1
|
Maffeo B, Cilloni D. The Ubiquitin-Conjugating Enzyme E2 O (UBE2O) and Its Therapeutic Potential in Human Leukemias and Solid Tumors. Cancers (Basel) 2024; 16:3064. [PMID: 39272922 PMCID: PMC11394522 DOI: 10.3390/cancers16173064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Protein degradation is a biological phenomenon essential for cellular homeostasis and survival. Selective protein degradation is performed by the ubiquitination system which selectively targets proteins that need to be eliminated and leads them to proteasome degradation. In this narrative review, we focus on the ubiquitin-conjugating enzyme E2 O (UBE2O) and highlight the role of UBE2O in many biological and physiological processes. We further discuss UBE2O's implications in various human diseases, particularly in leukemias and solid cancers. Ultimately, our review aims to highlight the potential role of UBE2O as a therapeutic target and offers new perspectives for developing targeted treatments for human cancers.
Collapse
Affiliation(s)
- Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
2
|
Zhang Y, Wang J, Fang Y, Liang W, Lei L, Wang J, Gao X, Ma C, Li M, Guo H, Wei L. IFN-α affects Th17/Treg cell balance through c-Maf and associated with the progression of EBV- SLE. Mol Immunol 2024; 171:22-35. [PMID: 38749236 DOI: 10.1016/j.molimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease, of which the pathogens is remains obscure. Viral infection, particularly Epstein Barr viru (EBV) infection, has been considered a common pathogenic factor. This study suggests that c-Maf may be an important target in T cell differentiation during SLE progression, providing a potentially new perspective on the role of viral infection in the pathogenesis of autoimmune diseases. METHODS Cytokines of EBV-infected SLE patients were measured by ELISA and assessed in conjunction with their clinical data. IFN-α, c-Maf, and the differentiation of Th17/Treg cells in SLE patients and MRL/LPR mice were analyzed using FCM, WB, RT-PCR, etc. Following the infection of cells and mice with EBV or viral mimic poly (dA:dT), the changes of the aforementioned indicators were investigated. The relationship among IFN-α, STAT3, c-Maf and Th17 cells was determined by si-RNA technique. RESULTS Many SLE patients are found to be complicated by viral infections; Further, studies have demonstrated that viral infection, especially EBV, is involved in SLE development. This study showed that viral infections might promote IFN-α secretion, inhibit c-Maf expression by activating STAT3, increase Th17 cell differentiation, and lead to the immune imbalance of Th17/Treg cells, thus playing a role in the onset and progression of SLE. CONCLUSION This study demonstrates that EBV infections may contribute to SLE development by activating STAT3 through IFN-α, inhibiting c-Maf, and causing Th17/Treg immune imbalance. Our work provided a new insight into the pathogenesis and treatment of SLE.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiachao Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yaqi Fang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Wenzhang Liang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lingyan Lei
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Xue Gao
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Huifang Guo
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Li H, Liu Y, Cheng C, Wu Y, Liang SH, Wu L, Wang H, Tu CY, Yao HH, Meng FZ, Zhang B, Wang W, Wang JB, Liu LX. UBE2O reduces the effectiveness of interferon-α via degradation of IFIT3 in hepatocellular carcinoma. Cell Death Dis 2023; 14:854. [PMID: 38129382 PMCID: PMC10740027 DOI: 10.1038/s41419-023-06369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Interferon (IFN) exerts its effects through interferon-stimulated genes (ISGs), but its efficacy is limited by interferon resistance, which can be caused by the ubiquitination of key proteins. UBE2O was initially identified as a promising therapeutic target based on data from the TCGA and iUUCD 2.0 databases. Through the inhibition of UBE2O, interferon α/β signaling and overall interferon signaling were activated. Integrating data from proteomic, mass spectrometry, and survival analyses led to the identification of IFIT3, a mediator of interferon signaling, as a ubiquitination substrate of UBE2O. The results of in vitro and in vivo experiments demonstrated that the knockdown of UBE2O can enhance the efficacy of interferon-α by upregulating IFIT3 expression. K236 was identified as a ubiquitination site in IFIT3, and the results of rescue experiments confirmed that the effect of UBE2O on interferon-α sensitivity is dependent on IFIT3 activity. ATO treatment inhibited UBE2O and increased IFIT3 expression, thereby increasing the effectiveness of interferon-α. In conclusion, these findings suggest that UBE2O worsens the therapeutic effect of interferon-α by targeting IFIT3 for ubiquitination and degradation.
Collapse
Affiliation(s)
- Heng Li
- Cheeloo College of Medicine, Shandong University, Jinan, 250002, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC) West District/Anhui Provincial Cancer Hospital, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China
| | - Can Cheng
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Wu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shu-Hang Liang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Liang Wu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hong Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Cong-Yin Tu
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC) West District/Anhui Provincial Cancer Hospital, Hefei, China
| | - Han-Hui Yao
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Fan-Zheng Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China
| | - Bo Zhang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Jia-Bei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China.
| | - Lian-Xin Liu
- Cheeloo College of Medicine, Shandong University, Jinan, 250002, P. R. China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, China.
| |
Collapse
|
4
|
Zhong L, Wang J, Chen W, Lv D, Zhang R, Wang X, Zeng C, He X, Zheng L, Gao Y, Wang S, Li M, Wu Y, Yin J, Kang T, Liao D. Augmenting L3MBTL2-induced condensates suppresses tumor growth in osteosarcoma. SCIENCE ADVANCES 2023; 9:eadi0889. [PMID: 37992172 PMCID: PMC10664996 DOI: 10.1126/sciadv.adi0889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Osteosarcoma is a highly aggressive cancer and lacks effective therapeutic targets. We found that L3MBTL2 acts as a tumor suppressor by transcriptionally repressing IFIT2 in osteosarcoma. L3MBTL2 recruits the components of Polycomb repressive complex 1.6 to form condensates via both Pho-binding pockets and polybasic regions within carboxyl-terminal intrinsically disordered regions; the L3MBTL2-induced condensates are required for its tumor suppression. Multi-monoubiquitination of L3MBTL2 by UBE2O results in its proteasomal degradation, and the UBE2O/L3MBTL2 axis was crucial for osteosarcoma growth. There is a reverse correlation between L3MBTL2 and UBE2O in osteosarcoma tissues, and higher UBE2O and lower L3MBTL2 are associated with poorer prognosis in osteosarcoma. Pharmacological blockage of UBE2O by arsenic trioxide can enhance L3MBTL2-induced condensates and consequently suppress osteosarcoma growth. Our findings unveil a crucial biological function of L3MBTL2-induced condensates in mediating tumor suppression, proposing the UBE2O-L3MBTL2 axis as a potential cancer therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Li Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jingxuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanqi Chen
- Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dongming Lv
- Department of Musculoskeletal Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaobo He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lisi Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Miao Li
- Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
Yuan Q, Fan Y, Liu Z, Wang X, Jia M, Dong Y, Geng Z, Zheng J, Lu X. Pleckstrin homology and RhoGEF domain containing G4 (PLEKHG4) leads to the activation of RhoGTPases promoting the malignant phenotypes of thyroid cancer. Apoptosis 2023; 28:1315-1331. [PMID: 37336836 DOI: 10.1007/s10495-023-01861-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Thyroid cancer (TC) is one of the most common endocrine system cancers, and its incidence is elevating. There is an urgent need to develop a deeper understanding of TC pathogenesis and explore new therapeutic target for its treatment. This study aimed to investigate the effects of pleckstrin homology and RhoGEF domain containing G4 (PLEKHG4) on the progression of TC. Herein, 29 pairs of TC and adjacent tissues were used to assess the expression of PLEKHG4. A xenograft model of mouse was established by subcutaneously injected with TC cells. Lung metastasis model was established through left ventricular injection. The results revealed that PLEKHG4 was up-regulated in human TC tissues. PLEKHG4 level was correlated with clinicopathological parameters of TC patients. In vitro assays revealed that PLEKHG4 promoted TC cell proliferation, migration, invasion, and epithelial-mesenchymal transformation. Knockdown of PLEKHG4 led to the opposite effects, and the loss of PLEKHG4 enhanced the apoptosis ability and inhibited the stemness properties of TC cells. These findings were further confirmed by the in vivo growth and lung metastasis of TC tumor. Mechanistically, PLEKHG4 promoted the activation of RhoGTPases RhoA, Cdc42, and Rac1. The inhibitors of these RhoGTPases reversed the PLEKHG4-induced malignant phenotypes. Additionally, ubiquitin-conjugating enzyme E2O (UBE2O), a large E2 ubiquitin-conjugating enzyme acted as an ubiquitin enzyme of PLEKHG4, facilitated its ubiquitination and degradation. In conclusion, PLEKHG4, regulated by UBE2O, promoted the thyroid cancer progression via activating the RhoGTPases pathway. UBE2O/PLEKHG4/RhoGTPases axis is expected to be a novel a therapeutic target for TC treatment.
Collapse
Affiliation(s)
- Qingling Yuan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East Road, Zhengzhou, Henan, China.
| | - Yuxia Fan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East Road, Zhengzhou, Henan, China
| | - Zheng Liu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East Road, Zhengzhou, Henan, China
| | - Xiaoming Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East Road, Zhengzhou, Henan, China
| | - Meng Jia
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East Road, Zhengzhou, Henan, China
| | - Yongqiang Dong
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East Road, Zhengzhou, Henan, China
| | - Zushi Geng
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East Road, Zhengzhou, Henan, China
| | - Jian Zheng
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East Road, Zhengzhou, Henan, China
| | - Xiubo Lu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East Road, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Zhou J, Liao S, Zhang C, Luo J, Li G, Li H. Expression profiling of N6-methyladenosine-modified mRNA in PC12 cells in response to unconjugated bilirubin. Mol Biol Rep 2023; 50:6703-6715. [PMID: 37378749 PMCID: PMC10374823 DOI: 10.1007/s11033-023-08576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Abnormal methylation of N6-methyladenosine (m6A) is reportedly associated with central nervous system disorders. However, the role of m6A mRNA methylation in unconjugated bilirubin (UCB) neurotoxicity requires further research. METHODS Rat pheochromocytoma PC12 cells treated with UCB were used as in vitro models. After the PC12 cells were treated with UCB (0, 12, 18, and 24 µM) for 24 h, the total RNA m6A levels were measured using an m6A RNA methylation quantification kit. The expression of m6A demethylases and methyltransferases was detected through western blotting. We determined the m6A mRNA methylation profile in PC12 cells exposed to UCB (0 and 18 µM) for 24 h using methylated RNA immunoprecipitation sequencing (MeRIP-seq). RESULTS Compared with the control group, UCB (18 and 24 µM) treatment decreased the expression of the m6A demethylase ALKBH5 and increased the expression of the methyltransferases METTL3 and METTL14, which resulted in an increase in the total m6A levels in PC12 cells. Furthermore, 1533 m6A peaks were significantly elevated and 1331 peaks were reduced in the UCB (18 µM)-treated groups compared with those in the control group. Genes with differential m6A peaks were mainly enriched in protein processing in the endoplasmic reticulum, ubiquitin-mediated proteolysis, cell cycle, and endocytosis. Through combined analysis of the MeRIP-seq and RNA sequencing data, 129 genes with differentially methylated m6A peaks and differentially expressed mRNA levels were identified. CONCLUSION Our study suggests that the modulation of m6A methylation modifications plays a significant role in UCB neurotoxicity.
Collapse
Affiliation(s)
- Jinfu Zhou
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Sining Liao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Chenran Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Jinying Luo
- Obstetrics and Gynecology Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Guilin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
7
|
de Carvalho LGA, Komoto TT, Moreno DA, Goes JVC, de Oliveira RTG, de Lima Melo MM, Roa MEGV, Gonçalves PG, Montefusco-Pereira CV, Pinheiro RF, Ribeiro Junior HL. USP15-USP7 Axis and UBE2T Differential Expression May Predict Pathogenesis and Poor Prognosis in De Novo Myelodysplastic Neoplasm. Int J Mol Sci 2023; 24:10058. [PMID: 37373211 PMCID: PMC10298103 DOI: 10.3390/ijms241210058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to evaluate the expression of USP7, USP15, UBE2O, and UBE2T genes in Myelodysplastic neoplasm (MDS) to identify possible targets of ubiquitination and deubiquitination in MDS pathobiology. To achieve this, eight datasets from the Gene Expression Omnibus (GEO) database were integrated, and the expression relationship of these genes was analyzed in 1092 MDS patients and healthy controls. Our results showed that UBE2O, UBE2T, and USP7 were upregulated in MDS patients compared with healthy individuals, but only in mononucleated cells collected from bone marrow samples (p < 0.001). In contrast, only the USP15 gene showed a downregulated expression compared with healthy individuals (p = 0.03). Additionally, the upregulation of UBE2T expression was identified in MDS patients with chromosomal abnormalities compared with patients with normal karyotypes (p = 0.0321), and the downregulation of UBE2T expression was associated with MDS hypoplastic patients (p = 0.033). Finally, the USP7 and USP15 genes were strongly correlated with MDS (r = 0.82; r2 = 0.67; p < 0.0001). These findings suggest that the differential expression of the USP15-USP7 axis and UBE2T may play an important role in controlling genomic instability and the chromosomal abnormalities that are a striking characteristic of MDS.
Collapse
Affiliation(s)
- Luiz Gustavo Almeida de Carvalho
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program in Translational Medicine, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Tatiana Takahasi Komoto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-390, SP, Brazil; (T.T.K.); (D.A.M.); (P.G.G.)
| | - Daniel Antunes Moreno
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-390, SP, Brazil; (T.T.K.); (D.A.M.); (P.G.G.)
| | - João Vitor Caetano Goes
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Roberta Taiane Germano de Oliveira
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Mayara Magna de Lima Melo
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | | | - Paola Gyuliane Gonçalves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-390, SP, Brazil; (T.T.K.); (D.A.M.); (P.G.G.)
- Department of Pathology, School of Medicine, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brazil
| | - Carlos Victor Montefusco-Pereira
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
| | - Ronald Feitosa Pinheiro
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program in Translational Medicine, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Howard Lopes Ribeiro Junior
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program in Translational Medicine, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-390, SP, Brazil; (T.T.K.); (D.A.M.); (P.G.G.)
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| |
Collapse
|
8
|
Deng Y, Lu L, Zhang H, Fu Y, Liu T, Chen Y. The role and regulation of Maf proteins in cancer. Biomark Res 2023; 11:17. [PMID: 36750911 PMCID: PMC9903618 DOI: 10.1186/s40364-023-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023] Open
Abstract
The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yalan Deng
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Liqing Lu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Huajun Zhang
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ying Fu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Tian C, Chen Z, Wang L, Si J, Kang J, Li Y, Zheng Y, Gao Y, Nuermaimaiti R, You MJ, Zheng G. Over expression of ubiquitin-conjugating enzyme E2O in bone marrow mesenchymal stromal cells partially attenuates acute myeloid leukaemia progression. Br J Haematol 2023; 200:476-488. [PMID: 36345807 DOI: 10.1111/bjh.18541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) are implicated in the pathogenesis of acute myeloid leukaemia (AML). However, due to the high heterogeneity of AML the mechanism underlying the cross-talk between MSCs and leukaemia cells is not well understood. We found that mixed-lineage leukaemia-AF9 (MLL-AF9)-induced AML mice-derived MSCs had higher proliferative viability compared to wild-type mice-derived MSCs with ubiquitin-conjugating enzyme E2O (Ube2o) down-regulation. After overexpression of UBE2O in AML-derived MSCs, the growth capacity of MSCs was reduced with nuclear factor kappa B subunit 1 (NF-κB) pathway deactivation. In vitro co-culture assay revealed that UBE2O-overexpression MSCs suppressed the proliferation and promoted apoptosis of AML cells by direct contact. In vivo results revealed that the leukaemia burden was reduced and the overall survival of AML mice was prolonged, with decreased dissemination of leukaemia cells in BM, spleen, liver and peripheral blood. Additionally, subcutaneous tumorigenesis revealed that tumour growth was also suppressed in the UBE2O-overexpression MSCs group. In conclusion, UBE2O was expressed at a low level in MLL-AF9-induced AML mice-derived MSCs. Overexpression of UBE2O in MSCs suppressed their proliferation through NF-κB pathway deactivation, which resulted in AML suppression. Our study provides a theoretical basis for a BM microenvironment-based therapeutic strategy to control disease progression.
Collapse
Affiliation(s)
- Chen Tian
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Haematology, Hotan District People's Hospital, Hotan, China
| | - Zehui Chen
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junqi Si
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Junnan Kang
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yueyang Li
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yaxin Zheng
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanan Gao
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - M James You
- Department of Haematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guoguang Zheng
- State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
10
|
Lan Q, Du C, Xiong J, Wu Y, Liao W, Liu C, Chen J, Ran L, Wang Y, Wang Y, Wang J, Zhao J, Yang K. Renal Klotho safeguards platelet lifespan in advanced chronic kidney disease through restraining Bcl-xL ubiquitination and degradation. J Thromb Haemost 2022; 20:2972-2987. [PMID: 36087344 DOI: 10.1111/jth.15876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Thrombosis and hemorrhage as two opposite pathologies are prevalent within the chronic kidney disease (CKD) population. Platelet homeostasis, which positions centrally in their pathogenesis, varies among the CKD population, while the underlying mechanism is poorly understood. OBJECTIVE To investigate the change character and mechanism of platelet homeostasis in CKD and its association with renal Klotho deficiency. METHODS The change character of platelet homeostasis and its association with renal Klotho deficiency were determined based on a cohort study as well as CKD mice and Klotho-deficient mice with CKD. The effects on thrombopoiesis and platelet lifespan were examined by flow cytometry and platelet transfer. The underlying mechanism was explored by proteomics, flow cytometry, western blot, and immunoprecipitation. RESULTS We show that platelet count declines both in patient and mouse models with advanced CKD (Adv-CKD) and is positively associated with circulating Klotho levels. Mechanistically, we identify that ubiquitin ligase UBE2O governs Bcl-xL ubiquitination and degradation in platelets, whereas Adv-CKD-induced oxidative stress in platelets stimulates p38MAPK to promote Bcl-xL phosphorylation, which facilitates UBE2O binding to Bcl-xL and subsequent Bcl-xL degradation. Consequently, platelet lifespan is shortened in Adv-CKD, culminating in platelet count decline. However, kidney-secreted soluble Klotho protein restricts oxidative stress in platelets, thereby preserving Bcl-xL expression and platelet lifespan. CONCLUSIONS Our findings uncover the mechanism of platelet count decline in Adv-CKD and identify renal Klotho as a long-range regulator of platelet lifespan, which not only provide a molecular mechanism underlying CKD-associated thrombocytopenia and hemorrhage but also offer a promising therapy choice.
Collapse
Affiliation(s)
- Qigang Lan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yiding Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chaonan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jun Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Ran
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Wang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaqin Wang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
11
|
Cen X, Chen Q, Wang B, Xu H, Wang X, Ling Y, Zhang X, Qin D. UBE2O ubiquitinates PTRF/CAVIN1 and inhibits the secretion of exosome-related PTRF/CAVIN1. Cell Commun Signal 2022; 20:191. [PMID: 36443833 PMCID: PMC9703712 DOI: 10.1186/s12964-022-00996-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Exosomes are small vesicles released by cells, which have crucial functions in intercellular communication. Exosomes originated from cell membrane invagination and are released followed by multivesicular bodies (MVBs) fused with the cell membrane. It is known that Polymerase I and Transcript Release Factor (PTRF, also known as Caveolin-associated Protein-1, CAVIN1) plays an important role in caveolae formation and exosome secretion. And PTRF in exosomes has been identified as a potential biomarker in multiple malignancies such as glioma and renal cell carcinoma. However, the mechanisms of how to regulate the secretion of exosome-related PTRF remain unknown. METHODS We performed exogenous and endogenous immunoprecipitation assays to investigate the interaction between ubiquitin-conjugating enzyme E2O (UBE2O) and PTRF. We identified UBE2O ubiquitinated PTRF using ubiquitination assays. Then, exosomes were isolated by ultracentrifugation and identified by transmission electronic microscopy, western blot and nanoparticle tracking analysis. The effect of UBE2O on the secretion of exosome-related PTRF was analyzed by western blot, and the effect of UBE2O on exosome secretion was evaluated by exosome markers and the total protein content of exosomes. RESULTS Here, we showed that UBE2O interacts with PTRF directly and ubiquitinates PTRF. Functionally, we found that UBE2O inhibited the effects of PTRF on exosome secretion via decreasing caveolae formation. Importantly, UBE2O decreased exosome secretion, resulting in downregulating PTRF secretion via exosomes. Our study also identified Serum Deprivation Protein Response (SDPR, also known as Caveolin-associated Protein-2, CAVIN2) interacted with both UBE2O and PTRF. Furthermore, we found that SDPR promotes PTRF expression in exosomes. Interestingly, even in the presence of SDPR, UBE2O still inhibited the secretion of exosome-related PTRF. CONCLUSIONS Our study demonstrated that UBE2O downregulated exosome release and controlled the secretion of exosome-related PTRF through ubiquitinating PTRF. Since exosomes play an important role in malignant tumor growth and PTRF included in exosomes is a biomarker for several malignant tumors, increasing UBE2O expression in cells has the potential to be developed as a novel approach for cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Xiaotong Cen
- grid.410737.60000 0000 8653 1072Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799 China ,grid.508040.90000 0004 9415 435XBasic Research Center, BioLand Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510530 China
| | - Qing Chen
- grid.410737.60000 0000 8653 1072Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799 China ,grid.508040.90000 0004 9415 435XBasic Research Center, BioLand Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510530 China
| | - Bin Wang
- grid.410737.60000 0000 8653 1072Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799 China ,grid.508040.90000 0004 9415 435XBasic Research Center, BioLand Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510530 China
| | - Hongjie Xu
- grid.410737.60000 0000 8653 1072Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799 China ,grid.508040.90000 0004 9415 435XBasic Research Center, BioLand Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510530 China
| | - Xu Wang
- grid.508040.90000 0004 9415 435XBasic Research Center, BioLand Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510530 China
| | - Yixia Ling
- grid.410737.60000 0000 8653 1072Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799 China ,grid.508040.90000 0004 9415 435XBasic Research Center, BioLand Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510530 China
| | - Xiaofei Zhang
- grid.410737.60000 0000 8653 1072Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799 China ,grid.428926.30000 0004 1798 2725CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530 China
| | - Dajiang Qin
- grid.410737.60000 0000 8653 1072Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799 China ,grid.508040.90000 0004 9415 435XBasic Research Center, BioLand Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510530 China ,grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
12
|
Shang C, Sun Y, Wang Y, Shi H, Han X, Mo Y, Wang D, Ke Y, Zeng X. CXCL10 conditions alveolar macrophages within the premetastatic niche to promote metastasis. Cancer Lett 2022; 537:215667. [DOI: 10.1016/j.canlet.2022.215667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 01/16/2023]
|
13
|
Jiang Q, Mao H, He G, Mao X. Targeting the oncogenic transcription factor c-Maf for the treatment of multiple myeloma. Cancer Lett 2022; 543:215791. [PMID: 35700821 DOI: 10.1016/j.canlet.2022.215791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy derived from clonal expansion of plasma cells within the bone marrow and it may progress to the extramedullary region in late stage of the disease course. c-Maf, an oncogenic zipper leucine transcription factor, is overexpressed in more than 50% MM cell lines and primary species in association with chromosomal translocation, aberrant signaling transduction and modulation of stability. By triggering the transcription of critical genes including CCND2, ITGB7, CCR1, ARK5, c-Maf promotes MM progress, proliferation, survival and chemoresistance. Notably, c-Maf is usually expressed at the embryonic stage to promote cell differentiation but less expressed in healthy adult cells. c-Maf has long been proposed as a promising therapeutic target of MM and a panel of small molecule compounds have been identified to downregulate c-Maf and display potent anti-myeloma activities. In the current article, we take a concise summary on the advances in c-Maf biology, pathophysiology, and targeted drug discovery in the potential treatment of MM.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Guangdong Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Key Laboratory of Protein Modifications and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hongwu Mao
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Guisong He
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Key Laboratory of Protein Modifications and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
14
|
Huang Q, Qin D, Pei D, Vermeulen M, Zhang X. UBE2O and USP7 co-regulate RECQL4 ubiquitinylation and homologous recombination-mediated DNA repair. FASEB J 2021; 36:e22112. [PMID: 34921745 DOI: 10.1096/fj.202100974rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The human RecQ DNA helicase, RECQL4, plays a pivotal role in maintaining genomic stability by regulating the DNA double-strand breaks (DSBs) repair pathway, and is, thus, involved in the regulation of aging and cancer onset. However, the regulatory mechanisms of RECQL4, especially its post-translational modifications, have not been fully illustrated. Here, we report that the E2/E3 hybrid ubiquitin-conjugating enzyme, UBE2O, physically interacts with RECQL4, and mediates the multi-monoubiquitinylation of RECQL4, subsequently leading to its proteasomal degradation. Functionally, we showed that UBE2O inhibits homologous recombination (HR)-mediated DSBs repair, and this inhibition depends on its E2 catalytic activity and RECQL4 expression. Mechanistically, we showed that UBE2O attenuates the interaction of RECQL4 and DNA damage repair proteins, the MRE11-RAD50-NBS1 complex and CtIP. Furthermore, we show that deubiquitinylase USP7 interacts with both UBE2O and RECQL4, and in that it antagonizes UBE2O-mediated regulation of RECQL4 stability and function. Collectively, we found a novel regulatory mechanism of ubiquitin-mediated regulation of RECQL4 in HR-mediated DSBs repair process.
Collapse
Affiliation(s)
- Qiuling Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Dajiang Qin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Laboratory of Cell fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
15
|
Du X, Song H, Shen N, Hua R, Yang G. The Molecular Basis of Ubiquitin-Conjugating Enzymes (E2s) as a Potential Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms22073440. [PMID: 33810518 PMCID: PMC8037234 DOI: 10.3390/ijms22073440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are one of the three enzymes required by the ubiquitin-proteasome pathway to connect activated ubiquitin to target proteins via ubiquitin ligases. E2s determine the connection type of the ubiquitin chains, and different types of ubiquitin chains regulate the stability and activity of substrate proteins. Thus, E2s participate in the regulation of a variety of biological processes. In recent years, the importance of E2s in human health and diseases has been particularly emphasized. Studies have shown that E2s are dysregulated in variety of cancers, thus it might be a potential therapeutic target. However, the molecular basis of E2s as a therapeutic target has not been described systematically. We reviewed this issue from the perspective of the special position and role of E2s in the ubiquitin-proteasome pathway, the structure of E2s and biological processes they are involved in. In addition, the inhibitors and microRNAs targeting E2s are also summarized. This article not only provides a direction for the development of effective drugs but also lays a foundation for further study on this enzyme in the future.
Collapse
|
16
|
Xu Y, Xu M, Tong J, Tang X, Chen J, Chen X, Zhang Z, Cao B, Stewart AK, Moran MF, Wu D, Mao X. Targeting the Otub1/c-Maf axis for the treatment of multiple myeloma. Blood 2021; 137:1478-1490. [PMID: 32842143 DOI: 10.1182/blood.2020005199] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
The oncogenic transcription factor c-Maf has been proposed as an ideal therapeutic target for multiple myeloma (MM), but how to achieve it is still elusive. In the present study, we found the Otub1/c-Maf axis could be a potential target. Otub1, an OTU family deubiquitinase, was found to interact with c-Maf by mass spectrometry. Otub1 abrogates c-Maf K48-linked polyubiquitination, thus preventing its degradation and enhancing its transcriptional activity. Specifically, this deubiquitinating activity depends on its Lys71 and the N terminus but is independent of UBE2O, a known E2 of c-Maf. Otub1 promotes MM cell survival and MM tumor growth. In contrast, silence of Otub1 leads to c-Maf degradation and c-Maf-expressing MM cell apoptosis. Therefore, the Otub1/c-Maf axis could be a therapeutic target of MM. In order to explore this concept, we performed a c-Maf recognition element-driven luciferase-based screen against US Food and Drug Administration-approved drugs and natural products, from which the generic cardiac glycoside lanatoside C (LanC) is found to prevent c-Maf deubiquitination and induces its degradation by disrupting the interaction of Otub1 and c-Maf. Consequently, LanC inhibits c-Maf transcriptional activity, induces c-Maf-expressing MM cell apoptosis, and suppresses MM growth and prolongs overall survival of model mice, but without apparent toxicity. Therefore, the present study identifies Otub1 as a novel deubiquitinase of c-Maf and establishes that the Otub1/c-Maf axis is a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Yujia Xu
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital-Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Min Xu
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jiefei Tong
- Program in Cell Biology, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Suzhou, China
| | - Jinhao Chen
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xuehan Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | | | - Michael F Moran
- Program in Cell Biology, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Suzhou, China
| | - Xinliang Mao
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital-Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Sun T, Xu Y, Xu Z, Cao B, Zhang Z, Wang Q, Kong Y, Mao X. Inhibition of the Otub1/c-Maf axis by the herbal acevaltrate induces myeloma cell apoptosis. Cell Commun Signal 2021; 19:24. [PMID: 33627137 PMCID: PMC7905600 DOI: 10.1186/s12964-020-00676-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The oncogenic transcript factor c-Maf is stabilized by the deubiquitinase Otub1 and promotes myeloma cell proliferation and confers to chemoresistance. Inhibition of the Otub1/c-Maf axis is a promising therapeutic target, but there are no inhibitors reported on this specific axis. METHODS A luciferase assay was applied to screen potential inhibitors of Otub1/c-Maf. Annexin V staining/flow cytometry was applied to evaluate cell apoptosis. Immunoprecipitation was applied to examine protein ubiquitination and interaction. Xenograft models in nude mice were used to evaluate anti-myeloma activity of AVT. RESULTS Acevaltrate (AVT), isolated from Valeriana glechomifolia, was identified based on a bioactive screen against the Otub1/c-Maf/luciferase system. AVT disrupts the interaction of Otub1/c-Maf thus inhibiting Otub1 activity and leading to c-Maf polyubiquitination and subsequent degradation in proteasomes. Consistently, AVT inhibits c-Maf transcriptional activity and downregulates the expression of its target genes key for myeloma growth and survival. Moreover, AVT displays potent anti-myeloma activity by triggering myeloma cell apoptosis in vitro and impairing myeloma xenograft growth in vivo but presents no marked toxicity. CONCLUSIONS The natural product AVT inhibits the Otub1/c-Maf axis and displays potent anti-myeloma activity. Given its great safety and efficacy, AVT could be further developed for MM treatment. Video Abstract.
Collapse
Affiliation(s)
- Tong Sun
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100 Jiangsu People’s Republic of China
| | - Yujia Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Zhuan Xu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100 Jiangsu People’s Republic of China
| | - Biyin Cao
- Department of Pharmacology, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Zubin Zhang
- Department of Pharmacology, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Qi Wang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
| | - Yan Kong
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100 Jiangsu People’s Republic of China
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
- Department of Pharmacology, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
- Guangdong Institute of Cardiovascular Diseases & Guangdong Key Lab for Protein Modifications and Degradation, The Second Affiliated Hospital & School of Basic Medicine, Guangzhou Medical University , Guangzhou, 511436 People’s Republic of China
| |
Collapse
|
18
|
Shi Z, Liu R, Lu Q, Zeng Z, Liu Y, Zhao J, Liu X, Li L, Huang H, Yao Y, Huang D, Xu Q. UBE2O promotes hepatocellular carcinoma cell proliferation and invasion by regulating the AMPKα2/mTOR pathway. Int J Med Sci 2021; 18:3749-3758. [PMID: 34790050 PMCID: PMC8579295 DOI: 10.7150/ijms.63220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
The ubiquitin-conjugating enzyme (E2) is a critical component of the ubiquitin-proteasome system and regulates hepatocarcinogenesis by controlling protein degradation. Ubiquitin-conjugating enzyme E2 O (UBE2O), a member of the E2 family, functions as an oncogene in human cancers. Nevertheless, the role of UBE2O in hepatocellular carcinoma (HCC) remains unknown yet. Here, we demonstrated that the UBE2O level was markedly upregulated in HCC compared with adjacent noncancerous tissues. UBE2O overexpression was also confirmed in HCC cell lines. UBE2O overexpression was prominently associated with advanced tumor stage, high tumor grade, venous infiltration, and reduced HCC patients' survivals. UBE2O knockdown inhibited the migration, invasion, and proliferation of HCCLM3 cells. UBE2O overexpression enhanced the proliferation and mobility of Huh7 cells. Mechanistically, UBE2O mediated the ubiquitination and degradation of AMP-activated protein kinase α2 (AMPKα2) in HCC cells. UBE2O silencing prominently increased AMPKα2 level and reduced phosphorylated mechanistic target of rapamycin kinase (p-mTOR), MYC, Cyclin D1, HIF1α, and SREBP1 levels in HCCLM3 cells. UBE2O depletion markedly activated the AMPKα2/mTOR pathway in Huh7 cells. Moreover, AMPKα2 silencing reversed UBE2O downregulation-induced mTOR pathway inactivation. Rapamycin, an inhibitor of mTOR, remarkably abolished UBE2O-induced mTOR phosphorylation and HCC cell proliferation and mobility. To conclude, UBE2O was highly expressed in HCC and its overexpression conferred to the poor clinical outcomes of patients. UBE2O contributed to the malignant behaviors of HCC cells, including cell proliferation, migration, and invasion, by reducing AMPKα2 stability and activating the mTOR pathway.
Collapse
Affiliation(s)
- Zhan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Zhi Zeng
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu 233030, China
| | - Xin Liu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Lijie Li
- Department of Obstetrics and Gynaecology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Hui Huang
- Affiliated Quzhou People's Hospital, Zhejiang Chinese Medical University, Quzhou 324002, China
| | - Yingmin Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
19
|
Zhou H, Lei M, Wang W, Guo M, Wang J, Zhang H, Qiao L, Feng H, Liu Z, Chen L, Hou J, Wang X, Gu C, Zhao B, Izumchenko E, Yang Y, Zhu Y. In vitro and in vivo efficacy of the novel oral proteasome inhibitor NNU546 in multiple myeloma. Aging (Albany NY) 2020; 12:22949-22974. [PMID: 33203800 PMCID: PMC7746380 DOI: 10.18632/aging.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/15/2020] [Indexed: 01/14/2023]
Abstract
Proteasome inhibition demonstrates highly effective impact on multiple myeloma (MM) treatment. Here, we aimed to examine anti-tumor efficiency and underlying mechanisms of a novel well tolerated orally applicable proteasome inhibitor NNU546 and its hydrolyzed pharmacologically active form NNU219. NNU219 showed more selective inhibition to proteasome catalytic subunits and less off-target effect than bortezomib ex vivo. Moreover, intravenous and oral administration of either NNU219 or NNU546 led to more sustained pharmacodynamic inhibitions of proteasome activities compared with bortezomib. Importantly, NNU219 exhibited potential anti-MM activity in both MM cell lines and primary samples in vitro. The anti-MM activity of NNU219 was associated with induction of G2/M-phase arrest and apoptosis via activation of the caspase cascade and endoplasmic reticulum stress response. Significant growth-inhibitory effects of NNU219 and NNU546 were observed in 3 different human MM xenograft mouse models. Furthermore, such observation was even found in the presence of a bone marrow microenvironment. Taken together, these findings provided the basis for clinical trial of NNU546 to determine its potential as a candidate for MM treatment.
Collapse
Affiliation(s)
- Hui Zhou
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Meng Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wang Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mengjie Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| | - Haoyang Zhang
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Li Qiao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huayun Feng
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhaogang Liu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| | - Lijuan Chen
- The 1st Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jianhao Hou
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Chenxi Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Bo Zhao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.,The 3rd Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China.,Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| |
Collapse
|
20
|
Xu Y, Sun T, Zeng K, Xu M, Chen J, Xu X, Zhang Z, Cao B, Tang X, Wu D, Kong Y, Zeng Y, Mao X. Anti-bacterial and anti-viral nanchangmycin displays anti-myeloma activity by targeting Otub1 and c-Maf. Cell Death Dis 2020; 11:818. [PMID: 32999280 PMCID: PMC7527563 DOI: 10.1038/s41419-020-03017-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
As a deubiqutinase Otub1 stabilizes and promotes the oncogenic activity of the transcription factor c-Maf in multiple myeloma (MM), a malignancy of plasma cells. In the screen for bioactive inhibitors of the Otub1/c-Maf axis for MM treatment, nanchangmycin (Nam), a polyketide antibiotic, was identified to suppress c-Maf activity in the presence of Otub1. By suppressing Otub1, Nam induces c-Maf polyubiquitination and subsequent degradation in proteasomes but does not alter its mRNA level. Consistently, Nam downregulates the expression of CCND2, ARK5, and ITGB7, the downstream genes regulated by c-Maf, and promotes MM cell apoptosis as evidenced by PARP and Caspase-3 cleavage, as well as Annexin V staining. In line with the hypothesis, overexpression of Otub1 partly rescues Nam-induced MM cell apoptosis, and interestingly, when Otub1 is knocked down, Nam-decreased MM cell survival is also partly ablated, suggesting Otub1 is essential for Nam anti-MM activity. Nam also displays potent anti-MM activity synergistically with Doxorubicin or lenalidomide. In the in vivo assays, Nam almost completely suppresses the growth of MM xenografts in nude mice at low dosages but it shows no toxicity. Given its safety and efficacy, Nam has a potential for MM treatment by targeting the Otub1/c-Maf axis.
Collapse
Affiliation(s)
- Yujia Xu
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital; Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tong Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Kun Zeng
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Min Xu
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215620, China
| | - Jinhao Chen
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215620, China
| | - Xiaofeng Xu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaowen Tang
- Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China
| | - Depei Wu
- Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China
| | - Yan Kong
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215100, P. R. China.
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital; Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
21
|
Huang Y, Yang X, Lu Y, Zhao Y, Meng R, Zhang S, Dong X, Xu S, Wu G. UBE2O targets Mxi1 for ubiquitination and degradation to promote lung cancer progression and radioresistance. Cell Death Differ 2020; 28:671-684. [PMID: 32901121 PMCID: PMC7862231 DOI: 10.1038/s41418-020-00616-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
UBE2O, an E2/E3 hybrid ubiquitin-protein ligase, has been implicated in the regulation of adipogenesis, erythroid differentiation, and tumor proliferation. However, its role in cancer radioresistance remains completely unknown. Here, we uncover that UBE2O interacts and targets Mxi1 for ubiquitination and degradation at the K46 residue. Furthermore, we show that genetical or pharmacological blockade of UBE2O impairs tumor progression and radioresistance in lung cancer in vitro and in vivo, and these effects can be restored by Mxi1 inhibition. Moreover, we demonstrate that UBE2O is overexpressed and negatively correlated with Mxi1 protein levels in lung cancer tissues. Collectively, our work reveals that UBE2O facilitates tumorigenesis and radioresistance by promoting Mxi1 ubiquitination and degradation, suggesting that UBE2O is an attractive radiosensitization target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yumei Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xijie Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanwei Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
Chen X, Zhang S, Liu C, Li G, Lu S, Wang Y, Zhang X, Huang D, Qiu Y, Liu Y. UBE2O Promotes Progression and Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:6191-6202. [PMID: 32636643 PMCID: PMC7334014 DOI: 10.2147/ott.s253861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background UBE2O, as a member of the ubiquitin-conjugating enzyme family, is abnormally expressed and exhibits abnormal functions in human malignancies. However, the function of UBE2O in head and neck squamous cell carcinoma (HNSCC) remains unknown. Therefore, our study aims to investigate the role of UBE2O in HNSCC progression and the underlying mechanisms. Methods The expression of UBE2O in HNSCC patients was investigated with data from the Cancer Genome Atlas (TCGA) and from a separate primary tumor cohort. The function of UBE2O in HNSCC cells was studied by cell viability assay, colony formation assay, wound healing assay, and cell migration and invasion chamber assay. The effect of UBE2O on tumor growth in vivo was determined in a subcutaneous xenograft model of HNSCC. Results TCGA data showed that UBE2O mRNA expression was dramatically increased in HNSCC tissues and that patients with high expression of UBE2O transcripts had a worse survival prognosis than patients with low expression of UBE2O transcripts. Gain-of-function and loss-of-function analyses revealed that oncogenic UBE2O enhanced the proliferation, migration and invasion of HNSCC cells in vitro. Further, mechanistic analysis revealed that UBE2O induced the epithelial-mesenchymal transition (EMT) phenotype and also potentiated TGF-β1-induced EMT, and thus leading to an enhanced capacity of migration and invasion in HNSCC. Finally, xenograft models showed that UBE2O knockout obviously inhibited the occurrence of EMT, angiogenesis and tumor growth in HNSCC in vivo. Conclusion Our study indicates that UBE2O acts as an oncogene to promote the malignant progression and EMT of HNSCC.
Collapse
Affiliation(s)
- Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
23
|
Hsu CY, Fu SH, Chien MW, Liu YW, Chen SJ, Sytwu HK. Post-Translational Modifications of Transcription Factors Harnessing the Etiology and Pathophysiology in Colonic Diseases. Int J Mol Sci 2020; 21:ijms21093207. [PMID: 32369982 PMCID: PMC7246881 DOI: 10.3390/ijms21093207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Defects in mucosal immune balance can lead to colonic diseases such as inflammatory bowel diseases and colorectal cancer. With the advancement of understanding for the immunological and molecular basis of colonic disease, therapies targeting transcription factors have become a potential approach for the treatment of colonic disease. To date, the biomedical significance of unique post-translational modifications on transcription factors has been identified, including phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. This review focuses on our current understanding and the emerging evidence of how post-translational regulations modify transcription factors involved in the etiology and pathophysiology of colonic disease as well as the implications of these findings for new therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Chao-Yuan Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Shin-Huei Fu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan;
- Molecular Cell Biology, Taiwan International Graduate Program, No.128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Shyi-Jou Chen
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan;
- Correspondence: ; Tel.: +886-2-8792-3100 (ext. 18539); Fax: +886-2-8792-1774
| |
Collapse
|
24
|
Ren Y, Xu X, Mao CY, Han KK, Xu YJ, Cao BY, Zhang ZB, Sethi G, Tang XW, Mao XL. RNF6 promotes myeloma cell proliferation and survival by inducing glucocorticoid receptor polyubiquitination. Acta Pharmacol Sin 2020; 41:394-403. [PMID: 31645658 PMCID: PMC7470801 DOI: 10.1038/s41401-019-0309-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
RNF6, a RING-type ubiquitin ligase, has been identified as an oncogene in various cancers but its role in multiple myeloma (MM) remains elusive. In the present study we first showed that the expression levels of RNF6 in MM were significantly elevated compared with the bone marrow cells of healthy donors. Overexpression of RNF6 in LP1 and PRMI-8266 MM cell lines promoted cell proliferation, whereas knockdown of RNF6 led to apoptosis of MM cells. Furthermore, we revealed that RNF6, as a ubiquitin ligase, interacted with glucocorticoid receptor (GR) and induced its K63-linked polyubiquitination. Different from current knowledge, RNF6 increased GR stability at both endogenous and exogenous contexts. Such an action greatly promoted GR transcriptional activity, which was confirmed by luciferase assays and by the increased expression levels of prosurvival genes including Bcl-xL and Mcl-1, two typical downstream genes of the GR pathway. Consistent with these findings, ectopic expression of RNF6 in MM cells conferred resistance to dexamethasone, a typical anti-myeloma agent. In conclusion, we demonstrate that RNF6 promotes MM cell proliferation and survival by inducing atypical polyubiquitination to GR, and RNF6 could be a promising therapeutic target for the treatment of MM.
Collapse
|
25
|
He Y, Wang S, Tong J, Jiang S, Yang Y, Zhang Z, Xu Y, Zeng Y, Cao B, Moran MF, Mao X. The deubiquitinase USP7 stabilizes Maf proteins to promote myeloma cell survival. J Biol Chem 2019; 295:2084-2096. [PMID: 31822558 DOI: 10.1074/jbc.ra119.010724] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
The Maf proteins, including c-Maf, MafA, and MafB, are critical transcription factors in myelomagenesis. Previous studies demonstrated that Maf proteins are processed by the ubiquitin-proteasome pathway, but the mechanisms remain elusive. This study applied MS to identify MafB ubiquitination-associated proteins and found that the ubiquitin-specific protease USP7 was present in the MafB interactome. Moreover, USP7 also interacted with c-Maf and MafA and blocked their polyubiquitination and degradation. Consistently, knockdown of USP7 resulted in Maf protein degradation along with increased polyubiquitination levels. The action of USP7 thus promoted Maf transcriptional activity as evidenced by luciferase assays and by the up-regulation of the expression of Maf-modulated genes. Furthermore, USP7 was up-regulated in myeloma cells, and it was negatively associated with the survival of myeloma patients. USP7 promoted myeloma cell survival, and when it was inhibited by its specific inhibitor P5091, myeloma cell lines underwent apoptosis. These results therefore demonstrated that USP7 is a deubiquitinase of Maf proteins and promotes MM cell survival in association with Maf stability. Given the significance of USP7 and Maf proteins in myeloma genesis, targeting the USP7/Maf axle is a potential strategy to the precision therapy of MM.
Collapse
Affiliation(s)
- Yuanming He
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Guangzhou and Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Siyu Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiefei Tong
- Program in Cell Biology, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto M5G 0A4, Canada
| | - Shuoyi Jiang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Guangzhou and Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Ye Yang
- School of Basic Medicine, Nanjing University of Traditional Medicine, Nanjing 210023, China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujia Xu
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou 215100, China.
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto M5G 0A4, Canada
| | - Xinliang Mao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Guangzhou and Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China; Guangzhou Institute of Cardiovascular Disease and Department of Hematology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
26
|
Mebendazole elicits potent antimyeloma activity by inhibiting the USP5/c-Maf axis. Acta Pharmacol Sin 2019; 40:1568-1577. [PMID: 31197245 PMCID: PMC7468578 DOI: 10.1038/s41401-019-0249-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
c-Maf is a critical oncogenic transcription factor that contributes to myelomagenesis. Our previous studies demonstrated that the deubiquitinase USP5 stabilizes c-Maf and promotes myeloma cell proliferation and survival; therefore, the USP5/c-Maf axis could be a potential target for myeloma therapy. As a concept of principle, the present study established a USP5/c-Maf-based luciferase system that was used to screen an FDA-approved drug library. It was found that mebendazole, a typical anthelmintic drug, preferentially induced apoptosis in c-Maf-expressing myeloma cells. Moreover, oral administration of mebendazole delayed the growth of human myeloma xenografts in nude mice but did not show overt toxicity. Further studies showed that the selective antimyeloma activity of mebendazole was associated with the inhibition of the USP5/c-Maf axis. Mebendazole downregulated USP5 expression and disrupted the interaction between USP5 and c-Maf, thus leading to increased levels of c-Maf ubiquitination and subsequent c-Maf degradation. Mebendazole inhibited c-Maf transcriptional activity, as confirmed by both luciferase assays and expression measurements of c-Maf downstream genes. In summary, this study identified mebendazole as a USP5/c-Maf inhibitor that could be developed as a novel antimyeloma agent.
Collapse
|
27
|
Abstract
The hedgehog-smoothened (HH/SMO) pathway has been proposed as a potential therapeutic target for hematological malignancies. Our previous studies designed a series of HH inhibitors with novel scaffolds distinctive from vismodegib, the first Food and Drug Administration-approved HH inhibitor for the treatment of basal-cell carcinoma and medulloblastoma. In the present study, we evaluated these HH inhibitors against blood cancers and found that HH78 displayed potent activity in suppressing the HH signaling pathway. HH78 competitively bound to SMO and suppressed the transcriptional activity of GLI by the luciferase reporter gene assay and the measurement of HH/SMO-downregulated genes, including cyclin D2, cyclin E, PTCH1, PTCH2, and GLI. HH78 at low micromolar concentrations induced significant cancer cell apoptosis showed by increased caspase-3 activation, annexin V-staining and downregulated prosurvival proteins, including c-Myc, Bcl-2, Mcl-1, and Bcl-xL. In contrast, vismodegib did not show any effects on these apoptotic events. HH78 also suppressed the activation of the AKT/mTOR pathway, which cross-talks with the HH/SMO pathway. Finally, HH78 inhibited the growth of human leukemia K562 in nude mice xenografts with no overt toxicity. Collectively, the present study identified a novel HH inhibitor with great potential for the treatment of hematological malignancies.
Collapse
|
28
|
Nian F, Zhu J, Chang H. Long non-coding RNA ANGPTL1-3 promotes multiple myeloma bortezomib resistance by sponging miR-30a-3p to activate c-Maf expression. Biochem Biophys Res Commun 2019; 514:1140-1146. [DOI: 10.1016/j.bbrc.2019.05.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
|
29
|
Liu Y, Xu X, Lin P, He Y, Zhang Y, Cao B, Zhang Z, Sethi G, Liu J, Zhou X, Mao X. Inhibition of the deubiquitinase USP9x induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis. J Biol Chem 2019; 294:4572-4582. [PMID: 30718275 PMCID: PMC6433065 DOI: 10.1074/jbc.ra118.006057] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/29/2019] [Indexed: 01/21/2023] Open
Abstract
Chemoresistance is a leading obstacle in effective management of advanced prostate cancer (PCa). A better understanding of the molecular mechanisms involved in PCa chemoresistance could improve treatment of patients with PCa. In the present study, using immune histochemical, chemistry, and precipitation assays with cells from individuals with benign or malignant prostate cancer or established PCa cell lines, we found that the oncogenic transcription factor pre-B cell leukemia homeobox-1 (PBX1) promotes PCa cell proliferation and confers to resistance against common anti-cancer drugs such as doxorubicin and cisplatin. We observed that genetic PBX1 knockdown abrogates this resistance, and further experiments revealed that PBX1 stability was modulated by the ubiquitin-proteasomal pathway. To directly probe the impact of this pathway on PBX1 activity, we screened for PBX1-specific deubiquitinases (Dubs) and found that ubiquitin-specific peptidase 9 X-linked (USP9x) interacted with and stabilized the PBX1 protein by attenuating its Lys-48-linked polyubiquitination. Moreover, the USP9x inhibitor WP1130 markedly induced PBX1 degradation and promoted PCa cell apoptosis. The results in this study indicate that PBX1 confers to PCa chemoresistance and identify USP9x as a Dub of PBX1. We concluded that targeting the USP9x/PBX1 axis could be a potential therapeutic strategy for managing advanced prostate cancer.
Collapse
Affiliation(s)
- Yan Liu
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Sichuan Kelun Pharmaceutical Co., Ltd., Chengdu, Sichuan 610071, China
| | - Xiaofeng Xu
- the Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 21002, China
| | - Peng Lin
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuanming He
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yawen Zhang
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Biyin Cao
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zubin Zhang
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Gautam Sethi
- the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore
| | - Jinbao Liu
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
| | - Xiumin Zhou
- the Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China, and
| | - Xinliang Mao
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China,
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
30
|
Ullah K, Zubia E, Narayan M, Yang J, Xu G. Diverse roles of the E2/E3 hybrid enzyme
UBE
2O in the regulation of protein ubiquitination, cellular functions, and disease onset. FEBS J 2018; 286:2018-2034. [DOI: 10.1111/febs.14708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Emmanuel Zubia
- Department of Chemistry and Biochemistry The University of Texas at El Paso TX USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry The University of Texas at El Paso TX USA
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| |
Collapse
|
31
|
Hsu CY, Yeh LT, Fu SH, Chien MW, Liu YW, Miaw SC, Chang DM, Sytwu HK. SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes. J Clin Invest 2018; 128:3779-3793. [PMID: 30059018 DOI: 10.1172/jci98786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
SUMOylation is involved in the development of several inflammatory diseases, but the physiological significance of SUMO-modulated c-Maf in autoimmune diabetes is not completely understood. Here, we report that an age-dependent attenuation of c-Maf SUMOylation in CD4+ T cells is positively correlated with the IL-21-mediated diabetogenesis in NOD mice. Using 2 strains of T cell-specific transgenic NOD mice overexpressing wild-type c-Maf (Tg-WTc) or SUMOylation site-mutated c-Maf (Tg-KRc), we demonstrated that Tg-KRc mice developed diabetes more rapidly than Tg-WTc mice in a CD4+ T cell-autonomous manner. Moreover, SUMO-defective c-Maf preferentially transactivated Il21 to promote the development of CD4+ T cells with an extrafollicular helper T cell phenotype and expand the numbers of granzyme B-producing effector/memory CD8+ T cells. Furthermore, SUMO-defective c-Maf selectively inhibited recruitment of Daxx/HDAC2 to the Il21 promoter and enhanced histone acetylation mediated by CREB-binding protein (CBP) and p300. Using pharmacological interference with CBP/p300, we illustrated that CBP30 treatment ameliorated c-Maf-mediated/IL-21-based diabetogenesis. Taken together, our results show that the SUMOylation status of c-Maf has a stronger regulatory effect on IL-21 than the level of c-Maf expression, through an epigenetic mechanism. These findings provide new insights into how SUMOylation modulates the pathogenesis of autoimmune diabetes in a T cell-restricted manner and on the basis of a single transcription factor.
Collapse
Affiliation(s)
| | - Li-Tzu Yeh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences and.,Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Deh-Ming Chang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences and.,Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
32
|
Chen S, Yang J, Zhang Y, Duan C, Liu Q, Huang Z, Xu Y, Zhou L, Xu G. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1. J Biol Chem 2018; 293:11296-11309. [PMID: 29871923 DOI: 10.1074/jbc.ra117.001432] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Dysregulation of the circadian rhythm is associated with many diseases, including diabetes, obesity, and cancer. Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Arntl or Bmal1) is the only clock gene whose loss disrupts circadian locomotor behavior in constant darkness. BMAL1 levels are affected by proteasomal inhibition and by several enzymes in the ubiquitin-proteasome system, but the exact molecular mechanism remains unclear. Here, using immunoprecipitation and MS analyses, we discovered an interaction between BMAL1 and ubiquitin-conjugating enzyme E2 O (UBE2O), an E3-independent E2 ubiquitin-conjugating enzyme (i.e. hybrid E2/E3 enzyme). Biochemical experiments with cell lines and animal tissues validated this specific interaction and uncovered that UBE2O expression reduces BMAL1 levels by promoting its ubiquitination and degradation. Moreover, UBE2O expression/knockdown diminished/increased, respectively, BMAL1-mediated transcriptional activity but did not affect BMAL1 gene expression. Bioluminescence experiments disclosed that UBE2O knockdown elevates the amplitude of the circadian clock in human osteosarcoma U2OS cells. Furthermore, mapping of the BMAL1-interacting domain in UBE2O and analyses of BMAL1 stability and ubiquitination revealed that the conserved region 2 (CR2) in UBE2O significantly enhances BMAL1 ubiquitination and decreases BMAL1 protein levels. A Cys-to-Ser substitution experiment identified the critical Cys residue in the CR2 domain responsible for BMAL1 ubiquitination. This work identifies UBE2O as a critical regulator in the ubiquitin-proteasome system, which modulates BMAL1 transcriptional activity and circadian function by promoting BMAL1 ubiquitination and degradation under normal physiological conditions.
Collapse
Affiliation(s)
- Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Chunyan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhengyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
33
|
Du Y, Liu Y, Xu Y, Juan J, Zhang Z, Xu Z, Cao B, Wang Q, Zeng Y, Mao X. The transmembrane protein TMEPAI induces myeloma cell apoptosis by promoting degradation of the c-Maf transcription factor. J Biol Chem 2018; 293:5847-5859. [PMID: 29467225 DOI: 10.1074/jbc.ra117.000972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/14/2018] [Indexed: 11/06/2022] Open
Abstract
TMEPAI (transmembrane prostate androgen-induced protein, also called prostate transmembrane protein, androgen-induced 1 (PMEPA1)) is a type I transmembrane (TM) protein, but its cellular function is largely unknown. Here, studying factors influencing the stability of c-Maf, a critical transcription factor in multiple myeloma (MM), we found that TMEPAI induced c-Maf degradation. We observed that TMEPAI recruited NEDD4 (neural precursor cell expressed, developmentally down-regulated 4), a WW domain-containing ubiquitin ligase, to c-Maf, leading to its degradation through the proteasomal pathway. Further investigation revealed that TMEPAI interacts with NEDD4 via its conserved PY motifs. Alanine substitution or deletion of these motifs abrogated the TMEPAI complex formation with NEDD4, resulting in failed c-Maf degradation. Functionally, TMEPAI suppressed the transcriptional activity of c-Maf. Of note, increased TMEPAI expression was positively associated with the overall survival of MM patients. Moreover, TMEPAI was down-regulated in MM cells, and re-expression of TMEPAI induced MM cell apoptosis. In conclusion, this study highlights that TMEPAI decreases c-Maf stability by recruiting the ubiquitin ligase NEDD4 to c-Maf for proteasomal degradation. Our findings suggest that the restoration of functional TMEPA1 expression may represent a promising complementary therapeutic strategy for treating patients with MM.
Collapse
Affiliation(s)
- Yanyun Du
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yan Liu
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujia Xu
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiaxiang Juan
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zubin Zhang
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuan Xu
- the Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215100, China
| | - Biyin Cao
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qi Wang
- the Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou 215100, China, and
| | - Xinliang Mao
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China, .,the Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
34
|
Inhibition of the deubiquitinase USP5 leads to c-Maf protein degradation and myeloma cell apoptosis. Cell Death Dis 2017; 8:e3058. [PMID: 28933784 PMCID: PMC5636991 DOI: 10.1038/cddis.2017.450] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/04/2022]
Abstract
The deubiquitinase USP5 stabilizes c-Maf, a key transcription factor in multiple myeloma (MM), but the mechanisms and significance are unclear. In the present study, USP5 was found to interact with c-Maf and prevented it from degradation by decreasing its polyubiquitination level. Specifically, the 308th and 347th lysine residues in c-Maf were critical for USP5-mediated deubiquitination and stability. There are five key domains in the USP5 protein and subsequent studies revealed that the cryptic ZnF domain and the C-box domain interacted with c-Maf but the UBA1/UBA2 domain partly increased its stability. Notably, MafA and MafB are also members of the c-Maf family, however, USP5 failed to deubiquitinate MafA, suggesting its substrate specificity. In the functional studies, USP5 was found to promoted the transcriptional activity of c-Maf. Consistent with the high level of c-Maf protein in MM cells, USP5 was also highly expressed. When USP5 was knocked down, c-Maf underwent degradation. Interestingly, USP5 silence led to apoptosis of MM cells expressing c-Maf but not MM cells lacking c-Maf, indicating c-Maf is a key factor in USP5-mediated MM cell proliferation and survival. Consistent with this finding, WP1130, an inhibitor of several Dubs including USP5, suppressed the transcriptional activity of c-Maf and induced MM cell apoptosis. When c-Maf was overexpressed, WP1130-induced MM cell apoptosis was abolished. Taken together, these findings suggest that USP5 regulates c-Maf stability and MM cell survival. Targeting the USP5/c-Maf axis could be a potential strategy for MM treatment.
Collapse
|