1
|
Huang S, Qin Z, Wang F, Kang Y, Ren B. A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review). Oncol Rep 2024; 52:137. [PMID: 39155864 PMCID: PMC11358674 DOI: 10.3892/or.2024.8796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 08/20/2024] Open
Abstract
The immune system is integral to the surveillance and eradication of tumor cells. Interactions between the natural killer group 2 member D (NKG2D) receptor and its ligands (NKG2DLs) are vital for activating NKG2D receptor‑positive immune cells, such as natural killer cells. This activation enables these cells to identify and destroy tumor cells presenting with NKG2DLs, which is an essential aspect of tumor immunity. However, tumor immune escape is facilitated by soluble NKG2DL (sNKG2DL) shed from the surface of tumor cells. The production of sNKG2DL is predominantly regulated by metalloproteinases [a disintegrin and metalloproteinases (ADAM) and matrix metalloproteinase (MMP) families] and exosomes. sNKG2DL not only diminish immune recognition on the tumor cell surface but also suppress the function of immune cells, such as NK cells, and reduce the expression of the NKG2D receptor. This process promotes immune evasion, progression, and metastasis of tumors. In this review, an in‑depth summary of the mechanisms and factors that influence sNKG2DL production and their contribution to immune suppression within the tumor microenvironment are provided. Furthermore, due to the significant link between sNKG2DLs and tumor progression and metastasis, they have great potential as novel biomarkers. Detectable via liquid biopsies, sNKG2DLs could assess tumor malignancy and prognosis, and act as pivotal targets for immunotherapy. This could lead to the discovery of new drugs or the enhancement of existing treatments. Thus, the application of sNKG2DLs in clinical oncology was explored, offering substantial theoretical support for the development of innovative immunotherapeutic strategies for sNKG2DLs.
Collapse
Affiliation(s)
- Shuhao Huang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zihao Qin
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Feiyang Wang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yiping Kang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Biqiong Ren
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
2
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
3
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Ji S, Shi Y, Yin B. Macrophage barrier in the tumor microenvironment and potential clinical applications. Cell Commun Signal 2024; 22:74. [PMID: 38279145 PMCID: PMC10811890 DOI: 10.1186/s12964-023-01424-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024] Open
Abstract
The tumor microenvironment (TME) constitutes a complex microenvironment comprising a diverse array of immune cells and stromal components. Within this intricate context, tumor-associated macrophages (TAMs) exhibit notable spatial heterogeneity. This heterogeneity contributes to various facets of tumor behavior, including immune response modulation, angiogenesis, tissue remodeling, and metastatic potential. This review summarizes the spatial distribution of macrophages in both the physiological environment and the TME. Moreover, this paper explores the intricate interactions between TAMs and diverse immune cell populations (T cells, dendritic cells, neutrophils, natural killer cells, and other immune cells) within the TME. These bidirectional exchanges form a complex network of immune interactions that influence tumor immune surveillance and evasion strategies. Investigating TAM heterogeneity and its intricate interactions with different immune cell populations offers potential avenues for therapeutic interventions. Additionally, this paper discusses therapeutic strategies targeting macrophages, aiming to uncover novel approaches for immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yuqing Shi
- Department of Respiratory Medicine, Shenyang 10th People's Hospital, Shenyang, 110096, China
| | - Bo Yin
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
5
|
Dong Y, Chen J, Chen Y, Liu S. Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing. Biomed Pharmacother 2023; 167:115513. [PMID: 37741251 DOI: 10.1016/j.biopha.2023.115513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Immune effector cells in the microenvironment tend to be depleted or remodeled, unable to perform normal functions, and even promote the malignant characterization of tumors, resulting in the formation of immunosuppressive microenvironments. The strategy of reversing immunosuppressive microenvironment has been widely used to enhance the tumor immunotherapy effect. Signal transducer and activator of transcription 3 (STAT3) was found to be a crucial regulator of immunosuppressive microenvironment formation and activation as well as a factor, stimulating tumor cell proliferation, survival, invasiveness and metastasis. Therefore, regulating the immune microenvironment by targeting the STAT3 oncogenic pathway might be a new cancer therapy strategy. This review discusses the pleiotropic effects of STAT3 on immune cell populations that are critical for tumorigenesis, and introduces the novel strategies targeting STAT3 oncogenic pathway for cancer immunotherapy. Lastly, we summarize the conventional drugs used in new STAT3-targeting anti-tumor applications.
Collapse
Affiliation(s)
- Yushan Dong
- Graduate School of Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Jingyu Chen
- Department of Chinese Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1 Xiyuan Playground, Haidian District, Beijing, China
| | - Yuhan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songjiang Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No.26, Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
6
|
Blanco E, Escors D, Kochan G. Assessment of myeloid-derived suppressor cell differentiation ex vivo. Methods Cell Biol 2023; 184:85-96. [PMID: 38555160 DOI: 10.1016/bs.mcb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are major promoters of progression and metastasis in cancer. MDSCs inhibit the anti-tumor immune response through multiple mechanisms. The main MDSC functions in cancer are related to the inactivation of T cells and the establishment of an immunosuppressive tumor microenvironment (TME) through the production of pro-inflammatory cytokines, among other mechanisms. MDSCs are phenotypically similar to conventional myeloid cells, so their identification is challenging. Moreover, they infiltrate the tumors in limited numbers, and their purification from within the tumors is technically difficult and makes their study a challenge. Therefore, several ex vivo differentiation methods have been established. Our differentiation method leads to MDSCs that closely model tumor-infiltrating counterparts. In this protocol, MDSCs are differentiated from bone marrow precursors by incubation in differentiation medium produced by murine tumor cell lines engineered to constitutively express granulocyte-monocyte colony stimulating factor (GM-CSF). These ex vivo-generated MDSC subsets show high fidelity compared to their natural tumor-infiltrated counterparts. Moreover, the high yields of purification from these ex vivo differentiated MDSC enable their use for validation of new treatments in high-throughput assays. In this chapter we describe the engineering of a stable cell line overexpressing GM-CSF, followed by production and collection of conditioned media supporting MDSC differentiation. Finally, we detail the isolation procedure of bone marrow cells and the specific MDSC differentiation protocol.
Collapse
Affiliation(s)
- Ester Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.
| | - David Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
7
|
Guo F, Zhang Y, Bai L, Cui J. Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle. Cancer Lett 2023; 570:216328. [PMID: 37499742 DOI: 10.1016/j.canlet.2023.216328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A small proportion of cancer cells that have stem cell-like properties are known as cancer stem cells (CSCs). They can be used to identify malignant tumor phenotypes and patients with poor prognosis. Targeting these cells has been shown to improve the effectiveness of cancer therapies. Owing to the nature of CSCs, they are resistant to conventional treatment methods such as radio- and chemotherapy. Therefore, more effective anti-CSC therapies are required. Immunotherapy, including natural killer (NK) and T cell therapy, has demonstrated the ability to eliminate CSCs. NK cells have demonstrated superior anti-CSC capabilities compared to T cells in recognizing low levels of major histocompatibility complex (MHC) class I expression. However, CSC escape also occurs during NK cell therapy. It is important to determine CSC-specific immune evasion mechanisms and find out potential solutions to optimize NK cell function. Therefore, this review discusses promising strategies that can improve the efficiency of NK cell therapy in treating CSCs, and aims to provide a reference for future research.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yi Zhang
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
8
|
Zhang Y, Luo F, Dong K. Soluble NKG2D ligands impair CD8 + T cell antitumor function dependent of NKG2D downregulation in neuroblastoma. Oncol Lett 2023; 26:297. [PMID: 37274476 PMCID: PMC10236264 DOI: 10.3892/ol.2023.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
T cell-based immunotherapy has achieved remarkable beneficial clinical outcomes. Tumor-derived NKG2D ligands (NKG2DL) allow tumors to escape immunologic surveillance. However, the mechanism underlying NKG2DL-mediated immune escape in neuroblastoma (NB) remains incompletely understood. In the present study, first soluble NKG2DL, soluble major histocompatibility complex (MHC) class-I-related chain A and soluble UL-16 binding proteins expression levels were determined in both the serum from patients with NB and in NB cell line culture supernatants. NB cell-derived sNKG2DL was initially cleaved by ADAM10 and ADAM17. Furthermore, sNKG2DL expression levels were positively correlated with the immunosuppressive microenvironment and poor prognosis. Tumor-derived sNKG2DL induced degradation of NKG2D on CD8+ T cells and impaired CD8+ T cell proliferation, IFN-γ production, and CD107a translocation. More importantly, blockage of sNKG2DL increased the antitumor activity of CD8+ T cells. Thus, the results showed that NB-induced immunosuppression was achieved through tumor-derived sMICA and sULBP-2, and blockage of the tumor-derived sNKG2DLs with sNKG2DL neutralizing antibodies was a novel strategy to recover T-cell function and enhance antitumor immunotherapy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai 200040, P.R. China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
9
|
Hosseinalizadeh H, Habibi Roudkenar M, Mohammadi Roushandeh A, Kuwahara Y, Tomita K, Sato T. Natural killer cell immunotherapy in glioblastoma. Discov Oncol 2022; 13:113. [PMID: 36305981 PMCID: PMC9616998 DOI: 10.1007/s12672-022-00567-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022] Open
Abstract
Glioblastoma (GBM) is one of the most difficult cancers to treat because GBM has the high therapeutic resistance. Recently, immunotherapies for GBM have been used instead of conventional treatments. Among them, Natural killer (NK) cell-based immunotherapy has the potential to treat GBM due to its properties such as the absence of restriction by antigen-antibody reaction and deep penetration into the tumor microenvironment. Especially, genetically engineered NK cells, such as chimeric antigen receptor (CAR)-NK cells, dual antigen-targeting CAR NK cells, and adapter chimeric antigen receptor NK cells are considered to be an important tool for GBM immunotherapy. Therefore, this review describes the recent efforts of NK cell-based immunotherapy in GBM patients. We also describe key receptors expressing on NK cells such as killer cell immunoglobulin-like receptor, CD16, and natural killer group 2, member D (NKG2DL) receptor and discuss the function and importance of these molecules.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, Xie X, Li Y. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res 2021; 9:72. [PMID: 34625124 PMCID: PMC8501632 DOI: 10.1186/s40364-021-00327-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs), at the core of immunosuppressive cells and cytokines networks, play a crucial role in tumor immune evasion. Increasing evidences suggest that potential mechanisms of macrophage-mediated tumor immune escape imply interpretation and breakthrough to bottleneck of current tumor immunotherapy. Therefore, it is pivotal to understand the interactions between macrophages and other immune cells and factors for enhancing existing anti-cancer treatments. In this review, we focus on the specific signaling pathways through which TAMs involve in tumor antigen recognition disorders, recruitment and function of immunosuppressive cells, secretion of immunosuppressive cytokines, crosstalk with immune checkpoints and formation of immune privileged sites. Furthermore, we summarize correlative pre-clinical and clinical studies to provide new ideas for immunotherapy. From our perspective, macrophage-targeted therapy is expected to be the next frontier of cancer immunotherapy.
Collapse
Affiliation(s)
- Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China
| | - Tong Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China
| | - Ruiyi Zhu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Chujun Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Yingchen Ruan
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoling Xie
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, P. R. China.
| |
Collapse
|
11
|
Dhar P, Basher F, Ji Z, Huang L, Qin S, Wainwright DA, Robinson J, Hagler S, Zhou J, MacKay S, Wu JD. Tumor-derived NKG2D ligand sMIC reprograms NK cells to an inflammatory phenotype through CBM signalosome activation. Commun Biol 2021; 4:905. [PMID: 34294876 PMCID: PMC8298432 DOI: 10.1038/s42003-021-02440-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 07/05/2021] [Indexed: 12/31/2022] Open
Abstract
Natural Killer (NK) cell dysfunction is associated with poorer clinical outcome in cancer patients. What regulates NK cell dysfunction in tumor microenvironment is not well understood. Here, we demonstrate that the human tumor-derived NKG2D ligand soluble MIC (sMIC) reprograms NK cell to secrete pro-tumorigenic cytokines with diminished cytotoxicity and polyfunctional potential. Antibody clearing sMIC restores NK cell to a normal cytotoxic effector functional state. We discovered that sMIC selectively activates the CBM-signalosome inflammatory pathways in NK cells. Conversely, tumor cell membrane-bound MIC (mMIC) stimulates NK cell cytotoxicity through activating PLC2γ2/SLP-76/Vav1 pathway. Ultimately, antibody targeting sMIC effectuated the in vivo anti-tumor effect of adoptively transferred NK cells. Our findings uncover an unrecognized mechanism that could instruct NK cell to a dysfunctional state in response to cues in the tumor microenvironment. Our findings provide a rationale for co-targeting sMIC to enhance the efficacy of the ongoing NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fahmin Basher
- Division of General Internal Medicine, Department of Medicine, University of Miami, Miami, FL, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lei Huang
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Si Qin
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Jing Zhou
- Isoplexis Corporation, Branford, CT, USA
| | | | - Jennifer D Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Genetic program activity delineates risk, relapse, and therapy responsiveness in multiple myeloma. NPJ Precis Oncol 2021; 5:60. [PMID: 34183722 PMCID: PMC8239045 DOI: 10.1038/s41698-021-00185-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 05/13/2021] [Indexed: 01/19/2023] Open
Abstract
Despite recent advancements in the treatment of multiple myeloma (MM), nearly all patients ultimately relapse and many become refractory to multiple lines of therapies. Therefore, we not only need the ability to predict which patients are at high risk for disease progression but also a means to understand the mechanisms underlying their risk. Here, we report a transcriptional regulatory network (TRN) for MM inferred from cross-sectional multi-omics data from 881 patients that predicts how 124 chromosomal abnormalities and somatic mutations causally perturb 392 transcription regulators of 8549 genes to manifest in distinct clinical phenotypes and outcomes. We identified 141 genetic programs whose activity profiles stratify patients into 25 distinct transcriptional states and proved to be more predictive of outcomes than did mutations. The coherence of these programs and accuracy of our network-based risk prediction was validated in two independent datasets. We observed subtype-specific vulnerabilities to interventions with existing drugs and revealed plausible mechanisms for relapse, including the establishment of an immunosuppressive microenvironment. Investigation of the t(4;14) clinical subtype using the TRN revealed that 16% of these patients exhibit an extreme-risk combination of genetic programs (median progression-free survival of 5 months) that create a distinct phenotype with targetable genes and pathways.
Collapse
|
13
|
Salminen A. Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res Rev 2021; 67:101280. [PMID: 33581314 DOI: 10.1016/j.arr.2021.101280] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Aging is a progressive degenerative process involving a chronic low-grade inflammation and the accumulation of senescent cells. One major issue is to reveal the mechanisms which promote the deposition of pro-inflammatory senescent cells within tissues. The accumulation involves mechanisms which increase cellular senescence as well as those inhibiting the clearance of senescent cells from tissues. It is known that a persistent inflammatory state evokes a compensatory immunosuppression which inhibits pro-inflammatory processes by impairing the functions of effector immune cells, e.g., macrophages, T cells and natural killer (NK) cells. Unfortunately, these cells are indispensable for immune surveillance and the subsequent clearance of senescent cells, i.e., the inflammation-induced counteracting immunosuppression prevents the cleansing of host tissues. Moreover, senescent cells can also repress their own clearance by expressing inhibitors of immune surveillance and releasing the ligands of NKG2D receptors which impair their surveillance by NK and cytotoxic CD8+ T cells. It seems that cellular senescence and immunosuppression establish a feed-forward process which promotes the aging process and age-related diseases. I will examine in detail the immunosuppressive mechanisms which impair the surveillance and clearance of pro-inflammatory senescent cells with aging. In addition, I will discuss several therapeutic strategies to halt the degenerative feed-forward circuit associated with the aging process and age-related diseases.
Collapse
|
14
|
Rubio MT, Dhuyser A, Nguyen S. Role and Modulation of NK Cells in Multiple Myeloma. HEMATO 2021. [DOI: 10.3390/hemato2020010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Myeloma tumor cells are particularly dependent on their microenvironment and sensitive to cellular antitumor immune response, including natural killer (NK) cells. These later are essential innate lymphocytes implicated in the control of viral infections and cancers. Their cytotoxic activity is regulated by a balance between activating and inhibitory signals resulting from the complex interaction of surface receptors and their respective ligands. Myeloma disease evolution is associated with a progressive alteration of NK cell number, phenotype and cytotoxic functions. We review here the different therapeutic approaches that could restore or enhance NK cell functions in multiple myeloma. First, conventional treatments (immunomodulatory drugs-IMids and proteasome inhibitors) can enhance NK killing of tumor cells by modulating the expression of NK receptors and their corresponding ligands on NK and myeloma cells, respectively. Because of their ability to kill by antibody-dependent cell cytotoxicity, NK cells are important effectors involved in the efficacy of anti-myeloma monoclonal antibodies targeting the tumor antigens CD38, CS1 or BCMA. These complementary mechanisms support the more recent therapeutic combination of IMids or proteasome inhibitors to monoclonal antibodies. We finally discuss the ongoing development of new NK cell-based immunotherapies, such as ex vivo expanded killer cell immunoglobulin-like receptors (KIR)-mismatched NK cells, chimeric antigen receptors (CAR)-NK cells, check point and KIR inhibitors.
Collapse
|
15
|
Gurney M, O’Dwyer M. Realizing Innate Potential: CAR-NK Cell Therapies for Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:1568. [PMID: 33805422 PMCID: PMC8036691 DOI: 10.3390/cancers13071568] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Next-generation cellular immunotherapies seek to improve the safety and efficacy of approved CD19 chimeric antigen receptor (CAR) T-cell products or apply their principles across a growing list of targets and diseases. Supported by promising early clinical experiences, CAR modified natural killer (CAR-NK) cell therapies represent a complementary and potentially off-the-shelf, allogeneic solution. While acute myeloid leukemia (AML) represents an intuitive disease in which to investigate CAR based immunotherapies, key biological differences to B-cell malignancies have complicated progress to date. As CAR-T cell trials treating AML are growing in number, several CAR-NK cell approaches are also in development. In this review we explore why CAR-NK cell therapies may be particularly suited to the treatment of AML. First, we examine the established role NK cells play in AML biology and the existing anti-leukemic activity of NK cell adoptive transfer. Next, we appraise potential AML target antigens and consider common and unique challenges posed relative to treating B-cell malignancies. We summarize the current landscape of CAR-NK development in AML, and potential targets to augment CAR-NK cell therapies pharmacologically and through genetic engineering. Finally, we consider the broader landscape of competing immunotherapeutic approaches to AML treatment. In doing so we evaluate the innate potential, status and remaining barriers for CAR-NK based AML immunotherapy.
Collapse
Affiliation(s)
- Mark Gurney
- Apoptosis Research Center, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Michael O’Dwyer
- Apoptosis Research Center, National University of Ireland Galway, H91 TK33 Galway, Ireland;
- ONK Therapeutics Ltd., H91 V6KV Galway, Ireland
| |
Collapse
|
16
|
Baugh R, Khalique H, Seymour LW. Convergent Evolution by Cancer and Viruses in Evading the NKG2D Immune Response. Cancers (Basel) 2020; 12:E3827. [PMID: 33352921 PMCID: PMC7766243 DOI: 10.3390/cancers12123827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The natural killer group 2 member D (NKG2D) receptor and its family of NKG2D ligands (NKG2DLs) are key components in the innate immune system, triggering NK, γδ and CD8+ T cell-mediated immune responses. While surface NKG2DL are rarely found on healthy cells, expression is significantly increased in response to various types of cellular stress, viral infection, and tumour cell transformation. In order to evade immune-mediated cytotoxicity, both pathogenic viruses and cancer cells have evolved various mechanisms of subverting immune defences and preventing NKG2DL expression. Comparisons of the mechanisms employed following virus infection or malignant transformation reveal a pattern of converging evolution at many of the key regulatory steps involved in NKG2DL expression and subsequent immune responses. Exploring ways to target these shared steps in virus- and cancer-mediated immune evasion may provide new mechanistic insights and therapeutic opportunities, for example, using oncolytic virotherapy to re-engage the innate immune system towards cancer cells.
Collapse
Affiliation(s)
| | | | - Leonard W. Seymour
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (R.B.); (H.K.)
| |
Collapse
|
17
|
Ge Z, Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol 2020; 10:590941. [PMID: 33224886 PMCID: PMC7670061 DOI: 10.3389/fonc.2020.590941] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor microenvironment (TME) is composed of tumor cells and surrounding non-tumor stromal cells, mainly including tumor associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts (CAFs). The TAMs are the major components of non-tumor stromal cells, and play an important role in promoting the occurrence and development of tumors. Macrophages originate from bone marrow hematopoietic stem cells and embryonic yolk sacs. There is close crosstalk between TAMs and tumor cells. With the occurrence of tumors, tumor cells secrete various chemokines to recruit monocytes to infiltrate tumor tissues and further promote their M2-type polarization. Importantly, M2-like TAMs can in turn accelerate tumor growth, promote tumor cell invasion and metastasis, and inhibit immune killing to promote tumor progression. Therefore, targeting TAMs in tumor tissues has become one of the principal strategies in current tumor immunotherapy. Current treatment strategies focus on reducing macrophage infiltration in tumor tissues and reprogramming TAMs to M1-like to kill tumors. Although these treatments have had some success, their effects are still limited. This paper mainly summarized the recruitment and polarization of macrophages by tumors, the support of TAMs for the growth of tumors, and the research progress of TAMs targeting tumors, to provide new treatment strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhe Ge
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
18
|
Multidirectional Strategies for Targeted Delivery of Oncolytic Viruses by Tumor Infiltrating Immune Cells. Pharmacol Res 2020; 161:105094. [PMID: 32795509 DOI: 10.1016/j.phrs.2020.105094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Oncolytic virus (OV) immunotherapy has demonstrated to be a promising approach in cancer treatment due to tumor-specific oncolysis. However, their clinical use so far has been largely limited due to the lack of suitable delivery strategies with high efficacy. Direct 'intratumoral' injection is the way to cross the hurdles of systemic toxicity, while providing local effects. Progress in this field has enabled the development of alternative way using 'systemic' oncolytic virotherapy for producing better results. One major potential roadblock to systemic OV delivery is the low virus persistence in the face of hostile immune system. The delivery challenge is even greater when attempting to target the oncolytic viruses into the entire tumor mass, where not all tumor cells are equally exposed to exactly the same microenvironment. The microenvironment of many tumors is known to be massively infiltrated with various types of leucocytes in both primary and metastatic sites. Interestingly, this intratumoral immune cell heterogeneity exhibits a degree of organized distribution inside the tumor bed as evidenced, for example, by the hypoxic tumor microenviroment where predominantly recruits tumor-associated macrophages. Although in vivo OV delivery seems complicated and challenging, recent results are encouraging for decreasing the limitations of systemically administered oncolytic viruses and an improved efficiency of oncolytic viral therapy in targeting cancerous tissues in vitro. Here, we review the latest developments of carrier cell-based oncolytic virus delivery using tumor-infiltrating immune cells with a focus on the main features of each cellular vehicle.
Collapse
|
19
|
Basher F, Dhar P, Wang X, Wainwright DA, Zhang B, Sosman J, Ji Z, Wu JD. Antibody targeting tumor-derived soluble NKG2D ligand sMIC reprograms NK cell homeostatic survival and function and enhances melanoma response to PDL1 blockade therapy. J Hematol Oncol 2020; 13:74. [PMID: 32517713 PMCID: PMC7285527 DOI: 10.1186/s13045-020-00896-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Melanoma patients who have detectable serum soluble NKG2D ligands either at the baseline or post-treatment of PD1/PDL1 blockade exhibit poor overall survival. Among families of soluble human NKG2D ligands, the soluble human MHC I chain-related molecule (sMIC) was found to be elevated in melanoma patients and mostly associated with poor response to PD1/PDL1 blockade therapy. METHODS In this study, we aim to investigate whether co-targeting tumor-released sMIC enhances the therapeutic outcome of PD1/PDL1 blockade therapy for melanoma. We implanted sMIC-expressing B16F10 melanoma tumors into syngeneic host and evaluated therapeutic efficacy of anti-sMIC antibody and anti-PDL1 antibody combination therapy in comparison with monotherapy. We analyzed associated effector mechanism. We also assessed sMIC/MIC prevalence in metastatic human melanoma tumors. RESULTS We found that the combination therapy of the anti-PDL1 antibody with an antibody targeting sMIC significantly improved animal survival as compared to monotherapies and that the effect of combination therapy depends significantly on NK cells. We show that combination therapy significantly increased IL-2Rα (CD25) on NK cells which sensitizes NK cells to low dose IL-2 for survival. We demonstrate that sMIC negatively reprograms gene expression related to NK cell homeostatic survival and proliferation and that antibody clearing sMIC reverses the effect of sMIC and reprograms NK cell for survival. We further show that sMIC/MIC is abundantly present in metastatic human melanoma tumors. CONCLUSIONS Our findings provide a pre-clinical proof-of-concept and a new mechanistic understanding to underscore the significance of antibody targeting sMIC to improve therapeutic efficacy of anti-PD1/PDL1 antibody for MIC/sMIC+ metastatic melanoma patients.
Collapse
Affiliation(s)
- Fahmin Basher
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.,Current address: Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xin Wang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Derek A Wainwright
- Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bin Zhang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeffrey Sosman
- Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60628, USA
| | - Jennifer D Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Plasil M, Wijkmark S, Elbers JP, Oppelt J, Burger PA, Horin P. The major histocompatibility complex of Old World camelids: Class I and class I-related genes. HLA 2020; 93:203-215. [PMID: 30828986 DOI: 10.1111/tan.13510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
The genomic structure of the Major Histocompatibility Complex (MHC) region and variation in selected MHC class I related genes in Old World camels, Camelus bactrianus and Camelus dromedaries were studied. The overall genomic organization of the camel MHC region follows a general pattern observed in other mammalian species and individual MHC loci appear to be well conserved. Selected MHC class I genes B-67 and BL3-7 exhibited unexpectedly low variability, even when compared to other camel MHC class I related genes MR1 and MICA. Interspecific SNP and allele sharing are relatively common, and frequencies of heterozygotes are usually low. Such a low variation in a genomic region generally considered as one of the most polymorphic in vertebrate genomes is unusual. Evolutionary relationships between MHC class I related genes and their counterparts from other species seem to be rather complex. Often, they do not follow the general evolutionary history of the species concerned. Close evolutionary relationships of individual MHC class I loci between camels, humans and dogs were observed. Based on the results of this study and on our data on MHC class II genes, the extent and the pattern of polymorphism of the MHC region of Old World camelids differed from most mammalian groups studied so far. Camels thus seem to be an important model for our understanding of the role of genetic diversity in immune functions, especially in the context of unique features of their immunoglobulin and T-cell receptor genes.
Collapse
Affiliation(s)
- Martin Plasil
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.,Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic
| | - Sofia Wijkmark
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic
| | - Jean P Elbers
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, Vienna, Austria
| | - Jan Oppelt
- Ceitec MU, Masaryk University, Brno, Czech Republic.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, Vienna, Austria
| | - Petr Horin
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.,Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic
| |
Collapse
|
21
|
Ciccarese S, Burger PA, Ciani E, Castelli V, Linguiti G, Plasil M, Massari S, Horin P, Antonacci R. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics. Front Genet 2019; 10:997. [PMID: 31681428 PMCID: PMC6812646 DOI: 10.3389/fgene.2019.00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune receptors repertoire is highly plastic, with its ability to produce antigen-binding molecules and select those with high affinity for their antigen. Species have developed diverse genetic and structural strategies to create their respective repertoires required for their survival in the different environments. Camelids, until now, considered as a case of evolutionary innovation because of their only heavy-chain antibodies, represent a new mammalian model particularly useful for understanding the role of diversity in the immune system function. Here, we review the structural and functional characteristics and the current status of the genomic organization of camel immunoglobulins (IG) or antibodies, α/ß and γ/δ T cell receptors (TR), and major histocompatibility complex (MHC). In camelid humoral response, in addition to the conventional antibodies, there are IG with “only-heavy-chain” (no light chain, and two identical heavy gamma chains lacking CH1 and with a VH domain designated as VHH). The unique features of these VHH offer advantages in biotechnology and for clinical applications. The TRG and TRD rearranged variable domains of Camelus dromedarius (Arabian camel) display somatic hypermutation (SHM), increasing the intrinsic structural stability in the γ/δ heterodimer and influencing the affinity maturation to a given antigen similar to immunoglobulin genes. The SHM increases the dromedary γ/δ repertoire diversity. In Camelus genus, the general structural organization of the TRB locus is similar to that of the other artiodactyl species, with a pool of TRBV genes positioned at the 5’ end of three in tandem D-J-C clusters, followed by a single TRBV gene with an inverted transcriptional orientation located at the 3’ end. At the difference of TRG and TRD, the diversity of the TRB variable domains is not shaped by SHM and depends from the classical combinatorial and junctional diversity. The MHC locus is located on chromosome 20 in Camelus dromedarius. Cytogenetic and comparative whole genome analyses revealed the order of the three major regions “Centromere-ClassII-ClassIII-ClassI”. Unexpectedly low extent of polymorphisms and haplotypes was observed in all Old World camels despite different geographic origins.
Collapse
Affiliation(s)
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy
| | - Vito Castelli
- Department of Biology, University of Bari "Aldo Moro," Bari, Italy
| | | | - Martin Plasil
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | | |
Collapse
|
22
|
Sharifi L, Nowroozi MR, Amini E, Arami MK, Ayati M, Mohsenzadegan M. A review on the role of M2 macrophages in bladder cancer; pathophysiology and targeting. Int Immunopharmacol 2019; 76:105880. [PMID: 31522016 DOI: 10.1016/j.intimp.2019.105880] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Tumor-associated macrophages (TAMs) which are often referred to as immunosuppressive cells (M2 macrophage), constitute a subset of tumor microenvironment cells and affect tumor progression in solid tumors. Recently, these cells have gained remarkable importance as therapeutic candidates for solid tumors. In bladder cancer, major studies have focused on evaluating TAMs in response to Bacillus Calmette-Guerin (BCG) therapy. M2 macrophages may directly impact the BCG-induced immune responses against tumor in bladder cancer. They are the main inhibitors of the tumor microenvironment that promotes growth and metastasis of the tumor. However, the clinical significance of M2 macrophages in bladder cancer is controversial. In this review, we will discuss the clinical significance of M2 macrophages in prognosis of bladder cancer as well as worth of their potential targeting in bladder cancer treatment. In the following, we will introduce important factors resulting in M2 macrophage promotion and also experimental therapeutic agents that may cause the inhibition of bladder cancer tumor growth.
Collapse
Affiliation(s)
- Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Erfan Amini
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh Arami
- Department of Basic Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ayati
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Boettcher AN, Usman A, Morgans A, VanderWeele DJ, Sosman J, Wu JD. Past, Current, and Future of Immunotherapies for Prostate Cancer. Front Oncol 2019; 9:884. [PMID: 31572678 PMCID: PMC6749031 DOI: 10.3389/fonc.2019.00884] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men, and the second leading cause of cancer related death in men in Western countries. The standard therapy for metastatic PCa is androgen suppression therapy (AST). Men undergoing AST eventually develop metastatic castration-resistant prostate cancer (mCRPC), of which there are limited treatment options available. Immunotherapy has presented substantial benefits for many types of cancer, but only a marginal benefit for mCRPC, at least in part, due to the immunosuppressive tumor microenvironment (TME). Current clinical trials are investigating monotherapies or combination therapies involving adoptive cellular therapy, viral, DNA vaccines, oncolytic viruses, and immune checkpoint inhibitors (ICI). Immunotherapies are also being combined with chemotherapy, radiation, and AST. Additionally, preclinical investigations show promise with the recent description of alternative ways to circumvent the immunosuppressive nature of the prostate tumor microenvironment, including harnessing the immune stimulatory NKG2D pathway, inhibiting myeloid derived suppressor cells, and utilizing immunomodulatory oncolytic viruses. Herein we provide an overview of recent preclinical and clinical developments in cancer immunotherapies and discuss the perspectives for future immunotherapies in PCa.
Collapse
Affiliation(s)
- Adeline N. Boettcher
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ahmed Usman
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alicia Morgans
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David J. VanderWeele
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeffrey Sosman
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jennifer D. Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
24
|
Zhang J, Larrocha PSL, Zhang B, Wainwright D, Dhar P, Wu JD. Antibody targeting tumor-derived soluble NKG2D ligand sMIC provides dual co-stimulation of CD8 T cells and enables sMIC + tumors respond to PD1/PD-L1 blockade therapy. J Immunother Cancer 2019; 7:223. [PMID: 31446896 PMCID: PMC6709558 DOI: 10.1186/s40425-019-0693-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/24/2019] [Indexed: 02/21/2023] Open
Abstract
Background Insufficient co-stimulation accounts for a great deal of the suboptimal activation of cytotoxic CD8 T cells (CTLs) and presumably unsatisfactory clinical expectation of PD1/PD-L1 therapy. Tumor-derived soluble NKG2D ligands are associated with poor clinical response to PD1/PD-L1 blockade therapy in cancer patients. One of the mostly occurring tumor-derived soluble NKG2D ligands, the soluble MHC I chain related molecule (sMIC) can impair co-stimulation to CD8 T cells. We investigated whether co-targeting sMIC can provide optimal co-stimulation to CTLs and enhance the therapeutic effect of PD1/PD-L1 blockades. Methods Single agent therapy of a PD1/PD-L1 blockade antibody or a sMIC-targeting non-blocking antibody or a combination therapy of the two antibodies were implied to well-characterized pre-clinical MIC/sMIC+ tumor models that closely resemble the NKG2D-mediated oncoimmune dynamics of MIC+ cancer patients. Therapeutic efficacy and associated effector mechanisms were evaluated. Results We show that antibody co-targeting sMIC enables or enhances the response of sMIC+ tumors to PD1/PD-L1 blockade therapy. The therapy response of the combination therapy was associated with enhanced antigen-specific CD8 T cell enrichment and function in tumors. We show that co-targeting sMIC with a nonblocking antibody provides antigen-specific CD8 T cells with NKG2D and CD28 dual co-stimulation, in addition to elimination of inhibitory signals, and thus amplifies antigen-specific CD8 T cell anti-tumor responses. Conclusion Our findings provide the proof-of-concept rationale and previously undiscovered mechanisms for co-targeting sMIC to enable and enhance the response to PD1/PD-L1 blockade therapy in sMIC+ cancer patients. Electronic supplementary material The online version of this article (10.1186/s40425-019-0693-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Bin Zhang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Derek Wainwright
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Payal Dhar
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer D Wu
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
25
|
Dhar P, Wu JD. NKG2D and its ligands in cancer. Curr Opin Immunol 2018; 51:55-61. [PMID: 29525346 PMCID: PMC6145810 DOI: 10.1016/j.coi.2018.02.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 01/12/2023]
Abstract
NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives.
Collapse
Affiliation(s)
- Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Chicago, Northwestern University, Chicago IL60611, United States
| | - Jennifer D Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago IL60611, United States; Robert Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL60611, United States.
| |
Collapse
|
26
|
Mathew SO, Chaudhary P, Powers SB, Vishwanatha JK, Mathew PA. Overexpression of LLT1 (OCIL, CLEC2D) on prostate cancer cells inhibits NK cell-mediated killing through LLT1-NKRP1A (CD161) interaction. Oncotarget 2018; 7:68650-68661. [PMID: 27626681 PMCID: PMC5356580 DOI: 10.18632/oncotarget.11896] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/22/2016] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer is the most common type of cancer diagnosed and the second leading cause of cancer-related death in American men. Natural Killer (NK) cells are the first line of defense against cancer and infections. NK cell function is regulated by a delicate balance between signals received through activating and inhibitory receptors. Previously, we identified Lectin-like transcript-1 (LLT1/OCIL/CLEC2D) as a counter-receptor for the NK cell inhibitory receptor NKRP1A (CD161). Interaction of LLT1 expressed on target cells with NKRP1A inhibits NK cell activation. In this study, we have found that LLT1 was overexpressed on prostate cancer cell lines (DU145, LNCaP, 22Rv1 and PC3) and in primary prostate cancer tissues both at the mRNA and protein level. We further showed that LLT1 is retained intracellularly in normal prostate cells with minimal cell surface expression. Blocking LLT1 interaction with NKRP1A by anti-LLT1 mAb on prostate cancer cells increased the NK-mediated cytotoxicity of prostate cancer cells. The results indicate that prostate cancer cells may evade immune attack by NK cells by expressing LLT1 to inhibit NK cell-mediated cytolytic activity through LLT1-NKRP1A interaction. Blocking LLT1-NKRP1A interaction will make prostate cancer cells susceptible to killing by NK cells and therefore may be a new therapeutic option for treatment of prostate cancer.
Collapse
Affiliation(s)
- Stephen O Mathew
- Department of Cell Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Pankaj Chaudhary
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sheila B Powers
- Department of Cell Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jamboor K Vishwanatha
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Porunelloor A Mathew
- Department of Cell Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
27
|
Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, Giaccone L, Bruno B. Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of New Drugs. Front Immunol 2017; 8:1444. [PMID: 29163516 PMCID: PMC5682004 DOI: 10.3389/fimmu.2017.01444] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Transformed plasma cells in multiple myeloma (MM) are susceptible to natural killer (NK) cell-mediated killing via engagement of tumor ligands for NK activating receptors or “missing-self” recognition. Similar to other cancers, MM targets may elude NK cell immunosurveillance by reprogramming tumor microenvironment and editing cell surface antigen repertoire. Along disease continuum, these effects collectively result in a progressive decline of NK cell immunity, a phenomenon increasingly recognized as a critical determinant of MM progression. In recent years, unprecedented efforts in drug development and experimental research have brought about emergence of novel therapeutic interventions with the potential to override MM-induced NK cell immunosuppression. These NK-cell enhancing treatment strategies may be identified in two major groups: (1) immunomodulatory biologics and small molecules, namely, immune checkpoint inhibitors, therapeutic antibodies, lenalidomide, and indoleamine 2,3-dioxygenase inhibitors and (2) NK cell therapy, namely, adoptive transfer of unmanipulated and chimeric antigen receptor-engineered NK cells. Here, we summarize the mechanisms responsible for NK cell functional suppression in the context of cancer and, specifically, myeloma. Subsequently, contemporary strategies potentially able to reverse NK dysfunction in MM are discussed.
Collapse
Affiliation(s)
- Gianfranco Pittari
- Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Moreno Festuccia
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Deena Mudawi
- Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar
| | - Luisa Giaccone
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
28
|
Miyahira AK, Cheng HH, Abida W, Ellis L, Harshman LC, Spratt DE, Simons JW, Pienta KJ, Soule HR. Beyond the androgen receptor II: New approaches to understanding and treating metastatic prostate cancer; Report from the 2017 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2017; 77:1478-1488. [PMID: 28925066 DOI: 10.1002/pros.23424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The 2017 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Beyond the Androgen Receptor II: New Approaches to Understanding and Treating Metastatic Prostate Cancer," was held in Carlsbad, California from June 14-17, 2017. METHODS The CHPCA is an annual scientific conference hosted by the Prostate Cancer Foundation (PCF) that is uniquely designed to produce extensive and constructive discussions on the most urgent and impactful topics concerning research into the biology and treatment of metastatic prostate cancer. The 2017 CHPCA Meeting was the 5th meeting in this annual series and was attended by 71 investigators focused on prostate cancer and a variety of other fields including breast and ovarian cancer. RESULTS The discussions at the meeting were concentrated on topics areas including: mechanisms and therapeutic approaches for molecular subclasses of castrate resistant prostate cancer (CRPC), the epigenetic landscape of prostate cancer, the role of DNA repair gene mutations, advancing the use of germline genetics in clinical practice, radionuclides for imaging and therapy, advances in molecular imaging, and therapeutic strategies for successful use of immunotherapy in advanced prostate cancer. DISCUSSION This article reviews the presentations and discussions from the 2017 CHPCA Meeting in order to disseminate this knowledge and accelerate new biological understandings and advances in the treatment of patients with metastatic prostate cancer.
Collapse
Affiliation(s)
| | - Heather H Cheng
- Department of Medicine, University of Washington, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Wassim Abida
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren C Harshman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
29
|
Myeloid-Derived Suppressor Cells in the Tumor Microenvironment: Current Knowledge and Future Perspectives. Arch Immunol Ther Exp (Warsz) 2017; 66:113-123. [PMID: 29032490 DOI: 10.1007/s00005-017-0492-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
The current knowledge on tumor-infiltrating myeloid-derived suppressor cells (MDSCs) is based mainly on the extensive work performed in murine models. Data obtained for human counterparts are generated on the basis of tumor analysis from patient samples. Both sources of information led to determination of the main suppressive mechanisms used by these cell subsets in tumor-bearing hosts. As a result of the identification of protein targets responsible for MDSCs suppressive activity, different therapeutics agents have been used to eliminate/reduce their adverse effect. In the present work, we review the current knowledge on suppressive mechanisms of MDSCs and therapeutic treatments that interfere with their differentiation, expansion or activity. Based on the accumulation of new evidences supporting their importance for tumor progression and metastasis, the interest in these cell types is increasing. We revise the methods of MDSC generation/differentiation ex vivo that may help in overcoming problems associated with limited numbers of cells available from animals and patients for their study.
Collapse
|
30
|
Vyas M, Reinartz S, Hoffmann N, Reiners KS, Lieber S, Jansen JM, Wagner U, Müller R, von Strandmann EP. Soluble NKG2D ligands in the ovarian cancer microenvironment are associated with an adverse clinical outcome and decreased memory effector T cells independent of NKG2D downregulation. Oncoimmunology 2017; 6:e1339854. [PMID: 28932639 PMCID: PMC5599084 DOI: 10.1080/2162402x.2017.1339854] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
The immune receptor NKG2D is predominantly expressed on NK cells and T cell subsets and confers anti-tumor activity. According to the current paradigm, immune surveillance is counteracted by soluble ligands shed into the microenvironment, which down-regulate NKG2D receptor expression. Here, we analyzed the clinical significance of the soluble NKG2D ligands sMICA and sULBP2 in the malignancy-associated ascites of ovarian cancer. We show that high levels of sMICA and sULBP2 in ascites were associated with a poor prognosis. Ascites inhibited the activation of normal NK cells, which, in contrast to the prevailing notion, was not associated with decreased NKG2D expression. Of note, an inverse correlation of soluble NKG2D ligands with effector memory T cells and a direct correlation with pro-tumorigenic CD163+CD206+ macrophages was observed. Thus, the role of soluble NKG2D ligands within the ovarian cancer microenvironment is more complex than anticipated and does not exclusively function via NKG2D downregulation.
Collapse
Affiliation(s)
- Maulik Vyas
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Nathalie Hoffmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany.,Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Katrin S Reiners
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Sonja Lieber
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
31
|
Maccalli C, Giannarelli D, Chiarucci C, Cutaia O, Giacobini G, Hendrickx W, Amato G, Annesi D, Bedognetti D, Altomonte M, Danielli R, Calabrò L, Di Giacomo AM, Marincola FM, Parmiani G, Maio M. Soluble NKG2D ligands are biomarkers associated with the clinical outcome to immune checkpoint blockade therapy of metastatic melanoma patients. Oncoimmunology 2017; 6:e1323618. [PMID: 28811958 DOI: 10.1080/2162402x.2017.1323618] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/23/2022] Open
Abstract
The introduction of immune checkpoint blockade into the clinical practice resulted in improvement of survival of a significant portion of melanoma patients. Consequently, predictive biomarkers of response are needed to optimize patient's stratification and the development of combination therapies. The aim of this study was to determine whether levels of soluble NKG2D ligands (MICA, MICB, ULBP1, 2 and 3; sNKG2DLs) in the serum of melanoma patients can serve as useful predictors of response to the treatment with immune checkpoint blockade. sNKG2DLs were measured by ELISA in baseline and post-treatment serum and these results were correlated with the clinical outcome of melanoma patients (N = 194). The same determinations were performed also in a cohort of patients (N = 65) treated with either chemotherapy, radiotherapy, or mutated BRAF inhibitors (BRAFi). Absence of soluble MICB and ULBP-1 in baseline serum correlated with improved survival (OS = 21.6 and 25.3 mo and p = 0.02 and 0.01, respectively) of patients treated with immunological therapies while detectable levels of these molecules were found in poor survivors (OS = 8.8 and 12.1 mo, respectively). Multivariate analysis showed that LDH (p <0.0001), sULBP-1 (p = 0.02), and sULBP-2 (p = 0.02) were independent predictors of clinical outcome for the cohort of melanoma patients treated with immune checkpoint blockade. Only LDH but not sNKG2DLs was significantly associated with the clinical outcome of patients treated with standard or BRAFi regimens. These findings highlight the relevance of sNKG2DLs in the serum of melanoma patients as biomarkers for patients' stratification and optimization of immune checkpoint inhibition regimens.
Collapse
Affiliation(s)
- Cristina Maccalli
- Research Branch, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Diana Giannarelli
- Unit of Statistics, Regina Elena National Cancer Institute, Rome, Italy
| | - Carla Chiarucci
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.,University of Siena, Siena, Italy
| | - Ornella Cutaia
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.,University of Siena, Siena, Italy
| | - Gianluca Giacobini
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.,University of Siena, Siena, Italy
| | - Wouter Hendrickx
- Research Branch, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Giovanni Amato
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Diego Annesi
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Davide Bedognetti
- Research Branch, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Maresa Altomonte
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Riccardo Danielli
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Luana Calabrò
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Anna Maria Di Giacomo
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Francesco M Marincola
- Office of the Chief Research Officer (CRO), Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Giorgio Parmiani
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.,Italian Network for Bio-therapy of Tumors-(NIBIT)-Laboratory, Siena, Italy
| | - Michele Maio
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| |
Collapse
|
32
|
Zhang J, Liu D, Li G, Staveley-O’Carroll KF, Graff JN, Li Z, Wu JD. Antibody-mediated neutralization of soluble MIC significantly enhances CTLA4 blockade therapy. SCIENCE ADVANCES 2017; 3:e1602133. [PMID: 28560327 PMCID: PMC5435412 DOI: 10.1126/sciadv.1602133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/09/2017] [Indexed: 05/15/2023]
Abstract
Antibody therapy targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA4) elicited survival benefits in cancer patients; however, the overall response rate is limited. In addition, anti-CTLA4 antibody therapy induces a high rate of immune-related adverse events. The underlying factors that may influence anti-CTLA4 antibody therapy are not well defined. We report the impact of a cancer-derived immune modulator, the human-soluble natural killer group 2D (NKG2D) ligand sMIC (soluble major histocompatibility complex I chain-related molecule), on the therapeutic outcome of anti-CTLA4 antibody using an MIC transgenic spontaneous TRAMP (transgenic adenocarcinoma of the mouse prostate)/MIC tumor model. Unexpectedly, animals with elevated serum sMIC (sMIChi) responded poorly to anti-CTLA4 antibody therapy, with significantly shortened survival due to increased lung metastasis. These sMIChi animals also developed colitis in response to anti-CTLA4 antibody therapy. Coadministration of an sMIC-neutralizing monoclonal antibody with the anti-CTLA4 antibody alleviated treatment-induced colitis in sMIChi animals and generated a cooperative antitumor therapeutic effect by synergistically augmenting innate and adoptive antitumor immune responses. Our findings imply that a new combination therapy could improve the clinical response to anti-CTLA4 antibody therapy. Our findings also suggest that prescreening cancer patients for serum sMIC may help in selecting candidates who will elicit a better response to anti-CTLA4 antibody therapy.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- CanCure LLC, Everett, WA 98208, USA
| | - Dai Liu
- School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Guangfu Li
- School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | | | - Julie N. Graff
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- Cancer Immunology Program, Hollings Cancer Center, Charleston, SC 29425, USA
| | - Jennifer D. Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- Cancer Immunology Program, Hollings Cancer Center, Charleston, SC 29425, USA
- Corresponding author.
| |
Collapse
|
33
|
Qian L, Liu Y, Wang S, Gong W, Jia X, Liu L, Ye F, Ding J, Xu Y, Fu Y, Tian F. NKG2D ligand RAE1ε induces generation and enhances the inhibitor function of myeloid-derived suppressor cells in mice. J Cell Mol Med 2017; 21:2046-2054. [PMID: 28276625 PMCID: PMC5571551 DOI: 10.1111/jcmm.13124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/13/2017] [Indexed: 01/06/2023] Open
Abstract
Expression of surface NKG2D ligands on tumour cells, which activates nature killer (NK) cells and CD8+ T cells, is crucial in antitumour immunity. Some types of tumours have evolved mechanisms to suppress NKG2D‐mediated immune cell activation, such as tumour‐derived soluble NKG2D ligands or sustained NKG2D ligands produced by tumours down‐regulate the expression of NKG2D on NK cells and CD8+ T cells. Here, we report that surface NKG2D ligand RAE1ε on tumour cells induces CD11b+Gr‐1+ myeloid‐derived suppressor cell (MDSC) via NKG2D in vitro and in vivo. MDSCs induced by RAE1ε display a robust induction of IL‐10 and arginase, and these MDSCs show greater suppressive activity by inhibiting antigen‐non‐specific CD8+ T‐cell proliferation. Consistently, upon adoptive transfer, MDSCs induced by RAE1ε significantly promote CT26 tumour growth in IL‐10‐ and arginase‐dependent manners. RAE1ε moves cytokine balance towards Th2 but not Th1 in vivo. Furthermore, RAE1ε enhances inhibitory function of CT26‐derived MDSCs and promotes IL‐4 rather than IFN‐γ production from CT26‐derived MDSCs through NKG2D in vitro. Our study has demonstrated a novel mechanism for NKG2D ligand+ tumour cells escaping from immunosurveillance by facilitating the proliferation and the inhibitory function of MDSCs.
Collapse
Affiliation(s)
- Li Qian
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China.,Translational Medicine Research Institute of Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Yang Liu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China.,Translational Medicine Research Institute of Yangzhou University, Yangzhou, China
| | - Shaoqing Wang
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China.,Translational Medicine Research Institute of Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Xiaoqin Jia
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Lu Liu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Feng Ye
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jingjuan Ding
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Yuwei Xu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Yi Fu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Fang Tian
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China.,Translational Medicine Research Institute of Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 2017; 10:58. [PMID: 28241846 PMCID: PMC5329931 DOI: 10.1186/s13045-017-0430-2] [Citation(s) in RCA: 632] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
The fact that various immune cells, including macrophages, can be found in tumor tissues has long been known. With the introduction of concept that macrophages differentiate into a classically or alternatively activated phenotype, the role of tumor-associated macrophages (TAMs) is now beginning to be elucidated. TAMs act as “protumoral macrophages,” contributing to disease progression. TAMs can promote initiation and metastasis of tumor cells, inhibit antitumor immune responses mediated by T cells, and stimulate tumor angiogenesis and subsequently tumor progression. As the relationship between TAMs and malignant tumors becomes clearer, TAMs are beginning to be seen as potential biomarkers for diagnosis and prognosis of cancers, as well as therapeutic targets in these cases. In this review, we will discuss the origin, polarization, and role of TAMs in human malignant tumors, as well as how TAMs can be used as diagnostic and prognostic biomarkers and therapeutic targets of cancer in clinics.
Collapse
Affiliation(s)
- Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China. .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China. .,School of Life Science, Zhengzhou University, No.100 Kexue Road, Zhengzhou, 450001, Henan Province, China.
| |
Collapse
|
35
|
O'Connor MA, Rastad JL, Green WR. The Role of Myeloid-Derived Suppressor Cells in Viral Infection. Viral Immunol 2017; 30:82-97. [PMID: 28051364 DOI: 10.1089/vim.2016.0125] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that are well described as potent immune regulatory cells during human cancer and murine tumor models. Reports of MDSCs during viral infections remain limited, and their association with immunomodulation of viral diseases is still being defined. Here, we provide an overview of MDSCs or MDSC-like cells identified during viral infections, including murine viral models and human viral diseases. Understanding the similarities and/or differences of virally induced versus tumor-derived MDSCs will be important for designing future immunotherapeutic approaches.
Collapse
Affiliation(s)
- Megan A O'Connor
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - Jessica L Rastad
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - William R Green
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire.,2 Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth, Lebanon , New Hampshire
| |
Collapse
|
36
|
Basher F, Jeng EK, Wong H, Wu J. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC. Oncotarget 2016; 7:814-30. [PMID: 26625316 PMCID: PMC4808035 DOI: 10.18632/oncotarget.6416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
Shedding of the human NKG2D ligand MIC (MHC class I-chain-related molecule) from tumor cell surfaces correlates with progression of many epithelial cancers. Shedding-derived soluble MIC (sMIC) enables tumor immune escape through multiple immune suppressive mechanisms, such as disturbing natural killer (NK) cell homeostatic maintenance, impairing NKG2D expression on NK cells and effector T cells, and facilitating the expansion of arginase I+ myeloid suppressor cells. Our recent study has demonstrated that sMIC is an effective cancer therapeutic target. Whether targeting tumor-derived sMIC would enhance current active immunotherapy is not known. Here, we determined the in vivo therapeutic effect of an antibody co-targeting sMIC with the immunostimulatory IL-15 superagonist complex, ALT-803, using genetically engineered transplantable syngeneic sMIC+ tumor models. We demonstrate that combined therapy of a nonblocking antibody neutralizing sMIC and ALT-803 improved the survival of animals bearing sMIC+ tumors in comparison to monotherapy. We further demonstrate that the enhanced therapeutic effect with combined therapy is through concurrent augmentation of NK and CD8 T cell anti-tumor responses. In particular, expression of activation-induced surface molecules and increased functional potential by cytokine secretion are improved greatly by the administration of combined therapy. Depletion of NK cells abolished the cooperative therapeutic effect. Our findings suggest that administration of the sMIC-neutralizing antibody can enhance the anti-tumor effects of ALT-803. With ALT-803 currently in clinical trials to treat progressive solid tumors, the majority of which are sMIC+, our findings provide a rationale for co-targeting sMIC to enhance the therapeutic efficacy of ALT-803 or other IL-15 agonists.
Collapse
Affiliation(s)
- Fahmin Basher
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Hing Wong
- Altor BioSciences Corporation, Miramar, FL, USA
| | - Jennifer Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.,Cancer Immunology Program, Hollings Cancer Center, Charleston, SC, USA.,CanCure LLC, Everett, WA, USA
| |
Collapse
|
37
|
Nam S, Kang K, Cha JS, Kim JW, Lee HG, Kim Y, Yang Y, Lee MS, Lim JS. Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J Leukoc Biol 2016; 100:1273-1284. [DOI: 10.1189/jlb.1a0215-068rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 02/02/2023] Open
|
38
|
Dufait I, Van Valckenborgh E, Menu E, Escors D, De Ridder M, Breckpot K. Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget 2016; 7:42698-42715. [PMID: 27029037 PMCID: PMC5173167 DOI: 10.18632/oncotarget.8311] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/23/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer progression is in part determined by interactions between cancer cells and stromal cells in the tumor microenvironment (TME). The identification of cytotoxic tumor-infiltrating lymphocytes has instigated research into immune stimulating cancer therapies. Although a promising direction, immunosuppressive mechanisms exerted at the TME hamper its success. Myeloid-derived suppressor cells (MDSCs) have come to the forefront as stromal cells that orchestrate the immunosuppressive TME. Consequently, this heterogeneous cell population has been the object of investigation. Studies revealed that the transcription factor signal transducer and activator of transcription 3 (STAT3) largely dictates the recruitment, activation and function of MDSCs in the TME. Therefore, this review will focus on the role of this key transcription factor during the MDSC's life cycle and on the therapeutic opportunities it offers.
Collapse
Affiliation(s)
- Inès Dufait
- Department of Radiotherapy, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
- Laboratory of Molecular and Cellular Technology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Laboratory of Hematology and Immunology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - Eline Menu
- Laboratory of Hematology and Immunology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - David Escors
- Immunomodulation Group, Navarrabiomed-Fundaçion, Miguel Servet, IdiSNA, Navarra, Spain
| | - Mark De Ridder
- Department of Radiotherapy, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Technology, Vrije Universiteit, UZ-Brussel, Brussels, Belgium
| |
Collapse
|
39
|
Assessment of changes in expression and presentation of NKG2D under influence of MICA serum factor in different stages of breast cancer. Tumour Biol 2015; 37:6953-62. [DOI: 10.1007/s13277-015-4584-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022] Open
|
40
|
Wu J. Antibody targeting soluble NKG2D ligand sMIC refuels and invigorates the endogenous immune system to fight cancer. Oncoimmunology 2015; 5:e1095434. [PMID: 27141357 DOI: 10.1080/2162402x.2015.1095434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022] Open
Abstract
Human tumor-derived soluble NKG2D sMIC paralyzes the immune system through multiple pathways. Targeting soluble MIC with a nonblocking sMIC-neutralizing anti-MIC antibody effectuated and revamped endogenous innate and adoptive antitumor responses. Therapy induced regression of primary tumors and eliminated metastasis in preclinical models.
Collapse
Affiliation(s)
- Jennifer Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Cancer Immunology Program, Hollings Cancer Center, Charleston, SC, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Guo ZL, Yu B, Ning BT, Chan S, Lin QB, Li JCB, Huang JD, Chan GCF. Genetically modified "obligate" anaerobic Salmonella typhimurium as a therapeutic strategy for neuroblastoma. J Hematol Oncol 2015; 8:99. [PMID: 26286454 PMCID: PMC4545364 DOI: 10.1186/s13045-015-0196-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/06/2015] [Indexed: 12/18/2022] Open
Abstract
Background Neuroblastoma currently has poor prognosis, therefore we proposed a new strategy by targeting neuroblastoma with genetically engineered anaerobic Salmonella (Sal-YB1). Methods Nude and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) orthotopic mouse models were used, and Sal-YB1 was administered via tail vein. The therapeutic effectiveness, bio-safety, and mechanisms were studied. Results No mice died of therapy-related complications. Tumor size reduction was 70 and 30 % in nude and NOD-SCID mice, respectively. No Salmonella was detected in the urine; 75 % mice had positive stool culture if diaminopimelic acid was added, but all turned negative subsequently. Tumor tissues had more Sal-YB1 infiltration, necrosis, and shrinkage in Sal-YB1-treated mice. Significantly higher expression of TLR4, TNF-stimulated gene 6 protein (TSG6), and cleaved caspase 1, 3, 8, and 9 was found in the tumor masses of the Sal-YB1-treated group with a decrease of interleukin 1 receptor-associated kinase (IRAK) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα). There was a high release of TNFα both in human macrophages and mouse tumor tissues with Sal-YB1 treatment. The antitumor effect of the supernatant derived from macrophages treated with Sal-YB1 could be reversed with TNFα and pan-caspase inhibitors. Conclusions This new approach in targeting neuroblastoma by bio-engineered Salmonella with the assistance of macrophages indirectly may have a clinical therapeutic impact in the future.
Collapse
Affiliation(s)
- Zhu-Ling Guo
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| | - Bin Yu
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China.
| | - Bo-Tao Ning
- Department of Hematology & Oncology of Children's Hospital, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Shing Chan
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| | - Qiu-Bin Lin
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| | - James Chun-Bong Li
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| | - Jian-Dong Huang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,HKU-SIRI, the University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
42
|
Lu S, Zhang J, Liu D, Li G, Staveley-O'Carroll KF, Li Z, Wu JD. Nonblocking Monoclonal Antibody Targeting Soluble MIC Revamps Endogenous Innate and Adaptive Antitumor Responses and Eliminates Primary and Metastatic Tumors. Clin Cancer Res 2015; 21:4819-30. [PMID: 26106076 DOI: 10.1158/1078-0432.ccr-15-0845] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/12/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The human tumor-derived soluble MHC I-chain-related molecule (sMIC) is highly immune suppressive in cancer patients and correlates with poor prognosis. However, the therapeutic effect of targeting sMIC has not been determined, due to the limitation that mice do not express homologs of human MIC. This study is to evaluate the therapeutic effect of a monoclonal antibody (mAb) targeting sMIC in a clinically relevant transgenic animal model. EXPERIMENTAL DESIGN We treated the engineered MIC-expressing "humanized" TRAMP/MIC bitransgenic mice at advanced disease stages with a sMIC-neutralizing nonblocking anti-MIC mAb and assessed the therapeutic efficacy and associated mechanisms. RESULTS A sMIC-neutralizing nonblocking anti-MIC mAb effectively induced regression of primary tumors and eliminated metastasis without inducing systemic toxicity. The therapeutic effect is conferred by revamping endogenous antitumor immune responses, exemplified by restoring natural killer (NK) cell homeostasis and function, enhancing susceptibility of MIC(+)-tumor cells to NK cell killing, reviving and sustaining antigen-specific CD8 T-cell responses, augmenting CD4 T cells to Th1 responses, priming dendritic cells for antigen presentation, and remodeling tumor microenvironment to be more immune reactive. CONCLUSIONS Therapy with a sMIC-neutralizing nonblocking anti-MIC mAb can effectuate antitumor immune responses against advanced MIC(+) tumors. Our study provided strong rationale for translating sMIC-neutralizing therapeutic mAb into clinics, either alone or in combination with current ongoing standard immunotherapies.
Collapse
Affiliation(s)
- Shengjun Lu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Jinyu Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Dai Liu
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Guangfu Li
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Cancer Immunology Program, Hollings Cancer Center, Charleston, South Carolina
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Cancer Immunology Program, Hollings Cancer Center, Charleston, South Carolina
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina. Cancer Immunology Program, Hollings Cancer Center, Charleston, South Carolina
| | - Jennifer D Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina. Cancer Immunology Program, Hollings Cancer Center, Charleston, South Carolina. Department of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|