) criteria for putative causality, including four genes TMEM140, ARTN, C1orf115, CYREN, and three transcripts ENSG00000272941, ENSG00000257176, ENSG00000287733. These genes are enriched in the biological pathways of Rearranged during Transfection (RET) signaling, Neural Cell Adhesion Molecule 1 (NCAM1) interactions, and NCAM signaling for neurite out-growth. The specific associations with Biotypes suggest that pharmacological clinical trials and biological investigations might benefit from analyzing Biotypes separately.
Collapse
Affiliation(s)
- Cuihua Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Institute of Living, Hartford Healthcare Corp, Hartford, CT, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Brett Clementz
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - David Parker
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebekka Lencer
- Institute for Translational Psychiatry, Münster University, Münster, Germany
- Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck, Germany
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Elena I Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cindy Wen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Lajevardi MS, Ashrafpour M, Mubarak SMH, Rafieyan B, Kiani A, Noori E, Roayaei Ardakani M, Montazeri M, Kouhi Esfahani N, Asadimanesh N, Khalili S, Payandeh Z. Dual roles of extracellular vesicles in acute lymphoblastic leukemia: implications for disease progression and theranostic strategies. Med Oncol 2024; 42:11. [PMID: 39572459 PMCID: PMC11582151 DOI: 10.1007/s12032-024-02547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
Acute Lymphoblastic Leukemia (ALL) is a heterogeneous blood cancer characterized by the uncontrolled growth of immature lymphoid cells due to dysregulated signaling pathways. It is the most common pediatric cancer, with high cure rates in children, but significantly lower survival rates in adults. Current theranostic strategies, including chemotherapy, immunotherapy, and nanomedicine, aim to improve detection and treatment precision but are limited by side effects, drug resistance, high costs, and stability issues. Notably, extracellular vesicles (EVs) offer a promising alternative, addressing these limitations through their natural biocompatibility and targeted delivery capabilities. EVs play a dual role in ALL: they contribute to leukemia progression by promoting tumor growth, immune suppression, and drug resistance via the transfer of oncogenic molecules, while also serving as valuable non-invasive biomarkers due to their specific miRNA and protein content. Their ability to deliver therapeutic agents directly to leukemic cells, combined with their stability and low immunogenicity, makes EVs a compelling tool for improving ALL treatments. Indeed, by targeting the molecular pathways influenced by EVs or leveraging them for drug delivery, innovative therapeutic strategies can be developed to enhance treatment outcomes and reduce side effects. Thus, EVs represent a promising frontier for advancing theranostic strategies in ALL, offering new opportunities to improve diagnosis and treatment while overcoming the limitations of traditional therapies. This review will explore the dual roles of EVs in ALL, addressing their contributions to disease progression and their potential as therapeutic agents and biomarkers for early diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Mahya Sadat Lajevardi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Shaden M H Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Kufa, Iraq
| | - Behnoosh Rafieyan
- School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Maryam Montazeri
- Razi Clinical Researches Development, Mazandaran University of Medical Science, Sari, Iran
| | - Niloofar Kouhi Esfahani
- Faculty of Medicine, People's Friendship University of Russia (Rudn University), Moscow, Russia
| | - Naghmeh Asadimanesh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, 1678815811, Iran.
| | - Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41346, Gothenburg, Sweden.
| |
Collapse
|
4
|
Lei Y, Shen Y, Chen F, He R, Zhang Z, Zhou Y, Yu JC, Crommen J, Jiang Z, Wang Q. Multiepitope recognition technology promotes the in-depth analysis of antibody‒drug conjugates. Acta Pharm Sin B 2024; 14:4962-4976. [PMID: 39664422 PMCID: PMC11628813 DOI: 10.1016/j.apsb.2024.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 12/13/2024] Open
Abstract
The dynamic tracking of antibody‒drug conjugates (ADCs) in serum is crucial. However, a versatile bioanalytical platform is lacking due to serious matrix interferences, the heterogeneity and complex biotransformation of ADCs, and the recognition deficiencies of traditional affinity technologies. To overcome this, a multiepitope recognition technology (MERT) was developed by simultaneously immobilizing CDR and non-CDR ligands onto MOF@AuNPs. MERT's excellent specificity, ultrahigh ligand density, and potential synergistic recognition ability enable it to target the different key regions of ADCs to overcome the deficiencies of traditional technologies. The binding capacity of MERT for antibodies is ten to hundred times higher than that of the mono-epitope or Fc-specific affinity technologies. Since MERT can efficiently capture target ADCs from serum, a novel bioanalytical platform based on MERT and RPLC‒QTOF-MS has been developed to monitor the dynamic changes of ADCs in serum, including the fast changes of drug-to-antibody ratio from 3.67 to 0.22, the loss of payloads (maytansinol), and the unexpected hydrolysis of the succinimide ring of the linker, which will contribute to clarify the fate of ADCs and provide a theoretical basis for future design. In summary, the MERT-based versatile platform will open a new avenue for in-depth studies of ADCs in biological fluids.
Collapse
Affiliation(s)
- Yutian Lei
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuan Shen
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Feng Chen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Rui He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhang Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Ying Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jin-Chen Yu
- Bio-Thera Solutions, Ltd, Guangzhou 510700, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Gezehagn Kussia G, Tessema TS. The Potential of Single-Chain Variable Fragment Antibody: Role in Future Therapeutic and Diagnostic Biologics. J Immunol Res 2024; 2024:1804038. [PMID: 39156005 PMCID: PMC11329312 DOI: 10.1155/2024/1804038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/09/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
The advancement of genetic engineering has revolutionized the field of immunology by allowing the utilization of intrinsic antibody structures. One of the biologics that are being produced by recombinant antibody technology is single-chain fragments variable (scFv). Genes of variable regions, the heavy and light chains that are genetically linked into a single transcript by a short flexible linker peptide, are used to generate this fragment from cellular and synthetic libraries. The specificity and affinity of these molecules are comparable to those of parental antibodies. Fusion with marker proteins and other potent molecules improves their stability, circulation half-life, activity, and efficient purification. Besides, this review comprises construction protocols, therapeutics, and diagnostic applications of scFv, as well as related challenges. Nonetheless, there are still issues with efficacy, stability, safety, intracellular administration, and production costs that need to be addressed.
Collapse
Affiliation(s)
- Getachew Gezehagn Kussia
- Genomics and BioinformaticsBio and Emerging Technology Institute, Addis Ababa 5954, Ethiopia
- Institute of BiotechnologyAddis Ababa University, Addis Ababa 1176, Ethiopia
| | | |
Collapse
|
6
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Marr AR, Halpin M, Corbin DL, Asemelash Y, Sher S, Gordon BK, Whipp EC, Mitchell S, Harrington BK, Orwick S, Benrashid S, Goettl VM, Yildiz V, Mitchell AD, Cahn O, Mims AS, Larkin KTM, Long M, Blachly J, Woyach JA, Lapalombella R, Grieselhuber NR. The multi-CDK inhibitor dinaciclib reverses bromo- and extra-terminal domain (BET) inhibitor resistance in acute myeloid leukemia via inhibition of Wnt/β-catenin signaling. Exp Hematol Oncol 2024; 13:27. [PMID: 38438856 PMCID: PMC10913666 DOI: 10.1186/s40164-024-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic cancer with poor survival across a broad range of molecular subtypes. Development of efficacious and well-tolerable therapies encompassing the range of mutations that can arise in AML remains an unmet need. The bromo- and extra-terminal domain (BET) family of proteins represents an attractive therapeutic target in AML due to their crucial roles in many cellular functions, regardless of any specific mutation. Many BET inhibitors (BETi) are currently in pre-clinical and early clinical development, but acquisition of resistance continues to remain an obstacle for the drug class. Novel methods to circumvent this development of resistance could be instrumental for the future use of BET inhibitors in AML, both as monotherapy and in combination. To date, many investigations into possible drug combinations of BETi with CDK inhibitors have focused on CDK9, which has a known physical and functional interaction with the BET protein BRD4. Therefore, we wished to investigate possible synergy and additive effects between inhibitors of these targets in AML. Here, we describe combination therapy with the multi-CDK inhibitor dinaciclib and the BETi PLX51107 in pre-clinical models of AML. Dinaciclib and PLX51107 demonstrate additive effects in AML cell lines, primary AML samples, and in vivo. Further, we demonstrate novel activity of dinaciclib through inhibition of the canonical/β-catenin dependent Wnt signaling pathway, a known resistance mechanism to BETi in AML. We show dinaciclib inhibits Wnt signaling at multiple levels, including downregulation of β-catenin, the Wnt co-receptor LRP6, as well as many Wnt pathway components and targets. Moreover, dinaciclib sensitivity remains unaffected in a setting of BET resistance, demonstrating similar inhibitory effects on Wnt signaling when compared to BET-sensitive cells. Ultimately, our results demonstrate rationale for combination CDKi and BETi in AML. In addition, our novel finding of Wnt signaling inhibition could have potential implications in other cancers where Wnt signaling is dysregulated and demonstrates one possible approach to circumvent development of BET resistance in AML.
Collapse
Affiliation(s)
- Alexander R Marr
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Madeline Halpin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Dominique L Corbin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yerdanos Asemelash
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Britten K Gordon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ethan C Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Samon Benrashid
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Virginia M Goettl
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Vedat Yildiz
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Andrew D Mitchell
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Olivia Cahn
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Karilyn T M Larkin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Meixao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Salah RA, El-Derby AM, El-Gammal Z, Wadie B, Ahmed SM, Elshenawy SE, Magdy S, Salah A, Gabr M, Mohamed I, El-Badri N. Hepatocellular carcinoma patients serum modulates the regenerative capacities of adipose mesenchymal stromal cells. Heliyon 2024; 10:e24794. [PMID: 38333871 PMCID: PMC10850426 DOI: 10.1016/j.heliyon.2024.e24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers causing the highest mortality rate worldwide. Treatment options of surgery, radiation, cytotoxic drugs and liver transplantation suffer significant side effects and a high frequency of relapse. Stem cell therapy has been proposed as a new effective therapy, however, controversial reports are emerging on the role of mesenchymal stem cells in cancer. In this work, we aimed to assess the regenerative capacities of adipose mesenchymal stem cells when exposed to serum from HCC patients, by assessing the effect of the sera on modulating the regenerative capacities of h-AMSCs and the cancer properties in HCC cells. This will pave the way for maximizing the efficacy of MSCs in cancer therapy. Our data show that HCC serum-treated hA-MSCs suffered oncogene-induced senescence as shown by their altered morphology and ameliorated proliferation and differentiation. The cells were enlarged with small irregular nuclei, swollen rough endoplasmic reticulum cisternae, and aging lysosomes typified by dark residual bodies. HCC serum-treated Huh-7 cancer cells on the other hand displayed higher tumor aggressiveness as depicted by altered morphology, increased cellular proliferation and migration, and decreased percentage of early and late apoptotic cells. Our findings provide evidence that exposure of hA-MSCs to the serum of HCC patients decreases their regenerative capacities and should be considered when employed as a potential therapy in HCC patients.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza M. El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Bishoy Wadie
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Sara M. Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Shimaa E. Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman Salah
- Department of Hepatogastroenterology, Kasr El-Aini Cairo University, Cairo, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura, 35516, Egypt
| | - Ihab Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| |
Collapse
|
10
|
Kim JH, Lee JH. Effect of miR-412-5p-loaded exosomes in H9c2 cardiomyocytes via the MAPK pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:755-760. [PMID: 38645496 PMCID: PMC11024402 DOI: 10.22038/ijbms.2024.75590.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/15/2024] [Indexed: 04/23/2024]
Abstract
Objectives MicroRNAs (miRNAs) are small non-coding RNAs that function in all biological processes. Recent findings suggest that exosomes, which are small vesicles abundantly secreted by various cell types, can transport miRNAs to target cells. Here, we elucidated the effect of miRNA-loaded exosomes on lipopolysaccharide (LPS)-induced inflammation in H9c2 cardiomyocytes. Materials and Methods Exosomes were isolated from mesenchymal stem cells (MSC) and loaded with miR-412-5p. Additionally, the effect of the miR-412-5p-loaded exosomes on LPS-induced inflammation in H9c2 cardiomyocytes was evaluated by assessing the levels of nitric oxide (NO), reactive oxygen species (ROS), and prostaglandin E2 (PGE2). The expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), inflammatory cytokines, and mitogen-activated protein kinase (MAPK) signaling factors was evaluated using reverse transcription-quantitative PCR and western blotting. Results miR-412-5p-loaded exosomes inhibited LPS-induced secretion of inflammatory mediators (NO, PGE2, and ROS), pro-inflammatory cytokines (IL-1β and IL-6), and COX-2 and iNOS expression. Additionally, miR-412-5p-loaded exosomes significantly decreased the expression of MAPK signaling molecules, including p-extracellular signal-regulated kinase (ERK), p-p38, and p-Jun kinase (JNK), in H9c2 cardiomyocytes. Conclusion These findings showed that miR-412-5p-loaded exosomes ameliorated LPS-induced inflammation in H9c2 cardiomyocytes by inhibiting COX-2 and iNOS expression, inflammatory mediators, and pro-inflammatory cytokines via the MAPK pathway. The findings indicate that miR-412-5p-loaded exosomes may be effective for the prevention of myocardial injury.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Anesthesiology and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - June Hwan Lee
- Department of Energy Information Technology, Fareast University, 76-32, Daehak-gil, Gamgok-myeon, Eumseong-gun, Chungcheongbuk-do 27601, Republic of Korea
| |
Collapse
|
11
|
Xu Y, Wan W, Zeng H, Xiang Z, Li M, Yao Y, Li Y, Bortolanza M, Wu J. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. J Transl Int Med 2023; 11:341-354. [PMID: 38130647 PMCID: PMC10732499 DOI: 10.2478/jtim-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Microvesicles known as exosomes have a diameter of 40 to 160 nm and are derived from small endosomal membranes. Exosomes have attracted increasing attention over the past ten years in part because they are functional vehicles that can deliver a variety of lipids, proteins, and nucleic acids to the target cells they encounter. Because of this function, exosomes may be used for the diagnosis, prognosis and treatment of many diseases. All throughout the world, cardiovascular diseases (CVDs) continue to be a significant cause of death. Because exosomes are mediators of communication between cells, which contribute to many physiological and pathological aspects, they may aid in improving CVD therapies as biomarkers for diagnosing and predicting CVDs. Many studies demonstrated that exosomes are associated with CVDs, such as coronary artery disease, heart failure, cardiomyopathy and atrial fibrillation. Exosomes participate in the progression or inhibition of these diseases mainly through the contents they deliver. However, the application of exosomes in diferent CVDs is not very mature. So further research is needed in this field.
Collapse
Affiliation(s)
- Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Huixuan Zeng
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| |
Collapse
|
12
|
Taghehchian N, Maharati A, Akhlaghipour I, Zangouei AS, Moghbeli M. PRC2 mediated KLF2 down regulation: a therapeutic and diagnostic axis during tumor progression. Cancer Cell Int 2023; 23:233. [PMID: 37807067 PMCID: PMC10561470 DOI: 10.1186/s12935-023-03086-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023] Open
Abstract
Surgery and chemo-radiotherapy are used as the common first-line treatment options in many cancers. However, tumor relapse is observed in many cancer patients following such first-line treatments. Therefore, targeted therapy according to the molecular cancer biology can be very important in reducing tumor recurrence. In this regard, a wide range of monoclonal antibodies against the growth factors and their receptors can offer more targeted treatment in cancer patients. However, due to the importance of growth factors in the normal biology of body cells, side effects can also be observed following the application of growth factor inhibitors. Therefore, more specific factors should be introduced as therapeutic targets with less side effects. Krüppel-like factors 2 (KLF2) belongs to the KLF family of transcription factors that are involved in the regulation of many cellular processes. KLF2 deregulations have been also reported during the progression of many tumors. In the present review we discussed the molecular mechanisms of KLF2 during tumor growth and invasion. It has been shown that the KLF2 as a tumor suppressor is mainly inhibited by the non-coding RNAs (ncRNAs) through the polycomb repressive complex 2 (PRC2) recruitment. This review is an effective step towards introducing the KLF2 as a suitable diagnostic and therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Rezvani A, Monabati A, Kargar Z, Safaei A, Mahmoodzadeh M, Moosapour H, Hosseini M, Taheri A, Kheiri S, Taheri E. P53 IHC Result as a Prognostic Tool in MDS. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:327-334. [PMID: 37942201 PMCID: PMC10628383 DOI: 10.30699/ijp.2023.1971023.2991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/13/2023] [Indexed: 11/10/2023]
Abstract
Background & Objective Some of the patients with myelodysplastic syndrome (MDS) are categorized as good prognosis based on the Revised International Prognostic Scoring System (IPSS-R). However, these patients may have poor clinical outcomes. It seems that the current diagnostic tools and IPSS-R cannot consider genetic factors for determining the prognosis of MDS patients. Methods This cross-sectional study included all adult MDS patients of both genders who were admitted from March 2015 to March 2020 to the Hematology wards of two educational tertiary hospitals in Iran (Namazi and Faghihi, affiliated with Shiraz University of medical sciences). Study data included relevant retrospective data from medical records and the results of immunohistochemical p53 staining on bone marrow biopsies. Results Of the 84 patients, 65 (77.4%) showed p53 expression in bone marrow. They had shorter median survival than those without p53 expression. Considering both variables of P53 IHC results and IPSS-R score, the patients who died with low-risk IPSS-R score presented high p53 expression. Conclusion This study shows that the investigation of p53 expression by IHC at the time of diagnosis is a valuable indicator of survival rate in MDS patients. These data suggest that the immunohistochemical analysis of p53 can be a prognostic tool for MDS and should be used as an adjunct test to make decisions on the best therapeutic choice.
Collapse
Affiliation(s)
- Alireza Rezvani
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology, Molecular Pathology and Cytogenetic Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Kargar
- Molecular Pathology and Cytogenetic Ward, Pathology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akbar Safaei
- Department of Molecular Pathology & Cytogenetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Mahmoodzadeh
- Department of Hematology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamideh Moosapour
- Evidence-Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hosseini
- Molecular Pathology and Cytogenetic Ward, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Taheri
- Department of Radiology, School of Medicine, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soleiman Kheiri
- Department of Epidemiology and Biostatistics, School of Health, Modeling in Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Taheri
- Molecular Pathology and Cytogenetic Ward, Pathology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Pottosin I, Olivas-Aguirre M, Dobrovinskaya O. In vitro simulation of the acute lymphoblastic leukemia niche: a critical view on the optimal approximation for drug testing. J Leukoc Biol 2023; 114:21-41. [PMID: 37039524 DOI: 10.1093/jleuko/qiad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Acute lymphoblastic leukemia with the worst prognosis is related to minimal residual disease. Minimal residual disease not only depends on the individual peculiarities of leukemic clones but also reflects the protective role of the acute lymphoblastic leukemia microenvironment. In this review, we discuss in detail cell-to-cell interactions in the 2 leukemic niches, more explored bone marrow and less studied extramedullary adipose tissue. A special emphasis is given to multiple ways of interactions of acute lymphoblastic leukemia cells with the bone marrow or extramedullary adipose tissue microenvironment, indicating observed differences in B- and T-cell-derived acute lymphoblastic leukemia behavior. This analysis argued for the usage of coculture systems for drug testing. Starting with a review of available sources and characteristics of acute lymphoblastic leukemia cells, mesenchymal stromal cells, endothelial cells, and adipocytes, we have then made an update of the available 2-dimensional and 3-dimensional systems, which bring together cellular elements, components of the extracellular matrix, or its imitation. We discussed the most complex available 3-dimensional systems like "leukemia-on-a-chip," which include either a prefabricated microfluidics platform or, alternatively, the microarchitecture, designed by using the 3-dimensional bioprinting technologies. From our analysis, it follows that for preclinical antileukemic drug testing, in most cases, intermediately complex in vitro cell systems are optimal, such as a "2.5-dimensional" coculture of acute lymphoblastic leukemia cells with niche cells (mesenchymal stromal cells, endothelial cells) plus matrix components or scaffold-free mesenchymal stromal cell organoids, populated by acute lymphoblastic leukemia cells. Due to emerging evidence for the correlation of obesity and poor prognosis, a coculture of adipocytes with acute lymphoblastic leukemia cells as a drug testing system is gaining shape.
Collapse
Affiliation(s)
- Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| | - Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
- Division of Exact, Natural and Technological Sciences, South University Center (CUSUR), University of Guadalajara, Jalisco, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| |
Collapse
|
15
|
Kianersi S, Salari S, Rezvani H, Araskhan MA, Shirangi A, Fathi MR, Ghorbi MD. Neoadjuvant chemotherapy outcome with taxane-based versus non-taxane protocols in gastric cancer. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2023; 12:205. [PMID: 37545995 PMCID: PMC10402764 DOI: 10.4103/jehp.jehp_786_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 08/08/2023]
Abstract
BACKGROUND Gastric cancer is the fifth most common cancer worldwide. One of the chemotherapy agents, taxanes is important in increasing patients' survival. The purpose of this study is to assess the efficacy of taxane-based drugs versus non-taxanes in neoadjuvant chemotherapy in non-metastatic gastric adenocarcinoma (GA) in Iranian patients. MATERIALS AND METHODS In a historical cohort method, 65 patients between 18 and 75 years old who suffered from non-metastatic GA were included. Nineteen and 21 and 25 patients, had undergone DCF (docetaxel, cisplatin, 5fluorouracil) and FLOT (5fluorouracil, leucovorin, oxaliplatin, docetaxel) and FOLFOX6 (oxaliplatin, leucovorin, 5fluorouracil) regimens, respectively, between 2018 and 2021. Survival criteria consisting of progression-free survival (PFS), overall survival (OS), progression rate, and mortality rate were evaluated using the Kaplan-Meier method, in a three-year follow-up period. RESULTS The majority of patients were male (72.3%), with a median age of 65 years. Most of the patients had lesions with tumor, node, metastasis (TNM) stage IIIb (27.7%) and poor differentiated pathological grade (49.2%). OS time had a significant correlation with the low TNM stage (P = 0.01), well-differentiated pathological grade (P = 0.005), and FLOT vs. FOLFOX protocol (20.3 vs. 12.2 months, respectively. P =0.04). FLOT regimen had significantly better OS survival vs. DCF regimen (20.3 vs. 15.4 months, respectively, P = 0.03). No significant correlation was observed between survival criteria and other factors like gender, age, past medical history, Karnofsky scale, and tumor location in the stomach. The taxane-based arm (sum of DSF and FLOT) had no superiority over the non-taxane arm in survival criteria. CONCLUSION FLOT protocol, as a taxane-based regimen had better survival compared to FOLFOX protocol in neoadjuvant chemotherapy in gastric non-metastatic adenocarcinoma.
Collapse
Affiliation(s)
- Shirin Kianersi
- Department of Medical Oncology and Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology and Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Rezvani
- Department of Medical Oncology and Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad A. Araskhan
- Department of Medical Oncology and Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Shirangi
- Firoozgar Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad R. Fathi
- Department of Neurosurgery, Rajaii Hospital,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mahmoud D. Ghorbi
- Department of Medical Oncology and Hematology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Yu F, Qian Z. Mechanisms for regulation of RAS palmitoylation and plasma membrane trafficking in hematopoietic malignancies. J Clin Invest 2023; 133:e171104. [PMID: 37317974 PMCID: PMC10266771 DOI: 10.1172/jci171104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Palmitoylation is a critical posttranslational modification that enables the cellular membrane localization and subsequent activation of RAS proteins, including HRAS, KRAS, and NRAS. However, the molecular mechanism that regulates RAS palmitoylation in malignant diseases remains unclear. In this issue of the JCI, Ren, Xing, and authors shed light on this topic and revealed how upregulation of RAB27B, as a consequence of CBL loss and Janus kinase 2 (JAK2) activation, contributes to leukemogenesis. The authors found that RAB27B mediated NRAS palmitoylation and plasma membrane localization by recruiting ZDHHC9. The findings suggest that targeting RAB27B could provide a promising therapeutic strategy for NRAS-driven cancers.
Collapse
Affiliation(s)
- Fang Yu
- Department of Medicine, UF Health Cancer Center, and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Zhijian Qian
- Department of Medicine, UF Health Cancer Center, and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
17
|
MicroRNA-122 in human cancers: from mechanistic to clinical perspectives. Cancer Cell Int 2023; 23:29. [PMID: 36803831 PMCID: PMC9940444 DOI: 10.1186/s12935-023-02868-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate the expression of target genes post-transcriptionally and interact with mRNA-coding genes. MiRNAs play vital roles in many biological functions, and abnormal miRNA expression has been linked to various illnesses, including cancer. Among the miRNAs, miR-122, miR-206, miR-21, miR-210, miR-223, and miR-424 have been extensively studied in various cancers. Although research in miRNAs has grown considerably over the last decade, much is yet to be discovered, especially regarding their role in cancer therapies. Several kinds of cancer have been linked to dysregulation and abnormal expression of miR-122, indicating that miR-122 may serve as a diagnostic and/or prognostic biomarker for human cancer. Consequently, in this review literature, miR-122 has been analyzed in numerous cancer types to sort out the function of cancer cells miR-122 and enhance patient response to standard therapy.
Collapse
|
18
|
Chen L, Xie T, Wei B, Di DL. Tumour‑derived exosomes and their emerging roles in leukaemia (Review). Exp Ther Med 2023; 25:126. [PMID: 36845960 PMCID: PMC9947586 DOI: 10.3892/etm.2023.11825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Exosomes are small vesicles with a diameter of ~40-100 nm that are secreted by the majority of endogenous cells under normal and pathological conditions. They contain abundant proteins, lipids, microRNAs, and biomolecules such as signal transduction molecules, adhesion factors and cytoskeletal proteins, and play an important role in exchanging materials and transmitting information between cells. Recent studies have shown that exosomes are involved in the pathophysiology of leukaemia by affecting the bone marrow microenvironment, apoptosis, tumour angiogenesis, immune escape and chemotherapy resistance. Furthermore, exosomes are potential biomarkers and drug carriers for leukaemia, impacting the diagnosis and treatment of leukaemia. The present study describes the biogenesis and general characteristics of exosomes, and then highlight the emerging roles of exosomes in different types of leukaemia. Finally, the value of clinical application of exosomes as biomarkers and drug carriers is discussed with the aim to provide novel strategies for the treatment of leukaemia.
Collapse
Affiliation(s)
- Lei Chen
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Ting Xie
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bing Wei
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Da-Lin Di
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China,Correspondence to: Dr Da-Lin Di, Department of Immunology, Weifang Medical University, 7166 Baotongxi Street, Weifang, Shandong 261053, P.R. China . com
| |
Collapse
|
19
|
Hughes AM, Kuek V, Oommen J, Chua GA, van Loenhout M, Malinge S, Kotecha RS, Cheung LC. Characterization of mesenchymal stem cells in pre-B acute lymphoblastic leukemia. Front Cell Dev Biol 2023; 11:1005494. [PMID: 36743421 PMCID: PMC9897315 DOI: 10.3389/fcell.2023.1005494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Components of the bone marrow microenvironment (BMM) have been shown to mediate the way in which leukemia develops, progresses and responds to treatment. Increasing evidence shows that leukemic cells hijack the BMM, altering its functioning and establishing leukemia-supportive interactions with stromal and immune cells. While previous work has highlighted functional defects in the mesenchymal stem cell (MSC) population from the BMM of acute leukemias, thorough characterization and molecular profiling of MSCs in pre-B cell acute lymphoblastic leukemia (B-ALL), the most common cancer in children, has not been conducted. Here, we investigated the cellular and transcriptome profiles of MSCs isolated from the BMM of an immunocompetent BCR-ABL1+ model of B-ALL. Leukemia-associated MSCs exhibited reduced self-renewal capacity in vitro and significant changes in numerous molecular signatures, including upregulation of inflammatory signaling pathways. Additionally, we found downregulation of genes involved in extracellular matrix organization and osteoblastogenesis in leukemia-associated MSCs. This study provides cellular and molecular insights into the role of MSCs during B-ALL progression.
Collapse
Affiliation(s)
- Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Joyce Oommen
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Grace-Alyssa Chua
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Maria van Loenhout
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Sebastien Malinge
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia,School of Medicine, University of Western Australia, Perth, WA, Australia,Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia,Curtin Medical School, Curtin University, Perth, WA, Australia,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia,*Correspondence: Laurence C. Cheung, ,
| |
Collapse
|
20
|
Liu D, Li X, Zeng B, Zhao Q, Chen H, Zhang Y, Chen Y, Wang J, Xing HR. Exosomal microRNA-4535 of Melanoma Stem Cells Promotes Metastasis by Inhibiting Autophagy Pathway. Stem Cell Rev Rep 2023; 19:155-169. [PMID: 35296991 DOI: 10.1007/s12015-022-10358-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 01/29/2023]
Abstract
High mortality rate and poor survival in melanoma are associated with efficient metastatic colonization. The underlying mechanisms remain elusive. Elucidating the role of exosomes in mediating the interactions between cancer cells and the metastatic microenvironment has been focused on cancer cell derived exosomes in modulating the functions of stromal cells. Whether cancer stem cells (CSCs) can modify the metastatic properties of non-CSC cells, and whether exosomal crosstalk plays a role have not been demonstrated prior to this report. In this study, a paired M14 melanoma derivative cell line, i.e., melanoma parental cell (MPC) and its CSC derivative cell line melanoma stem cell (MSC) were employed. We demonstrated that exosomal crosstalk betwen MSCs and non-CSC MPCs is a new mechanism that underlies melanoma metastasis. Low metastatic melanoma cells (MPCs) can acquire the "metastatic power" from highly metastatic melanoma CSCs (MSCs). We illustrated an uncharacterized microRNA, miR-4535 in mediating such exosomal crosstalk. MSCs deliver its exosomal miR-4535 to the targeted MPCs. Upon entering MPCs, miR-4535 augments metastatic colonization of MPCs by inactivating the autophagy pathway.
Collapse
Affiliation(s)
- Doudou Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoshuang Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Qiting Zhao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuhan Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuting Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - H Rosie Xing
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Rashti A, Akbari V. Construction and Periplasmic Expression of a Bispecific Tandem scFv for Dual Targeting of Immune Checkpoints. Adv Biomed Res 2023; 12:42. [PMID: 37057231 PMCID: PMC10086663 DOI: 10.4103/abr.abr_31_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 04/15/2023] Open
Abstract
Background Immune checkpoints are molecules that act as regulators of immune system pathways. However, some tumor cells can express the ligands of immune checkpoints to escape from antitumor immune responses. Some agents, such as antibodies, can inhibit these checkpoints that prevent the immune system from targeting and killing cancer cells. The aim of this study was to express a novel bispecific tandem scFv in periplasmic space of Escherichia coli for simultaneous targeting of two immune checkpoints, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Materials and Methods The bispecific tandem scFv was constructed based on the variable regions gene of anti-PD1 and anti-CTLA-4 antibodies. The optimum codon for expression in E. coli was chemically synthesized and subcloned in periplasmic expression plasmid. After transformation, the effect of cultivation conditions on periplasmic expression of the protein in E. coli BL21(DE3) was evaluated. Then, the bispecific tandem scFv was purified and its binding ability to cells expressing PD-1 and CTLA-4 was evaluated. Results Expression of tandem scFv with a molecular weight of 55 kDa was verified by Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting analysis. The best condition for soluble periplasmic expression was obtained to be incubation with 0.5 mM isopropyl β-D-1-thiogalactopyranoside at 23°C. The protein was successfully purified using affinity chromatography with a final yield of 4.5 mg/L. Binding analysis confirmed the bioactivity of purified the tandem scFv. Conclusion This bispecific tandem scFv could be a potential candidate to cancer immunotherapy, although more biological activity assessments are still required to be carried out.
Collapse
Affiliation(s)
- Amirreza Rashti
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
- Address for correspondence: Dr. Vajihe Akbari, Department of Pharmaceutical Biotechnology, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
22
|
Pourhamzeh M, Asadian S, Mirzaei H, Minaei A, Shahriari E, Shpichka A, Es HA, Timashev P, Hassan M, Vosough M. Novel antigens for targeted radioimmunotherapy in hepatocellular carcinoma. Mol Cell Biochem 2023; 478:23-37. [PMID: 35708866 DOI: 10.1007/s11010-022-04483-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Samieh Asadian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azita Minaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elahe Shahriari
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
23
|
Saoudi Gonzalez N, López D, Gómez D, Ros J, Baraibar I, Salva F, Tabernero J, Élez E. Pharmacokinetics and pharmacodynamics of approved monoclonal antibody therapy for colorectal cancer. Expert Opin Drug Metab Toxicol 2022; 18:755-767. [PMID: 36582117 DOI: 10.1080/17425255.2022.2160316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The introduction of monoclonal antibodies to the chemotherapy backbone treatment has challenged the paradigm of metastatic colorectal cancer (mCRC) treatment. Their mechanism of action and pharmacokinetics are complex but important to understand in order to improve patient selection and treatment outcomes for mCRC population. AREAS COVERED This review examines the scientific data, pharmacodynamics, and pharmacokinetics of approved monoclonal antibodies used to treat mCRC patients, including agents targeting signaling via VEGFR (bevacizumab and ramucirumab), EGFR (cetuximab and panitumumab), HER2/3 target therapy, and immunotherapy agents such as pembrolizumab or nivolumab. Efficacy and mechanism of action of bispecific antibodies are also covered. EXPERT OPINION mCRC is a heterogeneous disease and the optimal selection and sequence of treatments is challenging. Monoclonal antibodies have complex pharmacokinetics and pharmacodynamics, with important interactions between them. The arrival of bioequivalent molecules to the market increases the need for the characterization of pharmacokinetics and pharmacodynamics of classic monoclonal antibodies to reach bioequivalent novel molecules.
Collapse
Affiliation(s)
- Nadia Saoudi Gonzalez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Daniel López
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Diego Gómez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Francesc Salva
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Elena Élez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| |
Collapse
|
24
|
Maupin KA, Diegel CR, Stevens PD, Dick D, Williams BO. Mutation of the galectin-3 glycan-binding domain (Lgals3-R200S) enhances cortical bone expansion in male mice and trabecular bone mass in female mice. FEBS Open Bio 2022; 12:1717-1728. [PMID: 36062328 PMCID: PMC9527582 DOI: 10.1002/2211-5463.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
We previously observed that genomic loss of galectin-3 (Gal-3; encoded by Lgals3) in mice has a significant protective effect on age-related bone loss. Gal-3 has both intracellular and extracellular functionality, and we wanted to assess whether the affect we observed in the Lgals3 knockout (KO) mice could be attributed to the ability of Gal-3 to bind glycoproteins. Mutation of a highly conserved arginine to a serine in human Gal-3 (LGALS3-R186S) blocks glycan binding and secretion. We generated mice with the equivalent mutation (Lgals3-R200S) and observed a subsequent reduction in Gal-3 secretion from mouse embryonic fibroblasts and in circulating blood. When examining bone structure in aged mice, we noticed some similarities to the Lgals3-KO mice and some differences. First, we observed greater bone mass in Lgals3-R200S mutant mice, as was previously observed in Lgals3-KO mice. Like Lgals3-KO mice, significantly increased trabecular bone mass was only observed in female Lgals3-R200S mice. These results suggest that the greater bone mass observed is driven by the loss of extracellular Gal-3 functionality. However, the results from our cortical bone expansion data showed a sex-dependent difference, with only male Lgals3-KO mice having an increased response, contrasting with our earlier study. These notable sex differences suggest a potential role for sex hormones, most likely androgen signaling, being involved. In summary, our results suggest that targeting extracellular Gal-3 function may be a suitable treatment for age-related loss of bone mass.
Collapse
|
25
|
Fallati A, Di Marzo N, D’Amico G, Dander E. Mesenchymal Stromal Cells (MSCs): An Ally of B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells in Disease Maintenance and Progression within the Bone Marrow Hematopoietic Niche. Cancers (Basel) 2022; 14:cancers14143303. [PMID: 35884364 PMCID: PMC9323332 DOI: 10.3390/cancers14143303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer. Even though the cure rate actually exceeds 85%, the prognosis of relapsed/refractory patients is dismal. Recent literature data indicate that the bone marrow (BM) microenvironment could play a crucial role in the onset, maintenance and progression of the disease. In particular, mesenchymal stromal cells (MSCs), which are key components of the BM niche, actively crosstalk with leukemic cells providing crucial signals for their survival and resistance to therapy. We hereby review the main mechanisms exploited by MSCs to nurture and protect B-ALL cells that could become appealing targets for innovative microenvironment remodeling therapies to be coupled with classical leukemia-directed strategies. Abstract Mesenchymal stromal cells (MSCs) are structural components of the bone marrow (BM) niche, where they functionally interact with hematopoietic stem cells and more differentiated progenitors, contributing to hematopoiesis regulation. A growing body of evidence is nowadays pointing to a further crucial contribution of MSCs to malignant hematopoiesis. In the context of B-cell acute lymphoblastic leukemia (B-ALL), MSCs can play a pivotal role in the definition of a leukemia-supportive microenvironment, impacting on disease pathogenesis at different steps including onset, maintenance and progression. B-ALL cells hijack the BM microenvironment, including MSCs residing in the BM niche, which in turn shelter leukemic cells and protect them from chemotherapeutic agents through different mechanisms. Evidence is now arising that altered MSCs can become precious allies to leukemic cells by providing nutrients, cytokines, pro-survivals signals and exchanging organelles, as hereafter reviewed. The study of the mechanisms exploited by MSCs to nurture and protect B-ALL blasts can be instrumental in finding new druggable candidates to target the leukemic BM microenvironment. Some of these microenvironment-targeting strategies are already in preclinical or clinical experimentation, and if coupled with leukemia-directed therapies, could represent a valuable option to improve the prognosis of relapsed/refractory patients, whose management represents an unmet medical need.
Collapse
|
26
|
Enhanced macrophage polarization induced by COX-2 inhibitor-loaded Pd octahedral nanozymes for treatment of atherosclerosis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Shi Y, Tang D, Li X, Xie X, Ye Y, Wang L. Galectin Family Members: Emerging Novel Targets for Lymphoma Therapy? Front Oncol 2022; 12:889034. [PMID: 35677161 PMCID: PMC9168125 DOI: 10.3389/fonc.2022.889034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The galectin family of proteins has high affinity with β-galactoside-containing glycans. These proteins participate in cell growth and differentiation, cell adhesion, cell signal transduction, cell apoptosis, and other cellular activities. In recent years, a large number of studies have described the expression and correlation of galectins in different tumors. Each member of the family plays a vital role in tumor growth, progression, angiogenesis, adhesion, and tumor immune escape. Studies on the roles of galectins in lymphoma have mainly involved galectin-1, -3, -7, and -9. The results suggest that galectins may become novel targets for precise tumor treatment. This article reviews current research progress regarding galectins in lymphoma and provides new ideas for exploring them as novel targets for treating lymphoma and other important medical issues.
Collapse
Affiliation(s)
- Yuanwei Shi
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Danting Tang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Xiaoqi Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People’s Hospital, Linyi, China
| | - Yufu Ye
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijuan Wang
- Central Laboratory, Linyi People’s Hospital, Linyi, China
- Linyi Key Laboratory of Tumor Biology, Linyi, China
| |
Collapse
|
28
|
Hughes AM, Kuek V, Kotecha RS, Cheung LC. The Bone Marrow Microenvironment in B-Cell Development and Malignancy. Cancers (Basel) 2022; 14:2089. [PMID: 35565219 PMCID: PMC9102980 DOI: 10.3390/cancers14092089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
B lymphopoiesis is characterized by progressive loss of multipotent potential in hematopoietic stem cells, followed by commitment to differentiate into B cells, which mediate the humoral response of the adaptive immune system. This process is tightly regulated by spatially distinct bone marrow niches where cells, including mesenchymal stem and progenitor cells, endothelial cells, osteoblasts, osteoclasts, and adipocytes, interact with B-cell progenitors to direct their proliferation and differentiation. Recently, the B-cell niche has been implicated in initiating and facilitating B-cell precursor acute lymphoblastic leukemia. Leukemic cells are also capable of remodeling the B-cell niche to promote their growth and survival and evade treatment. Here, we discuss the major cellular components of bone marrow niches for B lymphopoiesis and the role of the malignant B-cell niche in disease development, treatment resistance and relapse. Further understanding of the crosstalk between leukemic cells and bone marrow niche cells will enable development of additional therapeutic strategies that target the niches in order to hinder leukemia progression.
Collapse
Affiliation(s)
- Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
29
|
Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14040866. [PMID: 35456698 PMCID: PMC9028322 DOI: 10.3390/pharmaceutics14040866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.
Collapse
|
30
|
Bum-Erdene K, Collins PM, Hugo MW, Tarighat SS, Fei F, Kishor C, Leffler H, Nilsson UJ, Groffen J, Grice ID, Heisterkamp N, Blanchard H. Novel Selective Galectin-3 Antagonists Are Cytotoxic to Acute Lymphoblastic Leukemia. J Med Chem 2022; 65:5975-5989. [DOI: 10.1021/acs.jmedchem.1c01296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Patrick M. Collins
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Matthew W. Hugo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Somayeh S. Tarighat
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Fei Fei
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Chandan Kishor
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84 Lund, Sweden
| | - Ulf. J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - John Groffen
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Nora Heisterkamp
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|
31
|
Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, Thangavelu L, Kamrava S, Shomali N, Sohrabi AD, Adili A, Noroozi-Aghideh A, Razeghian E. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal 2022; 20:44. [PMID: 35392976 PMCID: PMC8991803 DOI: 10.1186/s12964-022-00854-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
The main breakthrough in tumor immunotherapy was the discovery of immune checkpoint (IC) proteins, which act as a potent suppressor of the immune system by a myriad of mechanisms. After that, scientists focused on the immune checkpoint molecules mainly. Thereby, much effort was spent to progress novel strategies for suppressing these inhibitory axes, resulting in the evolution of immune checkpoint inhibitors (ICIs). Then, ICIs have become a promising approach and shaped a paradigm shift in tumor immunotherapies. CTLA-4 plays an influential role in attenuation of the induction of naïve and memory T cells by engagement with its responding ligands like B7-1 (CD80) and B7-2 (CD86). Besides, PD-1 is predominantly implicated in adjusting T cell function in peripheral tissues through its interaction with programmed death-ligand 1 (PD-L1) and PD-L2. Given their suppressive effects on anti-tumor immunity, it has firmly been documented that ICIs based therapies can be practical and rational therapeutic approaches to treat cancer patients. Nonetheless, tumor inherent or acquired resistance to ICI and some treatment-related toxicities restrict their application in the clinic. The current review will deliver a comprehensive overview of the ICI application to treat human tumors alone or in combination with other modalities to support more desired outcomes and lower toxicities in cancer patients. Video Abstract.
Collapse
Affiliation(s)
- Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Rebar N. Mohammed
- Medical Laboratory Analysis Department, Cihan University Sulaimaniya, Sulaymaniyah, 46001 Kurdistan Region Iraq
- College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Ahmed Raji
- College of Medicine, University of Babylon, Department of Pathology, Babylon, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | | | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Mohammed Nader Shalaby
- Associate Professor of Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Siavash Kamrava
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin D. Sohrabi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Noroozi-Aghideh
- Department of Hematology, Faculty of Paramedicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
32
|
Guo G, Tan Z, Liu Y, Shi F, She J. The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer. Stem Cell Res Ther 2022; 13:138. [PMID: 35365226 PMCID: PMC8973885 DOI: 10.1186/s13287-022-02811-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) therapy is a novel treatment strategy for cancer and a wide range of diseases with an excessive immune response such as ulcerative colitis (UC), due to its powerful immunomodulatory properties and its capacity for tissue regeneration and repair. One of the promising therapeutic options can focus on MSC-secreted exosomes (MSC-Exo), which have been identified as a type of paracrine interaction. In light of a wide variety of recent experimental studies, the present review aims to seek the recent research advances of therapies based on the MSC-Exo for treating UC and colorectal cancer (CRC). METHODS A systematic literature search in MEDLINE, Scopus, and Google Scholar was performed from inception to December 2021 using the terms [("colorectal cancer" OR "bowel cancer" OR "colon cancer" OR "rectal cancer") AND (exosome) AND (stem cell) AND ("inflammatory bowel disease" OR "Crohn's disease" OR "colitis")] in titles and abstracts. FINDINGS Exosomes derived from various sources of MSCs, including human umbilical cord-derived MSCs (hUC-MSCs), human adipose-derived MSCs (hAD-MSCs), human bone marrow-derived MSCs (hBM-MSCs), and olfactory ecto-MSCs (OE-MSCs), have shown the protective role against UC and CRC. Exosomes from hUC-MSCs, hBM-MSCs, AD-MSCs, and OE-MSCs have been found to ameliorate the experimental UC through suppressing inflammatory cells including macrophages, Th1/Th17 cells, reducing the expression of proinflammatory cytokines, as well as inducing the anti-inflammatory function of Treg and Th2 cells and enhancing the expression of anti-inflammatory cytokines. In addition, hBM-MSC-Exo and hUC-MSC-Exo containing tumor-suppressive miRs (miR-3940-5p/miR-22-3p/miR-16-5p) have been shown to suppress proliferation, migration, and invasion of CRC cells via regulation of RAP2B/PI3K/AKT signaling pathway and ITGA2/ITGA6. KEY MESSAGES The MSC-Exo can exert beneficial effects on UC and CRC through two different mechanisms including modulating immune responses and inducing anti-tumor responses, respectively.
Collapse
Affiliation(s)
- Gang Guo
- Center for Gut Microbiome Research, Med-X Institute Centre, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
- Department of Talent Highland, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
| | - Zhaobang Tan
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi’an, 710032 China
| | - Yaping Liu
- Department of Gastroenterology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Feiyu Shi
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute Centre, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
- Department of Talent Highland, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, 710061 China
| |
Collapse
|
33
|
Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications. J Transl Med 2022; 20:125. [PMID: 35287692 PMCID: PMC8919142 DOI: 10.1186/s12967-022-03325-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Nanocarriers as drug/biomolecule delivery systems have been significantly developed during recent decades. Given the stability, reasonable delivery efficiency, and safety of nanocarriers, there are several barriers in the fulfillment of successful clinical application of these delivery systems. These challenges encouraged drug delivery researchers to establish innovative nanocarriers with longer circulation time, high stability, and high compatibility. Exosomes are extracellular nanometer-sized vesicles released through various cells. These vesicles serve as nanocarriers, possessing great potential to overcome some obstacles encountered in gene and drug delivery due to their natural affinity to recipient cells and the inherent capability to shuttle the genes, lipids, proteins, and RNAs between cells. So far, there has been a lot of valuable research on drug delivery by exosomes, but research on RNA delivery, especially mRNA, is very limited. Since mRNA-based vaccines and therapies have recently gained particular prominence in various diseases, it is essential to find a suitable delivery system due to the large size and destructive nature of these nucleic acids. That's why we're going to take a look at the unique features of exosomes and their isolation and loading methods, to embrace this idea that exosome-mediated mRNA-based therapies would be introduced as a very efficient strategy in disease treatment within the near future.
Collapse
Affiliation(s)
- Ala Amiri
- Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, 57147, Urmia, Iran.
| | - Reihaneh Ramezani
- Department of Biomedical Sciences, Women Research Center, Alzahra University, 1993893973, Tehran, Iran.
| |
Collapse
|
34
|
Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther 2022; 29:1105-1116. [PMID: 35082400 DOI: 10.1038/s41417-022-00427-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/11/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are known as promising sources for cancer therapy and can be utilized as vehicles in cancer gene therapy. MSC-derived exosomes are central mediators in the therapeutic functions of MSCs, known as the novel cell-free alternatives to MSC-based cell therapy. MSC-derived exosomes show advantages including higher safety as well as more stability and convenience for storage, transport and administration compared to MSCs transplant therapy. Unmodified MSC-derived exosomes can promote or inhibit tumors while modified MSC-derived exosomes are involved in the suppression of cancer development and progression via the delivery of several therapeutics molecules including chemotherapeutic drugs, miRNAs, anti-miRNAs, specific siRNAs, and suicide gene mRNAs. In most malignancies, dysregulation of miRNAs not only occurs as a consequence of cancer progression but also is directly involved during tumor initiation and development due to their roles as oncogenes (oncomiRs) or tumor suppressors (TS-miRNAs). MiRNA restoration is usually achieved by overexpression of TS-miRNAs using synthetic miRNA mimics and viral vectors or even downregulation of oncomiRs using anti-miRNAs. Similar to other therapeutic molecules, the efficacy of miRNAs restoration in cancer therapy depends on the effectiveness of the delivery system. In the present review, we first provided an overview of the properties and potentials of MSCs in cancer therapy as well as the application of MSC-derived exosomes in cancer therapy. Finally, we specifically focused on harnessing the MSC-derived exosomes for the aim of miRNA delivery in cancer therapy.
Collapse
|
35
|
Hosseini NF, Dalirfardouei R, Aliramaei MR, Najafi R. Stem cells or their exosomes: which is preferred in COVID-19 treatment? Biotechnol Lett 2022; 44:159-177. [PMID: 35043287 PMCID: PMC8765836 DOI: 10.1007/s10529-021-03209-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
It only took 8 months for the pneumonia caused by a previously unknown coronavirus to turn into a global pandemic of unprecedentedly far-reaching implications. Failure of the already discovered treatment measures opened up a new opportunity to evaluate the potentials of mesenchymal stem cells and their extracellular vesicles (EVs), exosomes in particular. Eventually, the initial success experienced after the use of MSCs in treating the new pneumonia by Lnge and his team backed up the idea of MSC-based therapies and pushed them closer to becoming a reality. However, MSC-related concerns regarding safety such as abnormal differentiation, spontaneous malignant and the formation of ectopic tissues have triggered the replacement of MSCs by their secreted exosomes. The issue has been further strengthened by the fact that the exosomes leave similar treatment impacts when compared to their parental cells. In recent years, much attention has been paid to the use of MSC-derived exosomes in the treatment of a variety of diseases. With a primary focus on COVID-19 and its current treatment methods, the present review looks into the potentials of MSCs and MSC-derived exosomes in battling the ongoing pandemic. Finally, the research will draw an analogy between exosomes and their parental cells, when it comes to the progresses and challenges in using exosomes as a large-scale treatment method.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Dalirfardouei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
36
|
Yanakieva D, Pekar L, Evers A, Fleischer M, Keller S, Mueller-Pompalla D, Toleikis L, Kolmar H, Zielonka S, Krah S. Beyond bispecificity: Controlled Fab arm exchange for the generation of antibodies with multiple specificities. MAbs 2022; 14:2018960. [PMID: 35014603 PMCID: PMC8757479 DOI: 10.1080/19420862.2021.2018960] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023] Open
Abstract
Controlled Fab arm exchange (cFAE) has proven to be a generic and versatile technology for the efficient generation of IgG-like bispecific antibodies (DuoBodies or DBs), with several in clinical development and one product, amivantamab, approved by the Food and Drug Administration. In this study, we expand the cFAE-toolbox by incorporating VHH-modules at the C-termini of DB-IgGs, termed DB-VHHs. This approach enables the combinatorial generation of tri- and tetraspecific molecules with flexible valencies in a straightforward fashion. Using cFAE, a variety of multispecific molecules was produced and assessed for manufacturability and physicochemical characteristics. In addition, we were able to generate DB-VHHs that efficiently triggered natural killer cell mediated lysis of tumor cells, demonstrating the utility of this format for potential therapeutic applications.
Collapse
Affiliation(s)
- Desislava Yanakieva
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Andreas Evers
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Markus Fleischer
- Protein and Cell Sciences, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stephan Keller
- Protein and Cell Sciences, Merck Healthcare KGaA, Darmstadt, Germany
| | | | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
37
|
Gastrointestinal cancer drug resistance: the role of exosomal miRNAs. Mol Biol Rep 2021; 49:2421-2432. [PMID: 34850336 DOI: 10.1007/s11033-021-07007-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
Abstract
Resistance of gastrointestinal (GI) cancer cells to therapeutic agents are one of the major problems in treating this type of cancer. Although the exact mechanism of drug resistance has not yet been fully elucidated, various factors have been identified as contributing factors involved in this process. Several studies have revealed the role of exosomes, especially exosomal microRNAs (miRNAs), in GI tumorigenesis, invasion, angiogenesis, and drug resistance. Exosomes, a type of small extracellular vesicles (EVs), are originated from endosomes and are released into the extracellular environment and body fluids by different cell types. Exosomes mediate cell-cell communication by transferring different cargos, including miRNAs, between parent and recipient cells. Therefore, identifying these exosomal miRNAs and their functions in GI cancers might provide new clues to further explore the secret of this process and thus help in drug-resistance management. This review article will discuss the roles of exosomal miRNAs and their mechanisms of action in drug resistance of different types of GI cancer cells (e.g., stomach, esophagus, liver, pancreas, and colon) to therapeutic agents.
Collapse
|
38
|
Tarighat SS, Fei F, Joo EJ, Abdel-Azim H, Yang L, Geng H, Bum-Erdene K, Grice ID, von Itzstein M, Blanchard H, Heisterkamp N. Overcoming Microenvironment-Mediated Chemoprotection through Stromal Galectin-3 Inhibition in Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:12167. [PMID: 34830047 PMCID: PMC8624256 DOI: 10.3390/ijms222212167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Environmentally-mediated drug resistance in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) significantly contributes to relapse. Stromal cells in the bone marrow environment protect leukemia cells by secretion of chemokines as cues for BCP-ALL migration towards, and adhesion to, stroma. Stromal cells and BCP-ALL cells communicate through stromal galectin-3. Here, we investigated the significance of stromal galectin-3 to BCP-ALL cells. We used CRISPR/Cas9 genome editing to ablate galectin-3 in stromal cells and found that galectin-3 is dispensable for steady-state BCP-ALL proliferation and viability. However, efficient leukemia migration and adhesion to stromal cells are significantly dependent on stromal galectin-3. Importantly, the loss of stromal galectin-3 production sensitized BCP-ALL cells to conventional chemotherapy. We therefore tested novel carbohydrate-based small molecule compounds (Cpd14 and Cpd17) with high specificity for galectin-3. Consistent with results obtained using galectin-3-knockout stromal cells, treatment of stromal-BCP-ALL co-cultures inhibited BCP-ALL migration and adhesion. Moreover, these compounds induced anti-leukemic responses in BCP-ALL cells, including a dose-dependent reduction of viability and proliferation, the induction of apoptosis and, importantly, the inhibition of drug resistance. Collectively, these findings indicate galectin-3 regulates BCP-ALL cell responses to chemotherapy through the interactions between leukemia cells and the stroma, and show that a combination of galectin-3 inhibition with conventional drugs can sensitize the leukemia cells to chemotherapy.
Collapse
Affiliation(s)
- Somayeh S. Tarighat
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
| | - Fei Fei
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
| | - Eun Ji Joo
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA;
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA;
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA;
| | - Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
- School of Medical Science, Griffith University, Gold Coast, Southport, QLD 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Nora Heisterkamp
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA;
| |
Collapse
|
39
|
Gao X, Zhou J, Wang J, Dong X, Chang Y, Jin Y. Mechanism of exosomal miR-155 derived from bone marrow mesenchymal stem cells on stemness maintenance and drug resistance in myeloma cells. J Orthop Surg Res 2021; 16:637. [PMID: 34689803 PMCID: PMC8543846 DOI: 10.1186/s13018-021-02793-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/12/2021] [Indexed: 02/04/2023] Open
Abstract
Objective This study was to explore the effect of exosomal miR-155 derived from bone marrow mesenchymal stem cells (BMSCs) on stemness maintenance and drug resistance in MPC-11 multiple myeloma cells. Methods MPC-11 cells were transfected with mimics or inhibitors of miR-155. miR-155 expression was detected by qRT-PCR, cell condition was observed, and the expression of stemness maintenance markers OCT-4 and Nanog was observed by immunofluorescence. The expression of proteins associated with the Hedgehog signaling pathway and drug resistance was evaluated by western blot. To investigate whether exosomes affect cell behavior by horizontal delivery of miR-155, MPC-11 cells were co-cultured with exosomes isolated from BMSCs that were transfected with mimics or inhibitors of miR-155. Cell proliferation and the expression of proteins related to stemness maintenance protein and drug resistance were examined. Results In function assays, after miR-155-mimics transfection, the expression levels of proteins related to stemness maintenance marker, Hedgehog signaling, and drug resistance were increased in MPC-11 cells. BMSC-derived exosomes carrying miR-155 inhibited apoptosis, promoted cell division, and upregulated the expression of protein associated with stemness maintenance, Hedgehog signaling, and drug resistance. Conclusion Therefore, our findings indicate that exosomal delivery of miR-155 exerted the same effect as transfection did on the stemness maintenance and drug resistance of multiple myeloma cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02793-9.
Collapse
Affiliation(s)
- Xinyu Gao
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jin Zhou
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jinghua Wang
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiushuai Dong
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuying Chang
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yinglan Jin
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
40
|
Sensitization to Drug Treatment in Precursor B-Cell Acute Lymphoblastic Leukemia Is Not Achieved by Stromal NF-κB Inhibition of Cell Adhesion but by Stromal PKC-Dependent Inhibition of ABC Transporters Activity. Molecules 2021; 26:molecules26175366. [PMID: 34500796 PMCID: PMC8433757 DOI: 10.3390/molecules26175366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Cell adhesion to stromal support and the associated intracellular signaling are central to drug resistance, therefore blocking both has been effective in increasing drug sensitization in leukemia. The stromal Ser/Thr protein kinase C (PKC) has been found to be important for conferring protection to leukemic cells. We aimed at elucidating the intracellular signals connected to cell adhesion and to stromal PKC. We found that NF-κB and Akt were up-regulated in mesenchymal stem cells (MSC) after binding of B-cell acute lymphoblastic leukemia (B-ALL) cells. Nevertheless, Akt inhibition did not induce B-ALL cell detachment. In spite of a clear activation of the NF-κB signaling pathway after B-ALL cell binding (up-regulation NF-κB1/2, and down-regulation of the IKBε and IKBα inhibitors) and an important reduction in cell adhesion after NF-κB inhibition, sensitization to the drug treatment was not observed. This was opposite to the PKC inhibitors Enzastaurin and HKPS, a novel chimeric peptide inhibitor, that were able to increase sensitization to dexamethasone, methotrexate, and vincristine. PLCγ1, Erk1/2, and CREB appear to be related to PKC signaling and PKC effect on drug sensitization since they were contra-regulated by HKPS when compared to dexamethasone-treated cells. Additionally, PKC inhibition by HKPS, but not by Enzastaurin, in MSC reduced the activity of three ABC transporters in leukemic cells treated with dexamethasone, a new indirect mechanism to increase sensitization to drug treatment in B-ALL cells. Our results show the validity of targeting the functional characteristic acquired and modulated during cell-to-cell interactions occurring in the leukemic niche.
Collapse
|
41
|
Guo Q, Zhao Y, Li J, Huang C, Wang H, Zhao X, Wang M, Zhu W. Galectin-3 Derived from HucMSC Exosomes Promoted Myocardial Fibroblast-to-Myofibroblast Differentiation Associated with β-catenin Upregulation. Int J Stem Cells 2021; 14:320-330. [PMID: 33906979 PMCID: PMC8429944 DOI: 10.15283/ijsc20186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Objectives Galectin-3 promotes fibroblast-to-myofibroblast differentiation and facilitates injury repair. Previous studies have shown that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-ex) promote the differentiation of myocardial fibroblasts into myofibroblasts under inflammatory environment. Whether hucMSC-ex derived Galectin-3 (hucMSC-ex-Galectin-3) plays an important role in fibroblast-to-myofibroblast differentiation is the focus of this study. Methods and Results Galectin-3 was knocked-down by siRNA in hucMSCs, and then exosomes were extracted. Fibroblasts were treated with LPS, LPS+hucMSC-ex, LPS+negative control-siRNA-ex (NC-ex), or LPS+Galectin-3-siRNA-ex (si-ex) in vitro. The coronary artery of the left anterior descending (LAD) branch was permanently ligated, followed by intramyocardial injection with phosphate buffered saline(PBS), hucMSC-ex, hucMSC-NC-ex, or hucMSC-si-ex in vivo. Western blot, RT-PCR, and immunohistochemistry were used to detect the expression of markers related to fibroblast-to-myofibroblast differentiation and inflammatory factors. Migration and contraction functions of fibroblasts were evaluated using Transwell migration and collagen contraction assays, respectively. β-catenin expression was detected by western blot and immunofluorescence. The results showed that hucMSC-ex increased the protein expression of myofibroblast markers, anti-inflammatory factors, and β-catenin. HucMSC-ex also reduced the migration and promoted the contractility of fibroblasts. However, hucMSC-si-ex did not show these activities. Conclusions HucMSC-ex-Galectin-3 promoted the differentiation of cardiac fibroblasts into myofibroblasts in an inflammatory environment, which was associated with increased β-catenin levels.
Collapse
Affiliation(s)
- Qinyu Guo
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiejie Li
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chao Huang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hua Wang
- Department of Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiangdong Zhao
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
42
|
Patel SA, Dalela D, Fan AC, Lloyd MR, Zhang TY. Niche-directed therapy in acute myeloid leukemia: optimization of stem cell competition for niche occupancy. Leuk Lymphoma 2021; 63:10-18. [PMID: 34407733 DOI: 10.1080/10428194.2021.1966779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of stem cell origin that contributes to significant morbidity and mortality. The long-term prognosis remains dismal given the high likelihood for primary refractory or relapsed disease. An essential component of relapse is resurgence from the bone marrow. To date, the murine hematopoietic stem cell (HSC) niche has been clearly defined, but the human HSC niche is less well understood. The design of niche-based targeted therapies for AML must account for which cellular subsets compete for stem cell occupancy within respective bone marrow microenvironments. In this review, we highlight the principles of stem cell niche biology and discuss translational insights into the AML microenvironment as of 2021. Optimization of competition for niche occupancy is important for the elimination of measurable residual disease (MRD). Some of these novel therapeutics are in the pharmacologic pipeline for AML and may be especially useful in the setting of MRD.
Collapse
Affiliation(s)
- Shyam A Patel
- Department of Medicine - Division of Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Disha Dalela
- Department of Medicine - Division of Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy C Fan
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxwell R Lloyd
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tian Y Zhang
- Department of Medicine, Division of Hematology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
43
|
Li B, Jia R, Li W, Zhou Y, Guo D, Teng Q, Du S, Li M, Li W, Sun T, Ma D, Ji M, Ji C. PAK1 Mediates Bone Marrow Stromal Cell-Induced Drug Resistance in Acute Myeloid Leukemia via ERK1/2 Signaling Pathway. Front Cell Dev Biol 2021; 9:686695. [PMID: 34307365 PMCID: PMC8297649 DOI: 10.3389/fcell.2021.686695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background Chemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and bone marrow stromal cells (BMSCs) protect leukemia cells from chemotherapy eventually leading to recurrence. This study was designed to investigate the role of p21-activated kinase 1 (PAK1) in AML progression and chemosensitivity, highlighting the mechanism of stroma-mediated chemoresistance. Methods The GEPIA and TCGA datasets were used to analyze the relationship between PAK1 mRNA expression and various clinical parameters of AML patients. Cell proliferation and apoptosis were examined to evaluate the role of PAK1 on chemosensitivity in AML by silencing PAK1 with shRNA or small molecular inhibitor. Human BMSC (HS-5) was utilized to mimic the leukemia bone marrow microenvironment (BMM) in vitro, and co-culture model was established to investigate the role of PAK1 in BMSC-mediated drug resistance. Results p21-activated kinase 1 high expression was shown to be associated with shorter overall survival in AML patients. The silence of PAK1 could repress cell proliferation, promote apoptosis, and enhance the sensitivity of AML cells to chemotherapeutic agents. More importantly, BMSCs induced PAK1 up-regulation in AML cells, subsequently activating the ERK1/2 signaling pathway. The effect of BMSC-mediated apoptotic-resistance could be partly reversed by knock down of PAK1. Conclusion p21-activated kinase 1 is a potential prognostic predictor for AML patients. PAK1 may play a pivotal role in mediating BMM-induced drug resistance, representing a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Banban Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Taian City Central Hospital, Taian, China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongmei Guo
- Department of Hematology, Taian City Central Hospital, Taian, China
| | - Qingliang Teng
- Department of Hematology, Taian City Central Hospital, Taian, China
| | - Shenghong Du
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Taian City Central Hospital, Taian, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wěi Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
44
|
Martelli AM, Evangelisti C, Paganelli F, Chiarini F, McCubrey JA. GSK-3: a multifaceted player in acute leukemias. Leukemia 2021; 35:1829-1842. [PMID: 33811246 DOI: 10.1038/s41375-021-01243-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) consists of two isoforms (α and β) that were originally linked to glucose metabolism regulation. However, GSK-3 is also involved in several signaling pathways controlling many different key functions in healthy cells. GSK-3 is a unique kinase in that its isoforms are constitutively active, while they are inactivated mainly through phosphorylation at Ser residues by a variety of upstream kinases. In the early 1990s, GSK-3 emerged as a key player in cancer cell pathophysiology. Since active GSK-3 promotes destruction of multiple oncogenic proteins (e.g., β-catenin, c-Myc, Mcl-1) it was considered to be a tumor suppressor. Accordingly, GSK-3 is frequently inactivated in human cancer via aberrant regulation of upstream signaling pathways. More recently, however, it has emerged that GSK-3 isoforms display also oncogenic properties, as they up-regulate pathways critical for neoplastic cell proliferation, survival, and drug-resistance. The regulatory roles of GSK-3 isoforms in cell cycle, apoptosis, DNA repair, tumor metabolism, invasion, and metastasis reflect the therapeutic relevance of these kinases and provide the rationale for combining GSK-3 inhibitors with other targeted drugs. Here, we discuss the multiple and often conflicting roles of GSK-3 isoforms in acute leukemias. We also review the current status of GSK-3 inhibitor development for innovative leukemia therapy.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
45
|
Ramaiah MJ, Kumar KR. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol Biol Rep 2021; 48:4813-4835. [PMID: 34132942 DOI: 10.1007/s11033-021-06462-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the aggressive brain cancers with patients having less survival period upto 12-15 months. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase, belongs to the phosphatidylinositol 3-kinases (PI3K) pathway and is involved in various cellular processes of cancer cells. Cancer metabolism is regulated by mTOR and its components. mTOR forms two complexes as mTORC1 and mTORC2. Studies have identified the key component of the mTORC2 complex, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) plays a prominent role in the regulation of cancer cell proliferation and metabolism. Apart, growth factor receptor signaling such as epidermal growth factor signaling mediated by epidermal growth factor receptor (EGFR) regulates cancer-related processes. In EGFR signaling various other signaling cascades such as phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR pathway) and Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) -dependent signaling cross-talk each other. From various studies about GBM, it is very well established that Rictor and EGFR mediated signaling pathways majorly playing a pivotal role in chemoresistance and tumor aggressiveness. Recent studies have shown that non-coding RNAs such as microRNAs (miRs) and long non-coding RNAs (lncRNAs) regulate the EGFR and Rictor and sensitize the cells towards chemotherapeutic agents. Thus, understanding of microRNA mediated regulation of EGFR and Rictor will help in cancer prevention and management as well as a future therapy.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| | - K Rohil Kumar
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
46
|
Zhang Y, Chen L, Ye X, Wu Z, Zhang Z, Sun B, Fu H, Fu C, Liang X, Jiang H. Expression and mechanism of exosome-mediated A FOXM1 related long noncoding RNA in gastric cancer. J Nanobiotechnology 2021; 19:133. [PMID: 33971889 PMCID: PMC8111998 DOI: 10.1186/s12951-021-00873-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Forkhead box protein M1 (FOXM1) is an oncogene regulating tumor growth and metastasis. Exosome was suggested to mediate cell communication by delivering active molecules in cancers. However, the existence of FOXM1 in circulating exosomes and the role of exosome FOXM1 in gastric cancer (GC) were not clear. This study aims to investigate the potential role of FOXM1 related long noncoding RNA (FRLnc1) in exosomes in GC. RESULTS The prepared CD63 immunomagnetic beads (CD63-IMB) had the characteristics of good dispersity and high magnetic response. The isolated exosomes were presented with elliptical membranous particles under a transmission electron microscope (TEM), with the particle size of 89.78 ± 4.8 nm. Western blot (WB) results showed that the exosomes were rich in CD9 and CD81. The Dil-labeled exosomes were distributed around cytoplasm and nucleus of cells by imaging flow cytometry (IFC) analysis. The results of quantitative real-time PCR (qRT-PCR) revealed that the FRLnc1 expressions were up-regulated in GC cells, tumor tissues, and serum of GC patients. An obviously up-regulated FRLnc1 expression was found in serum exosomes of GC patients. Up-regulation of FRLnc1 expression was closely correlated to lymph node metastasis (LNM) and TNM stage with the combination of relevant clinicopathological parameter analysis. The in vitro functional analyses demonstrated that FRLnc1 knockdown by RNA interference suppressed cell proliferation and migration in HGC-27 cells, whereas FRLnc1 overexpression promoted cell proliferation and migration in MKN45 cells. After exosome treatment, the FRLnc1 expression was significantly increased in MKN45 cells, and the MKN45 cells showed increased ability of proliferation and migration. CONCLUSION GC cells-derived exosomes played roles in promoting the growth and metastasis of GC by transporting FRLnc1, suggesting that FRLnc1 in the exosomes may be a potential biomarker for the diagnosis and treatment of GC. The delivery of FRLnc1 by the exosomes may provide a new way for the treatment of GC. Trial registration 2020-KYSB-094. Registered 23 March 2020-Retrospectively registered.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China
| | - Lin Chen
- Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xuanting Ye
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhixiong Wu
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China
| | - Zeyu Zhang
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China
| | - Biaofeng Sun
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China
| | - Hong Fu
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China
| | - Chuangang Fu
- Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Xiaofei Liang
- Huzhou Lieyuan Medical Laboratory Company Ltd., No. 800, Rujiadian Rd., Huzhou, 313000, China.
| | - Hong Jiang
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, No. 389, Putuoxincun Rd., Shanghai, 200065, China.
| |
Collapse
|
47
|
Dander E, Palmi C, D’Amico G, Cazzaniga G. The Bone Marrow Niche in B-Cell Acute Lymphoblastic Leukemia: The Role of Microenvironment from Pre-Leukemia to Overt Leukemia. Int J Mol Sci 2021; 22:ijms22094426. [PMID: 33922612 PMCID: PMC8122951 DOI: 10.3390/ijms22094426] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic lesions predisposing to pediatric B-cell acute lymphoblastic leukemia (B-ALL) arise in utero, generating a clinically silent pre-leukemic phase. We here reviewed the role of the surrounding bone marrow (BM) microenvironment in the persistence and transformation of pre-leukemic clones into fully leukemic cells. In this context, inflammation has been highlighted as a crucial microenvironmental stimulus able to promote genetic instability, leading to the disease manifestation. Moreover, we focused on the cross-talk between the bulk of leukemic cells with the surrounding microenvironment, which creates a “corrupted” BM malignant niche, unfavorable for healthy hematopoietic precursors. In detail, several cell subsets, including stromal, endothelial cells, osteoblasts and immune cells, composing the peculiar leukemic niche, can actively interact with B-ALL blasts. Through deregulated molecular pathways they are able to influence leukemia development, survival, chemoresistance, migratory and invasive properties. The concept that the pre-leukemic and leukemic cell survival and evolution are strictly dependent both on genetic lesions and on the external signals coming from the microenvironment paves the way to a new idea of dual targeting therapeutic strategy.
Collapse
Affiliation(s)
- Erica Dander
- Correspondence: (E.D.); (C.P.); Tel.: +39-(0)-39-2332229 (E.D. & C.P.); Fax: +39-(0)39-2332167 (E.D. & C.P.)
| | - Chiara Palmi
- Correspondence: (E.D.); (C.P.); Tel.: +39-(0)-39-2332229 (E.D. & C.P.); Fax: +39-(0)39-2332167 (E.D. & C.P.)
| | | | | |
Collapse
|
48
|
Knockdown of LncRNA CRNDE suppresses proliferation and P-glycoprotein-mediated multidrug resistance in acute myelocytic leukemia through the Wnt/β-catenin pathway. Biosci Rep 2021; 40:224732. [PMID: 32426817 PMCID: PMC7273914 DOI: 10.1042/bsr20193450] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/09/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Mechanisms involved in non-coding RNAs have been implicated in multidrug resistance (MDR) of acute myeloid leukemia (AML). Long non-coding RNA (lncRNAs) colorectal neoplasia differentially expressed (CRNDE) is reported to be involved in the malignant progression in AML. The purpose of the present study is to explore the roles and potential molecular mechanism of CRNDE in the MDR in AML. In our study, we confirmed that the expression of CRNDE was significantly up-regulated in patients with AML, especially in AML patients after adriamycin (ADR)-based chemotherapy. Spearman correlation analysis showed a positive correlation between the levels of CRNDE and MDR1 in AML patients after ADR-based chemotherapy. Moreover, CRNDE was up-regulated in AML cells, especially in ADR-resistant AML cells. Multidrug resistance protein 1 (MDR1)/p-glycoprotein (P-gp) levels were significantly increased in ADR-resistant AML cells, compared with parental AML cells. CRNDE down-regulation inhibited cell proliferation, promoted apoptosis, reduced Ki67 expression and enhanced cleaved caspase-3 expression in AML and ADR-resistant AML cells. In addition, CRNDE knockdown led to down-regulation of P-gp/MDR1, β-catenin, c-Myc and cyclinD1 expression, and enhanced the drug sensitivity to ADR in ADR-resistant AML cells. In conclusion, knockdown of CRNDE suppresses proliferation and P-gp-mediated MDR in ADR-resistant AML cells via inhibiting the Wnt/β-catenin pathway, suggesting that repression of CRNDE might be a therapeutic target to reverse MDR of ADR-resistant AML cells.
Collapse
|
49
|
Jafari A, Babajani A, Abdollahpour-Alitappeh M, Ahmadi N, Rezaei-Tavirani M. Exosomes and cancer: from molecular mechanisms to clinical applications. Med Oncol 2021; 38:45. [PMID: 33743101 DOI: 10.1007/s12032-021-01491-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022]
Abstract
Exosomes are extracellular nanovesicles secreted from almost all types of normal and cancer cells. Collective evidence suggests that exosomes participate in cell-cell communication via transmitting their cargo, including nucleic acids, proteins, and metabolites to recipient cells. Tumor-derived exosomes (TEXs) play prominent roles in the regulation of molecular pathways in malignancies. Internalization of exosomes by tumor cells affects cellular pathways and several cancer hallmarks, including reprogramming of stromal cells, modulating immune responses, reconstructing extracellular matrix architecture, or even endowing tumor cells with drug features resistance. The unique biogenesis pathways of exosomes, their composition, low immunogenicity, and nontoxicity, together with their ability to target tumor cells, bring them up as an attractive vesicles for cancer therapy. Thus, understanding the molecular mechanisms of exosomes' participation in tumorigenesis will be critical for the next generation of cancer therapeutics. This review aims to summarize the exosomes' roles in different mechanisms underlying cancer progression for the rational design of tailored strategies against this illness. The present study also highlights the new findings on using these smart vesicles as therapeutic targets and potential biomarkers. Recent advances in exosome biology will open up new, more effective, less invasive, and more individualized clinical applications for treating cancer patients.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nayebali Ahmadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, Department of Medical Lab Technology, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 - from biology to targeted therapy. Nat Rev Clin Oncol 2021; 18:152-169. [PMID: 33173198 DOI: 10.1038/s41571-020-00442-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Exportin 1 (XPO1), also known as chromosome region maintenance protein 1, plays a crucial role in maintaining cellular homeostasis via the regulated export of a range of cargoes, including proteins and several classes of RNAs, from the nucleus to the cytoplasm. Dysregulation of this protein plays a pivotal role in the development of various solid and haematological malignancies. Furthermore, XPO1 is associated with resistance to several standard-of-care therapies, including chemotherapies and targeted therapies, making it an attractive target of novel cancer therapies. Over the years, a number of selective inhibitors of nuclear export have been developed. However, only selinexor has been clinically validated. The novel mechanism of action of XPO1 inhibitors implies a different toxicity profile to that of other agents and has proved challenging in certain settings. Nonetheless, data from clinical trials have led to the approval of the XPO1 inhibitor selinexor (plus dexamethasone) as a fifth-line therapy for patients with multiple myeloma and as a monotherapy for patients with relapsed and/or refractory diffuse large B cell lymphoma. In this Review, we summarize the progress and challenges in the development of nuclear export inhibitors and discuss the potential of emerging combination therapies and biomarkers of response.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Dexamethasone/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/pathology
- Humans
- Hydrazines/therapeutic use
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Molecular Targeted Therapy
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Triazoles/therapeutic use
- Exportin 1 Protein
Collapse
Affiliation(s)
- Asfar S Azmi
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mohammed H Uddin
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|