1
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Qi Y, Chen M, Zhang T, Zhao B, Jin T, Yuan D. Long noncoding RNA ANRIL alleviates hypoxia-induced pulmonary microvascular endothelial cell damage. Eur J Clin Invest 2024; 54:e14202. [PMID: 38553975 DOI: 10.1111/eci.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND High-altitude pulmonary oedema (HAPE) is a form of noncardiogenic pulmonary oedema. Studies have found that long noncoding RNA (lncRNA) plays an important role in HAPE. ANRIL is significant in pulmonary illnesses, which implies that alterations in ANRIL expression levels may be involved in the beginning and development of HAPE. However, the specific mechanism is indistinct. The present study is meant to explore the effect and mechanism of ANRIL on hypoxic-induced injury of pulmonary microvascular endothelial cells (PMEVCs). METHODS In the hypoxic model of PMVECs, overexpression of ANRIL or knockdown of miR-181c-5p was performed to assess cell proliferation, apoptosis, and migration. Furthermore, the levels of apoptosis-related proteins, inflammatory factors, and vascular active factors were also measured. RESULTS The results showed that, after 24 h of hypoxia, PMVECs proliferation and migration were suppressed in comparison to the control group, along with an increase in apoptosis, a decrease in the expression of ANRIL, and an increase in the expression of miR-181c-5p (all p < .05). The damage caused by hypoxia in PMVECs can be lessened by overexpressing ANRIL, which also inhibits the production of TNF-α, iNOS, and VEGF as well as BAX and cleaved caspase-3 (all p < .05). Further experimental results showed that overexpression of ANRIL and knockdown of miR-181c-5p had the same protection against hypoxic injury in PMVECs (all p < .05). CONCLUSIONS Our study suggests that ANRIL may prevent hypoxia injury to PMVECs in HAPE through the negative regulation of miR-181c-5p.
Collapse
Affiliation(s)
- Yijin Qi
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Mingyue Chen
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Tianyi Zhang
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Beibei Zhao
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Tianbo Jin
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dongya Yuan
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
3
|
Sayed NH, Hammad M, Abdelrahman SA, Abdelgawad HM. Association of long non-coding RNAs and ABO blood groups with acute lymphoblastic leukemia in Egyptian children. Noncoding RNA Res 2024; 9:307-317. [PMID: 38505304 PMCID: PMC10945145 DOI: 10.1016/j.ncrna.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 03/21/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most prevailing cancer among children. Despite extensive studies, ALL etiology is still an unsolved puzzle. Long non-coding RNAs (lncRNAs) emerged as key mediators in cancer etiology. Several lncRNAs are dysregulated in ALL, leading to oncogenic or tumor-suppressive activities. Additionally, a relation between ABO blood groups and hematological malignancies was proposed. The current study intended to explore the association of lncRNAs, ANRIL and LINC-PINT, and their downstream targets, CDKN2A and heme oxygenase-1 (HMOX1), with the incidence of ALL and treatment response, and to determine the distribution of blood groups across different childhood ALL phenotypes. Blood samples were taken from 66 ALL patients (at diagnosis and at the end of remission induction phase) and 39 healthy children. Whole blood was used for blood group typing. Expression of ANRIL, LINC-PINT and CDKN2A was analyzed in plasma by qRT-PCR. Serum HMOX1 was measured using ELISA. ANRIL and CDKN2A were upregulated, while LINC-PINT and HMOX1 were downregulated in newly diagnosed patients. All of which showed remarkable diagnostic performance, where HMOX1 was superior. HMOX1 was independent predictor of ALL as well. LINC-PINT and HMOX1 were significantly upregulated after treatment. Notably, ANRIL and LINC-PINT were associated with poor outcome. No significant difference in the distribution of ABO blood groups was observed between patients and controls. In conclusion, our results suggested an association of ANRIL and LINC-PINT with childhood ALL predisposition, at least in part, through altering CDKN2A and HMOX1 production. Furthermore, the impact of remission induction treatment was newly revealed.
Collapse
Affiliation(s)
- Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Mahmoud Hammad
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | | | | |
Collapse
|
4
|
Rai A, Bhagchandani T, Tandon R. Transcriptional landscape of long non-coding RNAs (lncRNAs) and its implication in viral diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195023. [PMID: 38513793 DOI: 10.1016/j.bbagrm.2024.195023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Long non-coding RNAs (lncRNAs) are RNA transcripts of size >200 bp that do not translate into proteins. Emerging data revealed that viral infection results in systemic changes in the host at transcriptional level. These include alterations in the lncRNA expression levels and triggering of antiviral immune response involving several effector molecules and diverse signalling pathways. Thus, lncRNAs have emerged as an essential mediatory element at distinct phases of the virus infection cycle. The complete eradication of the viral disease requires more precise and novel approach, thus manipulation of the lncRNAs could be one of them. This review shed light upon the existing knowledge of lncRNAs wherein the implication of differentially expressed lncRNAs in blood-borne, air-borne, and vector-borne viral diseases and its promising therapeutic applications under clinical settings has been discussed. It further enhances our understanding of the complex interplay at host-pathogen interface with respect to lncRNA expression and function.
Collapse
Affiliation(s)
- Ankita Rai
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
5
|
Younis MA, Harashima H. Understanding Gene Involvement in Hepatocellular Carcinoma: Implications for Gene Therapy and Personalized Medicine. Pharmgenomics Pers Med 2024; 17:193-213. [PMID: 38737776 PMCID: PMC11088404 DOI: 10.2147/pgpm.s431346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the dominant type of liver cancers and is one of the deadliest health threats globally. The conventional therapeutic options for HCC are hampered by low efficiency and intolerable side effects. Gene therapy, however, now offers hope for the treatment of many disorders previously considered incurable, and gene therapy is beginning to address many of the shortcomings of conventional therapies. Herein, we summarize the involvement of genes in the pathogenesis and prognosis of HCC, with a special focus on dysregulated signaling pathways, genes involved in immune evasion, and non-coding RNAs as novel two-edged players, which collectively offer potential targets for the gene therapy of HCC. Herein, the opportunities and challenges of HCC gene therapy are discussed. These include innovative therapies such as genome editing and cell therapies. Moreover, advanced gene delivery technologies that recruit nanomedicines for use in gene therapy for HCC are highlighted. Finally, suggestions are offered for improved clinical translation and future directions in this area of endeavor.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
6
|
Wu L, Zhang Y, Ren J. Targeting non-coding RNAs and N 6-methyladenosine modification in hepatocellular carcinoma. Biochem Pharmacol 2024; 223:116153. [PMID: 38513741 DOI: 10.1016/j.bcp.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancers, accounts for a significant portion of cancer-related death globally. However, the molecular mechanisms driving the onset and progression of HCC are still not fully understood. Emerging evidence has indicated that non-protein-coding regions of genomes could give rise to transcripts, termed non-coding RNA (ncRNA), forming novel functional driving force for aberrant cellular activity. Over the past decades, overwhelming evidence has denoted involvement of a complex array of molecular function of ncRNAs at different stages of HCC tumorigenesis and progression. In this context, several pre-clinical studies have highlighted the potentials of ncRNAs as novel therapeutic modalities in the management of human HCC. Moreover, N6-methyladenosine (m6A) modification, the most prevalent form of internal mRNA modifications in mammalian cells, is essential for the governance of biological processes within cells. Dysregulation of m6A in ncRNAs has been implicated in human carcinogenesis, including HCC. In this review, we will discuss dysregulation of several hallmark ncRNAs (miRNAs, lncRNAs, and circRNAs) in HCC and address the latest advances for their involvement in the onset and progression of HCC. We also focus on dysregulation of m6A modification and various m6A regulators in the etiology of HCC. In the end, we discussed the contemporary preclinical and clinical application of ncRNA-based and m6A-targeted therapies in HCC.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
7
|
Asadi-Tarani M, Darashti A, Javadi M, Rezaei M, Saravani M, Salimi S. The effects of ANRIL polymorphisms on colorectal cancer, tumor stage, and tumor grade among Iranian population. Mol Biol Rep 2024; 51:486. [PMID: 38578390 DOI: 10.1007/s11033-024-09420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a type of neoplasm, developing in the colon or rectum. The exact etiology of CRC is not well known, but the role of genetic, epigenetic, and environmental factors are established in its pathogenesis. Therefore, the aim of this research was to explore the effects of ANRIL polymorphisms on the CRC and its clinical findings. METHODS AND RESULTS The peripheral blood specimens were collected from 142 CRC patients and 225 controls referred to Milad Hospital, Tehran, Iran. PCR- RFLP method was used to analyze ANRIL rs1333040, rs10757274 rs4977574, and rs1333048 polymorphisms. The ANRIL rs1333040 polymorphism was related to a higher risk of CRC in the co-dominant, dominant, and log-additive models. ANRIL rs10757274, rs4977574, and rs1333048 polymorphisms showed no effect on CRC susceptibility. The CGAA and TGGA haplotypes of ANRIL rs1333040/ rs10757274/ rs4977574/rs1333048 polymorphisms were associated with the higher and the lower risk of CRC respectively. The rs1333040 polymorphism was associated with higher TNM stages (III and IV). The frequency of ANRIL rs10757274 polymorphism was lower in CRC patients over 50 years of age only in the dominant model. In addition, the rs10757274 was associated with well differentiation in CRC patients. CONCLUSION The ANRIL rs1333040 polymorphism was associated with a higher risk of CRC and higher TNM stages. ANRIL rs10757274 polymorphism was associated with the well-differentiated tumor in CRC.
Collapse
Affiliation(s)
- Mina Asadi-Tarani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | | | - Mahnaz Rezaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Saravani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Yao Y, Yang K, Wang Q, Zhu Z, Li S, Li B, Feng B, Tang C. Prediction of CAF-related genes in immunotherapy and drug sensitivity in hepatocellular carcinoma: a multi-database analysis. Genes Immun 2024; 25:55-65. [PMID: 38233508 PMCID: PMC10873201 DOI: 10.1038/s41435-024-00252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
This study aims to identify the cancer-associated fibroblasts (CAF)-related genes that can affect immunotherapy and drug sensitivity in hepatocellular carcinoma (HCC). Expression data and survival data associated with HCC were obtained in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Weighted correlation network analysis (WGCNA) analysis was performed to obtain CAF-related genes. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used for regression analysis and risk models. Subsequently, Gene Set Enrichment Analysis (GSEA) analysis, Gene Set Enrichment Analysis (ssGSEA) analysis, Tumor Immune Dysfunction and Exclusion (TIDE) analysis and drug sensitivity analysis were performed on the risk models. Survival analysis of CAF scores showed that the survival rate was lower in samples with high CAF scores than those with low scores. However, this difference was not significant, suggesting CAF may not directly influence the prognosis of HCC patients. Further screening of CAF-related genes yielded 33 CAF-related genes. Seven risk models constructed based on CDR2L, SPRED1, PFKP, ENG, KLF2, FSCN1 and VCAN, showed significant differences in immunotherapy and partial drug sensitivity in HCC. Seven CAF-related genes may have important roles in immunotherapy, drug sensitivity and prognostic survival in HCC patients.
Collapse
Affiliation(s)
- Yi Yao
- Division 1, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - KaiQing Yang
- Division 1, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Qiang Wang
- Division 1, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Zeming Zhu
- Division 2, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Sheng Li
- Division 1, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Bin Li
- Division 1, Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Bin Feng
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China.
| | - Caixi Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, China.
| |
Collapse
|
9
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
10
|
Wang R, Yuan Q, Wen Y, Zhang Y, Hu Y, Wang S, Yuan C. ANRIL: A Long Noncoding RNA in Age-related Diseases. Mini Rev Med Chem 2024; 24:1930-1939. [PMID: 38716553 DOI: 10.2174/0113895575295976240415045602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 10/16/2024]
Abstract
The intensification of the aging population is often accompanied by an increase in agerelated diseases, which impair the quality of life of the elderly. The characteristic feature of aging is progressive physiological decline, which is the largest cause of human pathology and death worldwide. However, natural aging interacts in exceptionally complex ways within and between organs, but its underlying mechanisms are still poorly understood. Long non-coding RNA (lncRNA) is a type of noncoding RNA that exceeds 200 nucleotides in length and does not possess protein-coding ability. It plays a crucial role in the occurrence and development of diseases. ANRIL, also known as CDKN2B-AS1, is an antisense ncRNA located at the INK4 site. It can play a crucial role in agerelated disease progression by regulating single nucleotide polymorphism, histone modifications, or post-transcriptional modifications (such as RNA stability and microRNA), such as cardiovascular disease, diabetes, tumor, arthritis, and osteoporosis. Therefore, a deeper understanding of the molecular mechanisms of lncRNA ANRIL in age-related diseases will help provide new diagnostic and therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yuan Wen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
11
|
Amiri MA, Amiri D, Mokhtari MJ, Lavaee F, Fattahi MJ, Ghaderi A, Khademi B. Allelic and Genotypic Analysis of LncRNA ANRIL rs4977574 A/G Mutations in Oral Squamous Cell Carcinoma Patients: Insights into Tumor Characteristics and Genotypic Correlations. Int J Dent 2023; 2023:7738719. [PMID: 37829275 PMCID: PMC10567505 DOI: 10.1155/2023/7738719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023] Open
Abstract
Aim Long noncoding RNAs (lncRNA) ANRIL and its genetic polymorphisms are shown to be associated with the risk of several cancers. However, the single nucleotide polymorphisms (SNPs) of lncRNA ANRIL are not thoroughly assessed in oral squamous cell carcinoma (OSCC) which is the most prevalent cancer in the head and neck area. Thus, this study aimed to assess the association of SNP of lncRNA ANRIL rs4977574 in patients with OSCC. Methods and Materials 106 blood samples from the patients with OSCC were obtained with a gender- and age-matched control group to evaluate the SNP of rs4977574 of lncRNA ANRIL. The DNA was extracted using the salt-out technique and DNA genotyping was undertaken using specific primer pairs in the tetra-primer ARMS-PCR technique. Eventually, the frequency of wild-type (A) and the mutated allele (G), as well as the genotypes were estimated between the groups of patients with OSCC and healthy individuals. Results The results of our study indicated no statistically significant difference in the frequency of rs4977574 A/G of lncRNA ANRIL among the patients with OSCC and healthy individuals (p > 0.05). Likewise, no significant difference was found in the genotypes' frequencies (p > 0.05). Nevertheless, the marked association of GG with smaller tumor size and the high level of differentiation of OSCC cells in the presence of AA or AG genotypes were interesting outcomes of this study (p < 0.05). Similarly, all the genotypes AA, AG, and GG were correlated with the site of the occurrence of OSCC. Furthermore, the association of the genotypes with the lymph node metastasis and the tumors stage was not found to be significant (p > 0.05). Conclusions The results of our study indicate that rs4977574 A/G and its genotypes do not have any direct correlation with the presence of OSCC; however, its association with the smaller tumor size and the level of the cancer cells differentiation could imply its possible indirect role.
Collapse
Affiliation(s)
- Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Delara Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Lavaee
- Oral and Dental Disease Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Fattahi
- Shiraz Institute of Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute of Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bijan Khademi
- Department of Otorhinolaryngology, Khalili Hospital, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers (Basel) 2023; 15:4160. [PMID: 37627188 PMCID: PMC10453084 DOI: 10.3390/cancers15164160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting with multiple proteins and miRNAs. It has been found to play important roles in various cellular processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated with several diseases like cancers and cardiovascular diseases, for instance. Understanding the oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of the 9p21 locus and ANRIL in cancer.
Collapse
Affiliation(s)
| | | | | | - Lilia Ayadi
- CNRS, Université de Lorraine, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
13
|
Mosca N, Russo A, Potenza N. Making Sense of Antisense lncRNAs in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:8886. [PMID: 37240232 PMCID: PMC10219390 DOI: 10.3390/ijms24108886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Transcriptome complexity is emerging as an unprecedented and fascinating domain, especially by high-throughput sequencing technologies that have unveiled a plethora of new non-coding RNA biotypes. This review covers antisense long non-coding RNAs, i.e., lncRNAs transcribed from the opposite strand of other known genes, and their role in hepatocellular carcinoma (HCC). Several sense-antisense transcript pairs have been recently annotated, especially from mammalian genomes, and an understanding of their evolutionary sense and functional role for human health and diseases is only beginning. Antisense lncRNAs dysregulation is significantly involved in hepatocarcinogenesis, where they can act as oncogenes or oncosuppressors, thus playing a key role in tumor onset, progression, and chemoradiotherapy response, as deduced from many studies discussed here. Mechanistically, antisense lncRNAs regulate gene expression by exploiting various molecular mechanisms shared with other ncRNA molecules, and exploit special mechanisms on their corresponding sense gene due to sequence complementarity, thus exerting epigenetic, transcriptional, post-transcriptional, and translational controls. The next challenges will be piecing together the complex RNA regulatory networks driven by antisense lncRNAs and, ultimately, assigning them a function in physiological and pathological contexts, in addition to defining prospective novel therapeutic targets and innovative diagnostic tools.
Collapse
Affiliation(s)
| | | | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (N.M.); (A.R.)
| |
Collapse
|
14
|
Verma S, Sahu BD, Mugale MN. Role of lncRNAs in hepatocellular carcinoma. Life Sci 2023; 325:121751. [PMID: 37169145 DOI: 10.1016/j.lfs.2023.121751] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the deadliest cancer in human malignancies. It is the most common and severe type of primary liver cancer. However, the molecular mechanisms underlying HCC pathogenesis remain poorly understood. Long non-coding RNAs (lncRNAs), a new kind of RNA and epigenetic factors, play a crucial role in tumorigenesis and the progression of HCC. LncRNAs are capable of promoting the autophagy, proliferation, and migration of tumor cells by targeting and modulating the expression of downstream genes in signaling pathways related to cancer; these transcripts modify the activity and expression of various tumor suppressors and oncogenes. LncRNAs could act as biomarkers for treatment approaches such as immunotherapy, chemotherapy, and surgery to effectively treat HCC patients. Improved knowledge regarding the aetiology of HCC may result from an advanced understanding of lncRNAs. Enhanced oxidative stress in the mitochondrial and Endoplasmic reticulum leads to the activation of unfolded protein response pathway that plays a crucial role in the pathophysiology of hepatocellular carcinoma. The mutual regulation between LncRNAs and Endoplasmic reticulum (ER) stress in cancer and simultaneous activation of the unfolded protein response (UPR) pathway determines the fate of tumor cells in HCC. Mitochondria-associated lncRNAs work as essential components of several gene regulatory networks; abnormal regulation of mitochondria-associated lncRNAs may lead to oncogenesis, which provides further insight into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bidhya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Zhang F, Wu R, Liu Y, Dai S, Xue X, Li Y, Gong X. Nephroprotective and nephrotoxic effects of Rhubarb and their molecular mechanisms. Biomed Pharmacother 2023; 160:114297. [PMID: 36716659 DOI: 10.1016/j.biopha.2023.114297] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Rhubarb, in the form of a traditional Chinese medicine, is used in the treatment of chronic kidney disease (CKD). Previous studies have demonstrated that Rhubarb possesses a good nephroprotective effect, which primarily protects the kidneys from fibrosis, oxidation, inflammation, autophagy, and apoptosis. However, studies have shown that the long-term inappropriate use of Rhubarb may cause damage to renal function. Therefore, how to correctly understand and scientifically evaluate the pharmacodynamics and toxicity of Rhubarb with regard to CKD is a scientific question that urgently needs to be answered. In this review, we explain and illustrate how Rhubarb exerts its nephroprotective effect against CKD. We also describe the mechanisms of action that may cause its nephrotoxicity. Valuable and practical clinical guidance is proposed with regard to methods for mitigating the nephrotoxicity of Rhubarb.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaohong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Xu K, Xia P, Chen X, Ma W, Yuan Y. ncRNA-mediated fatty acid metabolism reprogramming in HCC. Trends Endocrinol Metab 2023; 34:278-291. [PMID: 36890041 DOI: 10.1016/j.tem.2023.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
The challenges of hepatocellular carcinoma (HCC) pathogenesis, diagnosis, treatment, and prognosis evaluation are obvious. Hepatocyte-specific fatty acid (FA) metabolic reprogramming is an important marker of liver carcinogenesis and progression; elucidating its mechanism will help unravel the complexity of HCC pathogenesis. Noncoding RNAs (ncRNAs) play important roles in HCC development. Moreover, ncRNAs are important mediators of FA metabolism and are directly involved in the reprogramming of FA metabolism in HCC cells. Here we review significant new advances in understanding the mechanisms regulating HCC metabolism by focusing on ncRNA-mediated post-translational modifications of metabolic enzymes, metabolism-related transcription factors, and other proteins in associated signaling pathways. We also discuss the great therapeutic potential of targeting ncRNA-mediated FA metabolism reprogramming in HCC.
Collapse
Affiliation(s)
- Kequan Xu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
17
|
Zhu Y, Yang S, Lv L, Zhai X, Wu G, Qi X, Dong D, Tao X. Research Progress on the Positive and Negative Regulatory Effects of Rhein on the Kidney: A Review of Its Molecular Targets. Molecules 2022; 27:molecules27196572. [PMID: 36235108 PMCID: PMC9573519 DOI: 10.3390/molecules27196572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, both acute kidney injury (AKI) and chronic kidney disease (CKD) are considered to be the leading public health problems with gradually increasing incidence rates around the world. Rhein is a monomeric component of anthraquinone isolated from rhubarb, a traditional Chinese medicine. It has anti-inflammation, anti-oxidation, anti-apoptosis, anti-bacterial and other pharmacological activities, as well as a renal protective effects. Rhein exerts its nephroprotective effects mainly through decreasing hypoglycemic and hypolipidemic, playing anti-inflammatory, antioxidant and anti-fibrotic effects and regulating drug-transporters. However, the latest studies show that rhein also has potential kidney toxicity in case of large dosages and long use times. The present review highlights rhein's molecular targets and its different effects on the kidney based on the available literature and clarifies that rhein regulates the function of the kidney in a positive and negative way. It will be helpful to conduct further studies on how to make full use of rhein in the kidney and to avoid kidney damage so as to make it an effective kidney protection drug.
Collapse
|
18
|
Guan J, Guan B, Shang H, Peng J, Yang H, Lin J. Babao Dan inhibits lymphangiogenesis of gastric cancer in vitro and in vivo via lncRNA-ANRIL/VEGF-C/VEGFR-3 signaling axis. Biomed Pharmacother 2022; 154:113630. [PMID: 36058147 DOI: 10.1016/j.biopha.2022.113630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 12/09/2022] Open
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal malignancies in the world. Growing evidence emphasizes the critical role of long non-coding RNA (lncRNA) in GC tumorigenesis. The aim of the research was to elucidate the effect and mechanism of Babao Dan (BBD) on lymphangiogenesis of GC in vitro and in vivo via lncRNA-ANRIL/VEGF-C/VEGFR-3 signaling axis. The present study investigated BBD significantly decreased the expression of lncRNA-ANRIL and VEGF-C in GC cells (AGS, BGC823, and MGC80-3) by using real-time quantitative polymerasechain reaction (RT-qPCR) and the secretion and expression of VEGF-C by (enzyme linked immunosorbent assay) ELISA and western blot (WB). BBD significantly inhibited the tumor xenograft of GC growth and the expression of lncRNA-ANRIL, VEGF-C, VEGFR-3 and LYVE-1 in vivo. BBD reduced serum VEGF-C level. In vitro, BBD inhibited the tube formation and decreased the cell viability, proliferation and migration of HLECs by using tube formation, MTT, Hoechst and Transwell assays. In addition, WB assay found that BBD decreased the expression levels of VEGF-C, VEGFR-3, matrix metallopeptidase 2 (MMP-2) and matrix metallopeptidase 9 (MMP-9), and RT-qPCR assay found that the mRNA expression levels of lncRNA-ANRIL, VEGF-C, VEGFR-3, MMP-2, MMP-9, CDK4, Cyclin D1, and Bcl-2 were down-regulated, and the expression of p21 and Bax were increased. Taken together, these results demonstrated that BBD inhibited lymphangiogenesis of GC in vitro and in vivo via the lncRNA-ANRIL/VEGF-C/VEGFR-3 signaling axis.
Collapse
Affiliation(s)
- Jianhua Guan
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Bin Guan
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361100, PR China
| | - Haixia Shang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Jun Peng
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine (Fujian University of Traditional Chinese Medicine), Fujian Province University, Fuzhou, Fujian 350122, PR China
| | - Hong Yang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Jiumao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China; Key Laboratory of Integrative Medicine (Fujian University of Traditional Chinese Medicine), Fujian Province University, Fuzhou, Fujian 350122, PR China.
| |
Collapse
|
19
|
Gaber DA, Shaker O, Younis AT, El-Kassas M. LncRNA HULC and miR-122 Expression Pattern in HCC-Related HCV Egyptian Patients. Genes (Basel) 2022; 13:genes13091669. [PMID: 36140836 PMCID: PMC9498747 DOI: 10.3390/genes13091669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent malignancy. It is a common type of cancer in Egypt due to chronic virus C infection (HCV). Currently, the frequently used lab test is serum α-fetoprotein. However, its diagnostic value is challenging due to its low sensitivity and specificity. Genetic biomarkers have recently provided new insights for cancer diagnostics. Herein, we quantified Lnc HULC and miR-122 gene expression to test their potential in diagnosis. Both biomarkers were tested in the sera of 60 HCC patients and 60 with chronic HCV using real-time RT-PCR. miR-122 was highly expressed in HCV patients with a significant difference from the HCC group (p = 0.004), which points towards its role in prognosis value as a predictor of HCC in patients with chronic HCV. HULC was more highly expressed in HCC patients than in the HCV group (p = 0.018), indicating its potential use in screening and the early diagnosis of HCC. The receiver operating characteristic (ROC) curve analysis showed their reliable sensitivity and specificity. Our results reveal that miR-122 can act as a prognostic tool for patients with chronic HCV. Furthermore, it is an early predictor of HCC. LncRNA HULC can be used as an early diagnostic tool for HCC.
Collapse
Affiliation(s)
- Dalia A. Gaber
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
- College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
- Correspondence: ; Tel.: +20-10-050-00697
| | - Olfat Shaker
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Alaa Tarek Younis
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
20
|
Khan A, Zhang X. Function of the Long Noncoding RNAs in Hepatocellular Carcinoma: Classification, Molecular Mechanisms, and Significant Therapeutic Potentials. Bioengineering (Basel) 2022; 9:406. [PMID: 36004931 PMCID: PMC9405066 DOI: 10.3390/bioengineering9080406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common and serious type of primary liver cancer. HCC patients have a high death rate and poor prognosis due to the lack of clear signs and inadequate treatment interventions. However, the molecular pathways that underpin HCC pathogenesis remain unclear. Long non-coding RNAs (lncRNAs), a new type of RNAs, have been found to play important roles in HCC. LncRNAs have the ability to influence gene expression and protein activity. Dysregulation of lncRNAs has been linked to a growing number of liver disorders, including HCC. As a result, improved understanding of lncRNAs could lead to new insights into HCC etiology, as well as new approaches for the early detection and treatment of HCC. The latest results with respect to the role of lncRNAs in controlling multiple pathways of HCC were summarized in this study. The processes by which lncRNAs influence HCC advancement by interacting with chromatin, RNAs, and proteins at the epigenetic, transcriptional, and post-transcriptional levels were examined. This critical review also highlights recent breakthroughs in lncRNA signaling pathways in HCC progression, shedding light on the potential applications of lncRNAs for HCC diagnosis and therapy.
Collapse
Affiliation(s)
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Xue C, Gu X, Bao Z, Su Y, Lu J, Li L. The Mechanism Underlying the ncRNA Dysregulation Pattern in Hepatocellular Carcinoma and Its Tumor Microenvironment. Front Immunol 2022; 13:847728. [PMID: 35281015 PMCID: PMC8904560 DOI: 10.3389/fimmu.2022.847728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
HCC is one of the most common malignant tumors and has an extremely poor prognosis. Accumulating studies have shown that noncoding RNA (ncRNA) plays an important role in hepatocellular carcinoma (HCC) development. However, the details of the related mechanisms remain unclear. The heterogeneity of the tumor microenvironment (TME) calls for ample research with deep molecular characterization, with the hope of developing novel biomarkers to improve prognosis, diagnosis and treatment. ncRNAs, particularly microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have been found to be correlated with HCC neogenesis and progression. In this review, we summarized the aberrant epigenetic and genetic alterations caused by dysregulated ncRNAs and the functional mechanism of classical ncRNAs in the regulation of gene expression. In addition, we focused on the role of ncRNAs in the TME in the regulation of tumor cell proliferation, invasion, migration, immune cell infiltration and functional activation. This may provide a foundation for the development of promising potential prognostic/predictive biomarkers and novel therapies for HCC patients.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Li D, Fan X, Li Y, Yang J, Lin H. The paradoxical functions of long noncoding RNAs in hepatocellular carcinoma: Implications in therapeutic opportunities and precision medicine. Genes Dis 2022; 9:358-369. [PMID: 35224152 PMCID: PMC8843871 DOI: 10.1016/j.gendis.2020.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/22/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most aggressive and lethal diseases with poor prognosis, worldwide. However, the mechanisms underlying HCC have not been comprehensively elucidated. With the recent application of high-throughput sequencing techniques, a diverse catalogue of differentially expressed long non-coding RNAs (lncRNA) in cancer have been shown to participate in HCC. Rather than being "transcriptional noise," they are emerging as important regulators of many biological processes, including chromatin remodelling, transcription, alternative splicing, translational and post-translational modification. Moreover, lncRNAs have dual effects in the development and progression of HCC, including oncogenic and tumour-suppressive roles. Collectively, recently data point to lncRNAs as novel diagnostic and prognostic biomarkers with satisfactory sensitivity and specificity, as well as being therapeutic targets for HCC patients. In this review, we highlight recent progress of the molecular patterns of lncRNAs and discuss their potential clinical application in human HCC.
Collapse
Affiliation(s)
- Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
23
|
Wang XJ, Li XY, Guo XC, Liu L, Jin YY, Lu YQ, Cao YJN, Long JY, Wu HG, Zhang D, Yang G, Hong J, Yang YT, Ma XP. LncRNA-miRNA-mRNA Network Analysis Reveals the Potential Biomarkers in Crohn’s Disease Rats Treated with Herb-Partitioned Moxibustion. J Inflamm Res 2022; 15:1699-1716. [PMID: 35282268 PMCID: PMC8906857 DOI: 10.2147/jir.s351672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/19/2022] [Indexed: 12/16/2022] Open
Abstract
Background Long noncoding RNA (lncRNA) is receiving growing attention in Crohn’s disease (CD). However, the mechanism by which herb-partitioned moxibustion (HPM) regulates the expression and functions of lncRNAs in CD rats is still unclear. The aim of our study is to identify lncRNA-miRNA-mRNA network potential biological functions in CD. Methods RNA sequencing and microRNA (miRNA) sequencing were carried out to analyze lncRNA, miRNA and mRNA expression profiles among the CD rats, normal control rats, and CD rats after HPM treatment and constructed the potential related lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein–protein interaction (PPI) analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to explore potentially important genes in ceRNA networks. Results A total of 189 lncRNAs, 32 miRNAs and 463 mRNAs were determined as differentially expressed (DE) genes in CD rats compared to normal control rats, and 161 lncRNAs, 12 miRNAs and 130 mRNAs were identified as remarkably DE genes in CD rats after HPM treatment compared to CD rats. GO analysis indicated that the target genes were most enriched in cAMP and in KEGG pathway analysis the main pathways included adipocytokine, PPAR, AMPK, FoxO and PI3K-Akt signaling pathway. Finally, qRT-PCR results confirmed that lncRNA LOC102550026 sponged miRNA-34c-5p to regulate the intestinal immune inflammatory response by targeting Pck1. Conclusion By constructing a ceRNA network with lncRNA-miRNA-mRNA, PCR verification, and KEGG analysis, we revealed that LOC102550026/miRNA-34c-5p/Pck1 axis and adipocytokine, PPAR, AMPK, FoxO, and PI3K-Akt signaling pathways might regulate the intestinal immune-inflammatory response, and HPM may regulate the lncRNA LOC102550026/miR-34c-5p/Pck1 axis and adipocytokine, PPAR, AMPK, FoxO, and PI3K-Akt signaling pathways, thus improving intestinal inflammation in CD. These findings may be novel potential targets in CD.
Collapse
Affiliation(s)
- Xue-Jun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Cong Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - You-You Jin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yun-Qiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yao-Jia-Ni Cao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun-Yi Long
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Huan-Gan Wu
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Dan Zhang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Guang Yang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Jue Hong
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Yan-Ting Yang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Xiao-Peng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
- Correspondence: Xiao-Peng Ma; Yan-Ting Yang, Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China, Email ;
| |
Collapse
|
24
|
Lin Z, Ji X, Tian N, Gan Y, Ke L. Mapping Intellectual Structure for the Long Non-Coding RNA in Hepatocellular Carcinoma Development Research. Front Genet 2022; 12:771810. [PMID: 35047004 PMCID: PMC8762053 DOI: 10.3389/fgene.2021.771810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Emerging research suggests that long non-coding RNAs (lncRNAs) play an important role in a variety of developmental or physiological processes of hepatocellular carcinoma (HCC). Various differentially expressed lncRNAs have been identified in HCC. Thus, a deeper analysis of recent research concerning lncRNA and HCC development could provide scientists with a valuable reference for future studies. Methods: Related publications were retrieved from the Web of Science Core Collection database. CiteSpace version 5.6.R4 was employed to conduct bibliometric analysis. Several network maps were constructed to evaluate the collaborations between different countries, institutions, authors, journals, and keywords. Results: A total of 2,667 records were initially found from the year of 2010–2020. The annual related publications output had increased dramatically during these years. Although China was the most prolific country in terms of research publication, the United States played a leading role in collaborative network. The Nanjing Medical University was the most productive institute in the field of lncRNAs in HCC development. Gang Chen was the most prolific researcher, while Yang F was the most frequently co-cited author. Oncotarget, Cell, and Oncogene were the most highly co-cited journals. The most recent burst keywords were interaction, database, and pathway. Conclusion: This study provides a comprehensive overview for the field of lncRNAs in HCC development based on bibliometric and visualized methods. The results would provide a reference for scholars focusing on this field.
Collapse
Affiliation(s)
- Zhifeng Lin
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Ji
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nana Tian
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Gan
- Department of Medical Record, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Ke
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Medical Record, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Park EG, Pyo SJ, Cui Y, Yoon SH, Nam JW. Tumor immune microenvironment lncRNAs. Brief Bioinform 2021; 23:6458113. [PMID: 34891154 PMCID: PMC8769899 DOI: 10.1093/bib/bbab504] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
Long non-coding ribonucleic acids (RNAs) (lncRNAs) are key players in tumorigenesis and immune responses. The nature of their cell type-specific gene expression and other functional evidence support the idea that lncRNAs have distinct cellular functions in the tumor immune microenvironment (TIME). To date, the majority of lncRNA studies have heavily relied on bulk RNA-sequencing data in which various cell types contribute to an averaged signal, limiting the discovery of cell type-specific lncRNA functions. Single-cell RNA-sequencing (scRNA-seq) is a potential solution for tackling this limitation despite the lack of annotations for low abundance yet cell type-specific lncRNAs. Hence, updated annotations and further understanding of the cellular expression of lncRNAs will be necessary for characterizing cell type-specific functions of lncRNA genes in the TIME. In this review, we discuss lncRNAs that are specifically expressed in tumor and immune cells, summarize the regulatory functions of the lncRNAs at the cell type level and highlight how a scRNA-seq approach can help to study the cell type-specific functions of TIME lncRNAs.
Collapse
Affiliation(s)
- Eun-Gyeong Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung-Jin Pyo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Youxi Cui
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang-Ho Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
26
|
Li Y, Zhang H, Guo J, Li W, Wang X, Zhang C, Sun Q, Ma Z. Downregulation of LINC01296 suppresses non-small-cell lung cancer via targeting miR-143-3p/ATG2B. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1681-1690. [PMID: 34695177 DOI: 10.1093/abbs/gmab149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
The 5-year survival rate of lung cancer is one of the lowest among various malignant tumors. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can function either as tumor suppressors or as oncogenes. The aim of this study is to investigate the function of lncRNA LINC01296 and its molecular mechanism in non-small-cell lung cancer (NSCLC). According to the Gene Expression Omnibus database, 10 differentially expressed lncRNAs in NSCLC cells and patient tissues are upregulated. LINC01296 is the one with the most significant overexpression. Knockdown of LINC01296 inhibits the growth and migration, arrests the cell cycle, and promotes the apoptosis of NSCLC cells. Knocking down LINC01296 in vivo suppresses tumor growth and metastasis. LINC01296 also acts as the sponge of miR-143-3p. Lowering the expression of LINC01296 leads to decreased expression of autophagy-related 2B (ATG2B), a target gene of miR-143-3p. Moreover, downregulation of LINC01296 promotes paclitaxel sensitivity in NSCLC. These results demonstrated that the LINC01296/miR-143-3p/ATG2B axis is crucial in promoting the development of NSCLC and paclitaxel resistance. Our study may provide new ideas for the further research of clinical chemotherapy of NSCLC in the near future.
Collapse
Affiliation(s)
- Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jing Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wanqiu Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xianyi Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Caiyan Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qiangling Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
27
|
The role of long non-coding RNAs in the regulation of pancreatic beta cell identity. Biochem Soc Trans 2021; 49:2153-2161. [PMID: 34581756 PMCID: PMC8589412 DOI: 10.1042/bst20210207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes (T2D) is a widespread disease affecting millions in every continental population. Pancreatic β-cells are central to the regulation of circulating glucose, but failure in the maintenance of their mass and/or functional identity leads to T2D. Long non-coding RNAs (lncRNAs) represent a relatively understudied class of transcripts which growing evidence implicates in diabetes pathogenesis. T2D-associated single nucleotide polymorphisms (SNPs) have been identified in lncRNA loci, although these appear to function primarily through regulating β-cell proliferation. In the last decade, over 1100 lncRNAs have been catalogued in islets and the roles of a few have been further investigated, definitively linking them to β-cell function. These studies show that lncRNAs can be developmentally regulated and show highly tissue-specific expression. lncRNAs regulate neighbouring β-cell-specific transcription factor expression, with knockdown or overexpression of lncRNAs impacting a network of other key genes and pathways. Finally, gene expression analysis in studies of diabetic models have uncovered a number of lncRNAs with roles in β-cell function. A deeper understanding of these lncRNA roles in maintaining β-cell identity, and its deterioration, is required to fully appreciate the β-cell molecular network and to advance novel diabetes treatments.
Collapse
|
28
|
Lee AM, Ferdjallah A, Moore E, Kim DC, Nath A, Greengard E, Huang RS. Long Non-Coding RNA ANRIL as a Potential Biomarker of Chemosensitivity and Clinical Outcomes in Osteosarcoma. Int J Mol Sci 2021; 22:ijms222011168. [PMID: 34681828 PMCID: PMC8538287 DOI: 10.3390/ijms222011168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 01/06/2023] Open
Abstract
Osteosarcoma has a poor prognosis due to chemo-resistance and/or metastases. Increasing evidence shows that long non-coding RNAs (lncRNAs) can play an important role in drug sensitivity and cancer metastasis. Using osteosarcoma cell lines, we identified a positive correlation between the expression of a lncRNA and ANRIL, and resistance to two of the three standard-of-care agents for treating osteosarcoma-cisplatin and doxorubicin. To confirm the potential role of ANRIL in chemosensitivity, we independently inhibited and over-expressed ANRIL in osteosarcoma cell lines followed by treatment with either cisplatin or doxorubicin. Knocking-down ANRIL in SAOS2 resulted in a significant increase in cellular sensitivity to both cisplatin and doxorubicin, while the over-expression of ANRIL in both HOS and U2OS cells led to an increased resistance to both agents. To investigate the clinical significance of ANRIL in osteosarcoma, we assessed ANRIL expression in relation to clinical phenotypes using the osteosarcoma data from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset. Higher ANRIL expression was significantly associated with increased rates of metastases at diagnosis and death and was a significant predictor of reduced overall survival rate. Collectively, our results suggest that the lncRNA ANRIL can be a chemosensitivity and prognosis biomarker in osteosarcoma. Furthermore, reducing ANRIL expression may be a therapeutic strategy to overcome current standard-of-care treatment resistance.
Collapse
Affiliation(s)
- Adam M. Lee
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (A.M.L.); (D.C.K.)
| | - Asmaa Ferdjallah
- Department of Pediatrics, Hematology & Oncology, University of Minnesota, Minneapolis, MN 55455, USA; (A.F.); (E.G.)
| | - Elise Moore
- Department of Natural Sciences, Zanvyl Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Daniel C. Kim
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (A.M.L.); (D.C.K.)
| | - Aritro Nath
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA 91007, USA;
| | - Emily Greengard
- Department of Pediatrics, Hematology & Oncology, University of Minnesota, Minneapolis, MN 55455, USA; (A.F.); (E.G.)
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (A.M.L.); (D.C.K.)
- Correspondence: ; Tel.: +1-612-625-1372
| |
Collapse
|
29
|
Chang YS, Lee YT, Yen JC, Chang YC, Lin LL, Chan WL, Chang WC, Lin SY, Chang JG. Long Noncoding RNA NTT Context-Dependently Regulates MYB by Interacting With Activated Complex in Hepatocellular Carcinoma Cells. Front Oncol 2021; 11:592045. [PMID: 34616668 PMCID: PMC8488295 DOI: 10.3389/fonc.2021.592045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background Long noncoding RNA (lncRNA) mediates the pathogenesis of various diseases, including cancer and cardiovascular, infectious, and metabolic diseases. This study examined the role of lncRNA NTT in the development and progression of cancer. Methods The expression of NTT was determined using tissues containing complementary DNA (cDNA) from patients with liver, lung, kidney, oral, and colon cancers. The expression of cis-acting genes adjacent to the NTT locus (CTGF, STX7, MYB, BCLAF1, IFNGR1, TNFAIP3, and HIVEP2) was also assessed. We used knockdown and chromatin immunoprecipitation (ChIP) assays to identify the cis-acting genes that interact with NTT. Results NTT was most significantly downregulated in hepatocellular carcinoma (HCC), while a higher NTT level correlated with a shorter survival time of patients with HCC. Multivariate analysis indicated NTT was not an independent predictor for overall survival. MYB was significantly upregulated, and its increased expression was associated with dismal survival in HCC patients, similar to the results for NTT. NTT knockdown significantly decreased cellular migration. ChIP of HCC cell lines revealed that NTT is regulated by the transcription factor ATF3 and binds to the MYB promoter via the activated complex. Additionally, when NTT was knocked down, the expression of MYB target genes such as Bcl-xL, cyclinD1, and VEGF was also downregulated. NTT could play a positive or negative regulator for MYB with a context-dependent manner in both HCC tissues and animal model. Conclusion Our study suggests that NTT plays a key role in HCC progression via MYB-regulated target genes and may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Ya-Ting Lee
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Chen Yen
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Yuli C Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Li-Li Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wen-Ling Chan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
31
|
Sun Y, Zhao H, Zhou G, Guan T, Wang Y, Gao J. Random distributed logistic regression framework for predicting potential lncRNA‒disease association. J Mol Cell Biol 2021; 13:386-388. [PMID: 33493268 PMCID: PMC8373264 DOI: 10.1093/jmcb/mjab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yichen Sun
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Hongqian Zhao
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Gang Zhou
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Tianhao Guan
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Yujie Wang
- School of Science, Jiangnan University, Wuxi 214122, China
| | - Jie Gao
- School of Science, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Krappinger JC, Bonstingl L, Pansy K, Sallinger K, Wreglesworth NI, Grinninger L, Deutsch A, El-Heliebi A, Kroneis T, Mcfarlane RJ, Sensen CW, Feichtinger J. Non-coding Natural Antisense Transcripts: Analysis and Application. J Biotechnol 2021; 340:75-101. [PMID: 34371054 DOI: 10.1016/j.jbiotec.2021.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Non-coding natural antisense transcripts (ncNATs) are regulatory RNA sequences that are transcribed in the opposite direction to protein-coding or non-coding transcripts. These transcripts are implicated in a broad variety of biological and pathological processes, including tumorigenesis and oncogenic progression. With this complex field still in its infancy, annotations, expression profiling and functional characterisations of ncNATs are far less comprehensive than those for protein-coding genes, pointing out substantial gaps in the analysis and characterisation of these regulatory transcripts. In this review, we discuss ncNATs from an analysis perspective, in particular regarding the use of high-throughput sequencing strategies, such as RNA-sequencing, and summarize the unique challenges of investigating the antisense transcriptome. Finally, we elaborate on their potential as biomarkers and future targets for treatment, focusing on cancer.
Collapse
Affiliation(s)
- Julian C Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Christian Doppler Laboratory for innovative Pichia pastoris host and vector systems, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria
| | - Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Katrin Pansy
- Division of Haematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Nick I Wreglesworth
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Lukas Grinninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Austrian Biotech University of Applied Sciences, Konrad Lorenz-Straße 10, 3430 Tulln an der Donau, Austria
| | - Alexander Deutsch
- Division of Haematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Ramsay J Mcfarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Christoph W Sensen
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14/V, 8010 Graz, Austria; HCEMM Kft., Római blvd. 21, 6723 Szeged, Hungary
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Christian Doppler Laboratory for innovative Pichia pastoris host and vector systems, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
33
|
Alfano V, Zeisel MB, Levrero M, Guerrieri F. The lncRNAs in HBV-Related HCCs: Targeting Chromatin Dynamics and Beyond. Cancers (Basel) 2021; 13:3115. [PMID: 34206504 PMCID: PMC8268133 DOI: 10.3390/cancers13133115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the fourth leading and fastest rising cause of cancer death (841,000 new cases and 782,000 deaths annually), and hepatitis B (HBV), with 250 million people chronically infected at risk of developing HCC, accounts for >50% of the cases worldwide. Long non-coding RNAs (lncRNAs), untranslated transcripts longer than 200 nucleotides, are implicated in gene regulation at the transcriptional and post-transcriptional levels, exerting their activities both in the nuclear and cytoplasmic compartments. Thanks to high-throughput sequencing techniques, several lncRNAs have been shown to favor the establishment of chronic HBV infection, to change the host transcriptome to establish a pro-carcinogenic environment, and to directly participate in HCC development and progression. In this review, we summarize current knowledge on the role of lncRNAs in HBV infection and HBV-related liver carcinogenesis and discuss the potential of lncRNAs as predictive or diagnostic biomarkers.
Collapse
Affiliation(s)
- Vincenzo Alfano
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
| | - Mirjam B. Zeisel
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
- Department of Medicine SCIAC, University of Rome La Sapienza, 00161 Rome, Italy
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France; (V.A.); (M.B.Z.)
| |
Collapse
|
34
|
Han W, Wang Q, Zheng L, Hong H, Yan B, Ma Y, Li X, Zhou D. The role of lncRNA ANRIL in the progression of hepatocellular carcinoma. J Pharm Pharmacol 2021; 73:1033-1038. [PMID: 34111289 DOI: 10.1093/jpp/rgaa047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of the current study was to identify the long noncoding RNAs (lncRNAs) ANRIL function and molecular pathways underlying hepatocellular carcinoma progression. METHODS ANRIL knockdown with specific siRNA, and transfected into HepG2 cells according to the protocol of Lipofectamine 2000. Cell proliferation, apoptosis, migration and metastasis were assessed with MTT assay, flow cytometry and wound healing assay, respectively. Moreover, the expression level of ANRIL, apoptosis-related genes, and the Wnt pathway-associated genes were assessed by real time-PCR and Western blot assay. KEY FINDINGS Knocking down of ANRIL led to alleviated cell growth and increased cell apoptosis of HepG2 cells through markedly increased expression levels of Bax and Bad. In contrast, dramatically diminished the expressions of anti-apoptotic factors including Bid and Bcl-2 in comparison to the scrambled control group (si-NC). Furthermore, ANRIL silencing resulted in an inactivated Wnt/β-catenin pathway by suppressing key genes associated with this pathway. CONCLUSIONS Taken together, these findings imply new insights into the regulatory network of the Wnt pathway through lncRNA ANRIL that indicate ANRIL may be a therapeutic factor potential for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Weijie Han
- Department of Hepatobiliary Surgery, Medical College of Soochow University, Suzhou, Jiangsu 215008, China.,Department of Hepatobiliary Surgery, PLA Rocket Force Characteristic Medical Center, Beijing 100000, China.,Department of Digestive Minimally Invasive Surgery, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Qiuhong Wang
- Department of Digestive Minimally Invasive Surgery, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Liansheng Zheng
- Department of Digestive Minimally Invasive Surgery, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Hong Hong
- Nursing Department, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Boshi Yan
- Department of Digestive Minimally Invasive Surgery, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Yongqiang Ma
- Department of Digestive Minimally Invasive Surgery, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Xiaolong Li
- Department of Digestive Minimally Invasive Surgery, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Dinghua Zhou
- Department of Hepatobiliary Surgery, PLA Rocket Force Characteristic Medical Center, Beijing 100000, China
| |
Collapse
|
35
|
Unfried JP, Sangro P, Prats-Mari L, Sangro B, Fortes P. The Landscape of lncRNAs in Hepatocellular Carcinoma: A Translational Perspective. Cancers (Basel) 2021; 13:2651. [PMID: 34071216 PMCID: PMC8197910 DOI: 10.3390/cancers13112651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
LncRNAs are emerging as relevant regulators of multiple cellular processes involved in cell physiology as well as in the development and progression of human diseases, most notably, cancer. Hepatocellular carcinoma (HCC) is a prominent cause of cancer-related death worldwide due to the high prevalence of causative factors, usual cirrhotic status of the tumor-harboring livers and the suboptimal benefit of locoregional and systemic therapies. Despite huge progress in the molecular characterization of HCC, no oncogenic loop addiction has been identified and most genetic alterations remain non-druggable, underscoring the importance of advancing research in novel approaches for HCC treatment. In this context, long non-coding RNAs (lncRNAs) appear as potentially useful targets as they often exhibit high tumor- and tissue-specific expression and many studies have reported an outstanding dysregulation of lncRNAs in HCC. However, there is a limited perspective of the potential role that deregulated lncRNAs may play in HCC progression and aggressiveness or the mechanisms and therapeutic implications behind such effects. In this review, we offer a clarifying landscape of current efforts to evaluate lncRNA potential as therapeutic targets in HCC using evidence from preclinical models as well as from recent studies on novel oncogenic pathways that show lncRNA-dependency.
Collapse
Affiliation(s)
- Juan Pablo Unfried
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), 31008 Pamplona, Spain; (L.P.-M.); (P.F.)
| | - Paloma Sangro
- Liver Unit, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain;
| | - Laura Prats-Mari
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), 31008 Pamplona, Spain; (L.P.-M.); (P.F.)
| | - Bruno Sangro
- Liver Unit, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), 31008 Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), 31008 Pamplona, Spain; (L.P.-M.); (P.F.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), 31008 Pamplona, Spain
| |
Collapse
|
36
|
Hou Y, Chen K, Liao R, Li Y, Yang H, Gong J. LINC01419-mediated epigenetic silencing of ZIC1 promotes metastasis in hepatocellular carcinoma through the PI3K/Akt signaling pathway. J Transl Med 2021; 101:570-587. [PMID: 33772101 DOI: 10.1038/s41374-021-00539-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a rapidly growing tumor characterized by a high potential for vascular invasion and metastasis. The purpose of our study is to explore the regulation mechanism of long noncoding RNA (lncRNA) LINC01419 on cell-cycle distribution and metastasis in hepatocellular carcinoma (HCC) by regulating zinc finger of the cerebellum (ZIC1) through PI3K/Akt signaling pathway. Bioinformatics analysis and dual-luciferase reporter assay were used to analyze LINC01419 and related genes in HCC, and their expression in HCC tissues and adjacent normal tissues were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. Then, HCC cell lines were subjected to the construction of LINC01419/ZIC1 overexpression/knockdown cells utilizing lentiviral vectors. RIP and ChIP assays were applied to identify the LINC01419-binding protein. BSP and MSP assays were used to determine gene methylation. According to the results, LINC01419 was highly expressed in HCC tissues and cells, while ZIC1 was poorly expressed. LINC01419 targeted and downregulated ZIC1 expression. Furthermore, LINC01419 increased the methylation of ZIC1 promoter and repressed ZIC1 expression. PI3K/Akt signaling pathway was activated by LINC01419 overexpression and ZIC1 knockdown, under which conditions, the HCC cell self-renewal and proliferation were promoted while cell apoptosis was attenuated, accompanied by accelerated formation and metastasis of xenografted tumors in mice. In conclusion, LINC01419 enhances the methylation of ZIC1 promoter, inhibits ZIC1 expression, and activates the PI3K/Akt signaling pathway, thereby enhancing the malignant phenotypes of HCC cells in vitro as well as tumor formation and metastasis in vivo.
Collapse
Affiliation(s)
- Yifu Hou
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Kai Chen
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Rui Liao
- Department of Hepatobiliary, Southwest Medical University, Luzhou, PR China
| | - Youzan Li
- Department of Hepatobiliary, Southwest Medical University, Luzhou, PR China
| | - Hongji Yang
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| | - Jun Gong
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
- Second Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
37
|
Gavgani RR, Babaei E, Hosseinpourfeizi MA, Fakhrjou A, Montazeri V. Study of long non-coding RNA highly upregulated in liver cancer (HULC) in breast cancer: A clinical & in vitro investigation. Indian J Med Res 2021; 152:244-253. [PMID: 33107484 PMCID: PMC7881808 DOI: 10.4103/ijmr.ijmr_1823_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background & objectives: Breast cancer remains the most common malignancy among women worldwide. Long non-coding RNAs (lncRNAs) have been shown to play critical roles in tumour initiation and progression. This study was aimed to evaluate the potential role of lncRNA highly upregulated in liver cancer (HULC) in breast cancer. Methods: The expression of HULC was evaluated in breast cancer patients and cell lines using real-time quantitative reverse transcription polymerase chain reaction. Small interfering RNA-based knockdown was also employed to study the potential role of HULC in breast cancer cell lines including ZR-75-1, MCF7 and MDA-MB-231. Results: HULC was significantly upregulated in tumour tissues compared to non-tumoural margins (P<0.001). The receiver operating characteristic (ROC) curve analysis demonstrated the biomarker potential of HULC (ROCAUC=0.78, P<0.001). The HULC knockdown induced apoptosis and suppressed cellular migration in breast cancer cell lines. Interpretation & conclusions: Our results indicated that HULC was upregulated in breast cancer and might play a role in tumourigenesis. The HULC may have a potential to be exploited as a new biomarker and therapeutic target in breast cancer.
Collapse
Affiliation(s)
| | - Esmaeil Babaei
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Ashraf Fakhrjou
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Montazeri
- Department of Thoracic Surgery, Noor-Nejat Hospital, Tabriz, Iran
| |
Collapse
|
38
|
Ghafouri-Fard S, Gholipour M, Hussen BM, Taheri M. The Impact of Long Non-Coding RNAs in the Pathogenesis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649107. [PMID: 33968749 PMCID: PMC8097102 DOI: 10.3389/fonc.2021.649107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the utmost deadly human malignancies. This type of cancer has been associated with several environmental, viral, and lifestyle risk factors. Among the epigenetic factors which contribute in the pathogenesis of HCC is dysregulation of long non-coding RNAs (lncRNAs). These transcripts modulate expression of several tumor suppressor genes and oncogenes and alter the activity of cancer-related signaling axes. Several lncRNAs such as NEAT1, MALAT1, ANRIL, and SNHG1 have been up-regulated in HCC samples. On the other hand, a number of so-called tumor suppressor lncRNAs namely CASS2 and MEG3 are down-regulated in HCC. The interaction between lncRNAs and miRNAs regulate expression of a number of mRNA coding genes which are involved in the pathogenesis of HCC. H19/miR-15b/CDC42, H19/miR-326/TWIST1, NEAT1/miR-485/STAT3, MALAT1/miR-124-3p/Slug, MALAT1/miR-195/EGFR, MALAT1/miR-22/SNAI1, and ANRIL/miR-144/PBX3 axes are among functional axes in the pathobiology of HCC. Some genetic polymorphisms within non-coding regions of the genome have been associated with risk of HCC in certain populations. In the current paper, we describe the recent finding about the impact of lncRNAs in HCC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Ferretti VA, León IE. Long Non-coding RNAs in Cisplatin Resistance in Osteosarcoma. Curr Treat Options Oncol 2021; 22:41. [PMID: 33745006 DOI: 10.1007/s11864-021-00839-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
OPINION STATEMENT Osteosarcoma (OS), the most common primary malignant bone tumor, is a vastly aggressive disease in children and adolescents. Although dramatic progress in therapeutic strategies have achieved over the past several decades, the outcome remains poor for most patients with metastatic or recurrent OS. Nowadays, conventional treatment for OS patients is surgery combined with multidrug chemotherapy including doxorubicin, methotrexate, and cisplatin (CDDP). In this sense, cisplatin (CDDP) is one of the most drugs used in the treatment of OS but drug resistance to CDDP appears as a serious problem in the use of this drug in the treatment of OS. Thus, we consider that the understanding the molecular mechanisms and the genes involved that lead to CDDP resistance is essential to developing more effective treatments against OS. In this review, we present an outline of the key role of the long non-coding RNAs (lncRNAs) in CDDP resistance in OS. This overview is expected to contribute to understand the mechanisms of CDDP resistance in OS and the relationship of the expression regulation of several lncRNAs.
Collapse
Affiliation(s)
- Valeria A Ferretti
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv, 120 1465, La Plata, Argentina
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv, 120 1465, La Plata, Argentina.
| |
Collapse
|
40
|
Li L, Miao H, Chang Y, Yao H, Zhao Y, Wu F, Song X. Multidimensional crosstalk between RNA-binding proteins and noncoding RNAs in cancer biology. Semin Cancer Biol 2021; 75:84-96. [PMID: 33722631 DOI: 10.1016/j.semcancer.2021.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/09/2023]
Abstract
RNA-binding proteins (RBPs) are well-known to bind RNA via a set of RNA-binding domains (RBDs) and determine the fate and function of their RNA targets; inversely, some RBPs, in certain cases, may be modulated by the bound RNAs rather than regulate their RNA partners. Current proteome-wide studies reveal that almost half of RBPs have no canonical RBDs, and the discovery of tens of thousands of noncoding RNAs (ncRNAs), especially those with the size larger than 200 nt (namely long noncoding RNAs, lncRNAs), makes the crosstalk between RBPs and RNAs more complicated. It is clear that macromolecular complexes formed by RBP and RNA are not only a form of existence of their RBP and RNA components in cells, but also represent a functional entity through which those RBPs and regulatory ncRNAs participate in the construction of regulatory networks in organism. In this review, we summarize the multidimensional crosstalk between RBPs and ncRNAs in cancer and discuss how RBPs achieve their function via the bound ncRNAs in different aspects of gene expression as well as how RBPs direct modification and processing of ncRNAs, in order to better understand tumor biology and provide new insights into development of strategies for cancer therapy and early detection.
Collapse
Affiliation(s)
- Ling Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Hui Miao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yanbo Chang
- Sichuan Institute for Food and Drug Control, Department of Forensic Analytical Toxicology, West China School of Basic Medical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hong Yao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Fan Wu
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
41
|
Xie X, Lin J, Fan X, Zhong Y, Chen Y, Liu K, Ren Y, Chen X, Lai D, Li X, Li Z, Tang A. LncRNA CDKN2B-AS1 stabilized by IGF2BP3 drives the malignancy of renal clear cell carcinoma through epigenetically activating NUF2 transcription. Cell Death Dis 2021; 12:201. [PMID: 33608495 PMCID: PMC7895987 DOI: 10.1038/s41419-021-03489-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/05/2023]
Abstract
Because of the lack of sensitivity to radiotherapy and chemotherapy, therapeutic options for renal clear cell carcinoma (KIRC) are scarce. Long noncoding RNAs (lncRNAs) play crucial roles in the progression of cancer. However, their functional roles and upstream mechanisms in KIRC remain largely unknown. Exploring the functions of potential essential lncRNAs may lead to the discovery of novel targets for the diagnosis and treatment of KIRC. Here, according to the integrated analysis of RNA sequencing and survival data in TCGA-KIRC datasets, cyclin-dependent kinase inhibitor 2B antisense lncRNA (CDKN2B-AS1) was discovered to be the most upregulated among the 14 lncRNAs that were significantly overexpressed in KIRC and related to shorter survival. Functionally, CDKN2B-AS1 depletion suppressed cell proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, CDKN2B-AS1 exerted its oncogenic activity by recruiting the CREB-binding protein and SET and MYND domain-containing 3 epigenetic-modifying complex to the promoter region of Ndc80 kinetochore complex component (NUF2), where it epigenetically activated NUF2 transcription by augmenting local H3K27ac and H3K4me3 modifications. Moreover, we also showed that CDKN2B-AS1 interacted with and was stabilized by insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), an oncofetal protein showing increased levels in KIRC. The Kaplan-Meier method and receiver operating curve analysis revealed that patients whose IGF2BP3, CDKN2B-AS1 and NUF2 are all elevated showed the shortest survival time, and the combined panel (containing IGF2BP3, CDKN2B-AS1, and NUF2) possessed the highest accuracy in discriminating high-risk from low-risk KIRC patients. Thus, we conclude that the stabilization of CDKN2B-AS1 by IGF2BP3 drives the malignancy of KIRC through epigenetically activating NUF2 transcription and that the IGF2BP3/CDKN2B-AS1/NUF2 axis may be an ideal prognostic and diagnostic biomarker and therapeutic target for KIRC.
Collapse
MESH Headings
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- DNA Methylation
- Databases, Genetic
- Disease Progression
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- RNA Stability
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Transcriptional Activation
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Xina Xie
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Jiatian Lin
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, 518000, Shenzhen, Guangdong, China
| | - Xiaoqin Fan
- Department of Otolaryngology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Yuantang Zhong
- Department of Urology, Longgang District Central Hospital, 518100, Shenzhen, Guangdong, China
| | - Yequn Chen
- Department of Community Surveillance, The First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Kaiqing Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Yonggang Ren
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Xiangling Chen
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Daihuan Lai
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Xuyi Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Zesong Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China.
| | - Aifa Tang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, Guangdong, China.
| |
Collapse
|
42
|
Chen Y, Li J, Xiao JK, Xiao L, Xu BW, Li C. The lncRNA NEAT1 promotes the epithelial-mesenchymal transition and metastasis of osteosarcoma cells by sponging miR-483 to upregulate STAT3 expression. Cancer Cell Int 2021; 21:90. [PMID: 33546665 PMCID: PMC7866772 DOI: 10.1186/s12935-021-01780-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Osteosarcoma is one of the most prevalent primary bone tumours in adolescents. Accumulating evidence shows that aberrant expression of the long non-coding RNA (lncRNA) NEAT1 and microRNA-483 (miR-483) contribute to the epithelial-mesenchymal transition (EMT), invasion and metastasis of tumour cells. However, the potential regulatory effects of NEAT1 and miR-483 on the EMT of osteosarcoma remain elusive. Methods The expression of the NEAT1, miR-483, signal transducer and activator of transcription-1 (STAT1), STAT3, and EMT-associated markers was measured using qRT-PCR or western blotting. NEAT1 overexpression or knockdown was induced by lentivirus-mediated transfection. A luciferase reporter assay was employed to confirm the association between NEAT1/miR-483 and miR-483/STAT3. RNA immunoprecipitation (RIP) was also performed to verify the NEAT1 and miR-483 interaction. Wound healing and transwell assays were implemented to assess the migration and invasion of U2OS cells. Unilateral subcutaneous injection of U2OS into nude mice was performed to investigate tumour metastasis in vivo. Results The expression of miR-483 was downregulated in both osteosarcoma cell lines and osteosarcoma tissues. The overexpression of miR-483 suppressed the migration, invasion, and expression of EMT-associated proteins in U2OS cells, while simultaneous overexpression of STAT3 partially relieved this suppression. Mechanistically, miR-483 specifically targeted the 3′ untranslated region (3′UTR) of STAT3 and repressed its expression. However, NEAT1 sponged miR-438, increased STAT3 expression, and repressed STAT1 expression, subsequently increasing the EMT of osteosarcoma cells. The knockdown of NEAT1 in transplanted U2OS cells impaired the liver and lung metastases of osteosarcoma in nude mice. Moreover, NEAT1 silencing inhibited the mesenchymal- epithelial transition (MET) of osteosarcoma at metastasis sites. Conclusions The lncRNA NEAT1/miR-483/STAT3 axis plays a crucial role in regulating the metastasis of osteosarcoma and potentially represents one appealing therapeutic target for osteosarcoma treatment in the future.
Collapse
Affiliation(s)
- Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jia-Kun Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lei Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Bin-Wu Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
43
|
Maruei-Milan R, Heidari Z, Aryan A, Asadi-Tarani M, Salimi S. Long non-coding RNA ANRIL polymorphisms in papillary thyroid cancer and its severity. Br J Biomed Sci 2021; 78:58-62. [PMID: 33186076 DOI: 10.1080/09674845.2020.1829853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Long non-coding RNAs are likely to have a role in the pathogenesis of many diseases, including cancer. We hypothesised an effect of certain ANRIL single nucleotide polymorphisms (SNPs) in papillary thyroid cancer. Methods: Genomic ANRIL SNPs in rs11333048, rs4977574, rs1333040 and rs10757274 were determined in 134 papillary thyroid cancer patients and 155 age- and sex-matched controls. Results: None of the ANRIL SNPs were individually linked to papillary thyroid cancer. However, the AAAC haplotype (A from rs11333048, A from rs4977574, A from rs1333040 and C from rs10757274, respectively) showed a protective effect from papillary thyroid cancer whilst the CAAC and CAGT haplotypes were associated with cancer. The rs1333048 CC variant was more frequent in patients with larger tumour size (≥1 cm) in a recessive model (OR 3.4 [95%CI, 1.1-11], P = 0.035). The rs4977574 AC variant was associated with smaller tumour size in an over-dominant model (OR 0.4 [95%CI, 0.2-1.0], P = 0.041). SNPs in rs10757274 (AA: p = 0.045) and rs1333040 (CC: p = 0.019) are linked to a lower likelihood of III-IV cancer stages in dominant or codominant models. Conclusions: Certain haplotypes of ANRIL SNPs are associated with papillary thyroid cancer. ANRIL rs1333048 and rs4977574 variants were associated with larger and smaller tumour sizes, respectively. rs10757274 and rs1333040 variants might lead to lower III-IV cancer stages. These SNPs may be important in the diagnosis of this form of thyroid cancer.
Collapse
Affiliation(s)
- R Maruei-Milan
- Departments of Clinical Biochemistry, Zahedan University of Medical Sciences , Zahedan, Iran
| | - Z Heidari
- Department of Internal Medicine, Zahedan University of Medical Sciences , Zahedan, Iran
| | - A Aryan
- Department of Radiology, Zahedan University of Medical Sciences , Zahedan, Iran
| | - M Asadi-Tarani
- Departments of Clinical Biochemistry, Zahedan University of Medical Sciences , Zahedan, Iran
| | - S Salimi
- Departments of Clinical Biochemistry, Zahedan University of Medical Sciences , Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences , Zahedan, Iran
| |
Collapse
|
44
|
Involvement of single nucleotide polymorphisms in acute lymphoblastic leukemia susceptibility. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 2020; 15:136. [PMID: 33183321 PMCID: PMC7659041 DOI: 10.1186/s13000-020-01054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the world which is mainly observed among men. There is a declining mortality rates in developed countries. Although, the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa. MAIN BODY In present review we summarized all of the lncRNAs and miRNAs associated with chemotherapeutic resistance in bladder tumor cells. CONCLUSIONS This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which can be useful to select a proper drug based on the lncRNA profiles of patients to reduce the cytotoxic effects of chemotherapy in such patients.
Collapse
|
46
|
Shen L, Shen G, Lu X, Ding G, Hu X. Co-expression Network Analysis Revealing the Potential Regulatory Roles of LncRNAs in Atrial Fibrillation. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191210142141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Atrial fibrillation (AF) is one of the most common heart arrhythmic disorders
all over the world. However, it is worth noting that the mechanism underlying AF is still dimness.
Methods:
In this study, we implemented a series of bioinformatics methods to explore the
mechanisms of lncRNAs underlying AF pathogenesis. The present study analyzed the public
datasets (GSE2240 and GSE115574) to identify differentially expressed long non-coding RNAs
(lncRNAs) and mRNAs in the progression of AF.
Results:
Totally, 71 differentially expressed lncRNAs and 390 DEGs were identified in AF.Next,
we performed bioinformatics analyses to explore the functions of lncRNAs in AF. Gene Ontology
(GO) analysis indicated that differentially expressed lncRNAs were involved in regulating multiple
key biological processes, such as cell cycle and signal transduction. Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis demonstrated these lncRNAs were associated with the
regulation of MAPK and Wnt signaling pathways. Eight lncRNAs (RP5-1154L15.2, RP11-
339B21.15, RP11-448A19.1, RP11-676J12.4, LOC101930415, MALAT1, NEAT1, and PWAR6)
were identified to be key lncRNAs and widely co-expressed with a series of differentially expressed
genes (DEGs).
Conclusion:
Although further validation was still needed, our study may be helpful to elucidate the
mechanisms of lncRNAs underlying AF pathogenesis and providing further insight into identifying
novel biomarkers for AF.
Collapse
Affiliation(s)
- Lishui Shen
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,China
| | - Guilin Shen
- Department of Cardiology, Anji People’s Hospital, Huzhou, 313300, Zhejiang Province,China
| | - Xiaoli Lu
- Department of Cardiology, Anji People’s Hospital, Huzhou, 313300, Zhejiang Province,China
| | - Guomin Ding
- Department of Cardiology, Anji People’s Hospital, Huzhou, 313300, Zhejiang Province,China
| | - Xiaofeng Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030, Shanghai,China
| |
Collapse
|
47
|
Lou N, Liu G, Pan Y. Long noncoding RNA ANRIL as a novel biomarker in human cancer. Future Oncol 2020; 16:2981-2995. [PMID: 32986472 DOI: 10.2217/fon-2020-0470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The long noncoding RNA ANRIL, located in the human chromosome 9p21 region, has been reported to be involved in tumor progression. ANRIL regulates gene expression via recruiting PRC2 or titrating miRNA; it also participates in signaling pathways. Evidence has indicated that ANRIL is overexpressed in many cancer types and is capable of enhancing cell proliferation and cell cycle progression and inhibiting apoptosis and senescence. ANRIL has the potential to serve as a biomarker for diagnosis and prognosis in cancer. In this article we focus on recent advances in studies of the oncogenic role of ANRIL and its potential role in cancer medicine.
Collapse
Affiliation(s)
- Ning Lou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| |
Collapse
|
48
|
LncRNA ANRIL promotes cell growth, migration and invasion of hepatocellular carcinoma cells via sponging miR-144. Anticancer Drugs 2020; 30:1013-1021. [PMID: 31609763 DOI: 10.1097/cad.0000000000000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antisense non-coding RNA in the INK4A locus (ANRIL) has been recognized as a cancer-related lncRNA in hepatocellular carcinoma previously. This study aimed to reveal the functional effects and mechanisms of ANRIL on hepatocellular carcinoma cells in vitro. The expression of ANRIL in hepatocellular carcinoma cell lines (MHCC97 and Li-7) and non-tumourigenic liver cell line THLE-3 was detected by qRT-PCR. The expression of ANRIL, miR-144 and PBX3 in hepatocellular carcinoma cells was altered simultaneously or respectively by vector/oligonucleotide transfection. Then, cell viability, migration, invasion, apoptotic cell rate, protein expression of apoptosis-related factors were assessed. The correlation between ANRIL, miR-144 and PBX3 was explored. ANRIL was highly expressed in MHCC97 and Li-7 cells when compared to THLE-3 cells. ANRIL overexpression promoted cell viability, migration, invasion and suppressed apoptosis of MHCC97 and Li-7 cells. ANRIL negatively regulated miR-144, and oncogenic effects of ANRIL were attenuated when miR-144 was overexpressed. PBX3 was a direct target of miR-144. miR-144 overexpression blocked PI3K/AKT and JAK/STAT signalling pathways via targeting PBX3. Our data documented that ANRIL promoted hepatocellular carcinoma cells growth, migration and invasion. One of the possible mechanisms responsible for the tumour-promoting actions is that ANRIL sponging miR-144 to derepress PBX3.
Collapse
|
49
|
Cao P, Jin Q, Feng L, Li H, Qin G, Zhou G. Emerging roles and potential clinical applications of noncoding RNAs in hepatocellular carcinoma. Semin Cancer Biol 2020; 75:136-152. [PMID: 32931952 DOI: 10.1016/j.semcancer.2020.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma(HCC) is one of the most common forms of cancer, and accounts for a high proportion of cancer-associated deaths. Growing evidences have demonstrated that non- protein-coding regions of the genome could give rise to transcripts, termed noncoding RNA (ncRNA), that form novel functional layers of the cellular activity. ncRNAs are implicated in different molecular mechanisms and functions at transcriptional, translational and post-translational levels. An increasing number of studies have demonstrated a complex array of molecular and cellular functions of ncRNAs in different stages of the HCC tumorigenesis, either in an oncogenic or tumor-suppressive manner. As a result, several pre-clinical studies have highlighted the great potentials of ncRNAs as novel biomarkers for cancer diagnosis or therapeutics in targeting HCC progression. In this review, we briefly described the characteristics of several representative ncRNAs and summarized the latest findings of their roles and mechanisms in the development of HCC, in order to better understand the cancer biology and their potential clinical applications in this malignancy.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qian Jin
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lan Feng
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Haibei Li
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, Tianjin City, China
| | - Geng Qin
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun City, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China; Medical College, Guizhou University, Guiyang City, China.
| |
Collapse
|
50
|
Li G, Gao L, Zhao J, Liu D, Li H, Hu M. LncRNA ANRIL/miR-7-5p/TCF4 axis contributes to the progression of T cell acute lymphoblastic leukemia. Cancer Cell Int 2020; 20:335. [PMID: 32714094 PMCID: PMC7376839 DOI: 10.1186/s12935-020-01376-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Antisense non-coding RNA in the INK4 locus (ANRIL) is of great importance in cell biological behaviors, and ANRIL functions in many kinds of cancers including leukemia. However, the mechanism of ANRIL in the progression of T-cell acute lymphoblastic leukemia (T-ALL) has not been clarified clearly. Methods qRT-PCR was performed to detect ANRIL expression in T-ALL samples. T-ALL cell lines (MOLT4, CCRF-CEM and KOPT-K1) were used as the cell models. The function of ANRIL on T-ALL cells was investigated by CCK-8 assays, Transwell assays, and apoptosis experiments in vitro. qRT-PCR, Western blot, luciferase reporter assay and RIP assay were used to confirm the interactions between ANRIL and miR-7-5p, miR-7-5p and its target gene transcription factor 4 (TCF4). Results ANRIL was significantly up-regulated in T-ALL samples. Its knockdown markedly inhibited viability, migration and invasion of T-ALL cells, but its overexpression exerted the opposite effects. TCF4 was proved to be a target gene of miR-7-5p. ANRIL down-regulated miR-7-5p via sponging it and in turn up-regulated TCF4. Conclusions LncRNA ANRIL can modulate malignant phenotypes of T-ALL cells, possibly by regulating miR-7-5p/TCF4 axis, and it serves as a potential therapeutic target for T-ALL.
Collapse
Affiliation(s)
- Gang Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Lan Gao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Jing Zhao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Dejun Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Hui Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Min Hu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| |
Collapse
|