1
|
Hong J, Liu W, Xiao X, Gajendran B, Ben-David Y. Targeting pivotal amino acids metabolism for treatment of leukemia. Heliyon 2024; 10:e40492. [PMID: 39654725 PMCID: PMC11626780 DOI: 10.1016/j.heliyon.2024.e40492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Metabolic reprogramming is a crucial characteristic of cancer, allowing cancer cells to acquire metabolic properties that support their survival, immune evasion, and uncontrolled proliferation. Consequently, targeting cancer metabolism has become an essential therapeutic strategy. Abnormal amino acid metabolism is not only a key aspect of metabolic reprogramming but also plays a significant role in chemotherapy resistance and immune evasion, particularly in leukemia. Changes in amino acid metabolism in tumor cells are typically driven by a combination of signaling pathways and transcription factors. Current approaches to targeting amino acid metabolism in leukemia include inhibiting amino acid transporters, blocking amino acid biosynthesis, and depleting specific amino acids to induce apoptosis in leukemic cells. Different types of leukemic cells rely on the exogenous supply of specific amino acids, such as asparagine, glutamine, arginine, and tryptophan. Therefore, disrupting the supply of these amino acids may represent a vulnerability in leukemia. This review focuses on the pivotal role of amino acids in leukemia metabolism, their impact on leukemic stem cells, and their therapeutic potential.
Collapse
Affiliation(s)
- Jiankun Hong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Babu Gajendran
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, 550014, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, PR China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| |
Collapse
|
2
|
Isakova AA, Druzhkova IN, Mozherov AM, Mazur DV, Antipova NV, Krasnov KS, Fadeev RS, Gasparian ME, Yagolovich AV. Glioblastoma Sensitization to Therapeutic Effects by Glutamine Deprivation Depends on Cellular Phenotype and Metabolism. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1744-1758. [PMID: 39523113 DOI: 10.1134/s0006297924100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024]
Abstract
Glutamine plays an important role in tumor metabolism. It is known that the core region of solid tumors is deprived of glutamine, which affects tumor growth and spread. Here we investigated the effect of glutamine deprivation on cellular metabolism and sensitivity of human glioblastoma cells U87MG and T98G to drugs of various origin: alkylating cytostatic agent temozolomide; cytokine TRAIL DR5-B - agonist of the DR5 receptor; and GMX1778 - a targeted inhibitor of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), limiting NAD biosynthesis. Bioinformatics analysis of the cell transcriptomes showed that U87MG cells have a more differentiated phenotype than T98G, and also differ in the expression profile of the genes associated with glutamine metabolism. Upon glutamine deprivation, growth rate of the U87MG and T98G cells decreased. Analysis of cellular metabolism by FLIM microscopy of NADH as well as assessment of lactate content in the medium showed that glutamine deprivation shifted metabolic status of the U87MG cells towards glycolysis. This was accompanied by the increase in expression of the stemness marker CD133, which collectively could indicate de-differentiation of these cells. At the same time, we observed increase in both expression of the DR5 receptor and sensitivity of the U87MG cells to DR5-B. On the contrary, glutamine deprivation of T98G cells induced metabolic shift towards oxidative phosphorylation, decrease in the DR5 expression and resistance to DR5-B. The effects of NAMPT inhibition also differed between the two cell lines and were opposite to the effects of DR5-B: upon glutamine deprivation, U87MG cells acquired resistance, while T98G cells were sensitized to GMX1778. Thus, phenotypic and metabolic differences between the two human glioblastoma cell lines caused divergent metabolic changes and contrasting responses to different targeted drugs during glutamine deprivation. These data should be considered when developing treatment strategies for glioblastoma via drug-mediated deprivation of amino acids, as well as when exploring novel therapeutic targets.
Collapse
Affiliation(s)
- Alina A Isakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina N Druzhkova
- Privolzhsky Research Medical University, Nizhny Novgorod, 603081, Russia
| | - Artem M Mozherov
- Privolzhsky Research Medical University, Nizhny Novgorod, 603081, Russia
| | - Diana V Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Nadezhda V Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kirill S Krasnov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Marine E Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | |
Collapse
|
3
|
de Andrade B, Renard G, Gennari A, Artico LL, Júnior JR, Kuhn D, Salles PPZ, Volken de Souza CF, Roth G, Chies JM, Yunes JA, Basso LA. Production Process Optimization of Recombinant Erwinia carotovoral-Asparaginase II in Escherichia coli Fed-Batch Cultures and Analysis of Antileukemic Potential. ACS OMEGA 2024; 9:34951-34963. [PMID: 39157126 PMCID: PMC11325515 DOI: 10.1021/acsomega.4c04711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
The aims of this work were to optimize the production of Erwinia carotovoral-asparaginase II enzyme in Escherichia coli by different fed-batch cultivation strategies using a benchtop bioreactor and to evaluate the therapeutic potential of the recombinant enzyme against different acute lymphoblastic leukemia cell lines. The highest enzyme activities (∼98,000 U/L) were obtained in cultures using the DO-stat feeding strategy with induction in 18 h of culture. Under these experimental conditions, the maximum values for recombinant l-asparaginase II (rASNase) yield per substrate, rASNase yield per biomass, and productivity were approximately 1204 U/gglucose, 3660 U/gcells, and 3260 U/(L·h), respectively. This condition was efficient for achieving high yields of the recombinant enzyme, which was purified and used in in vitro antileukemic potential tests. Of all the leukemic cell lines tested, RS4;11 showed the highest sensitivity to rASNase, with an IC50 value of approximately 0.0006 U/mL and more than 70% apoptotic cells. The study demonstrated that the cultivation strategies used were efficient for obtaining high yield and productivity of rASNase with therapeutic potential inasmuch as cytotoxic activity and induction of apoptosis were demonstrated for this protein.
Collapse
Affiliation(s)
- Bruna
Coelho de Andrade
- National
Institute of Science and Technology in Tuberculosis, Research Center
for Molecular and Functional Biology, Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate
Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Gaby Renard
- Quatro
G Pesquisa & Desenvolvimento Ltd., Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Adriano Gennari
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Leonardo Luís Artico
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - José Ricardo
Teixeira Júnior
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Daniel Kuhn
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Priscila Pini Zenatti Salles
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Claucia Fernada Volken de Souza
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Gustavo Roth
- Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Jocelei Maria Chies
- Quatro
G Pesquisa & Desenvolvimento Ltd., Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - José Andrés Yunes
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Department
of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Luiz Augusto Basso
- National
Institute of Science and Technology in Tuberculosis, Research Center
for Molecular and Functional Biology, Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate
Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
- Graduate
Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| |
Collapse
|
4
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
5
|
Cheng L, Wang X, Liu A, Zhu Y, Cheng H, Yu J, Gong L, Liu H, Shen G, Liu L. Phenylalanine deprivation inhibits multiple myeloma progression by perturbing endoplasmic reticulum homeostasis. Acta Pharm Sin B 2024; 14:3493-3512. [PMID: 39220878 PMCID: PMC11365427 DOI: 10.1016/j.apsb.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 09/04/2024] Open
Abstract
Amino acid metabolic remodeling is a hallmark of cancer, driving an increased nutritional demand for amino acids. Amino acids are pivotal for energetic regulation, biosynthetic support, and homeostatic maintenance to stimulate cancer progression. However, the role of phenylalanine in multiple myeloma (MM) remains unknown. Here, we demonstrate that phenylalanine levels in MM patients are decreased in plasma but elevated in bone marrow (BM) cells. After the treatment, phenylalanine levels increase in plasma and decrease in BM. This suggests that changes in phenylalanine have diagnostic value and that phenylalanine in the BM microenvironment is an essential source of nutrients for MM progression. The requirement for phenylalanine by MM cells exhibits a similar pattern. Inhibiting phenylalanine utilization suppresses MM cell growth and provides a synergistic effect with Bortezomib (BTZ) treatment in vitro and murine models. Mechanistically, phenylalanine deprivation induces excessive endoplasmic reticulum stress and leads to MM cell apoptosis through the ATF3-CHOP-DR5 pathway. Interference with ATF3 significantly affects phenylalanine deprivation therapy. In conclusion, we have identified phenylalanine metabolism as a characteristic feature of MM metabolic remodeling. Phenylalanine is necessary for MM proliferation, and its aberrant demand highlights the importance of low-phenylalanine diets as an adjuvant treatment for MM.
Collapse
Affiliation(s)
- Longhao Cheng
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaoxue Wang
- Department of Pharmacy, China–Japan Friendship Hospital, Beijing 100029, China
| | - Aijun Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Zhu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Hu Cheng
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Jiangling Yu
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Lili Gong
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Guolin Shen
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, Beijing 100020, China
| | - Lihong Liu
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
- Department of Pharmacy, China–Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
6
|
Fukui T, Yabumoto M, Nishida M, Hirokawa S, Sato R, Kurisu T, Nakai M, Hassan MA, Kishimoto K. Amino acid deprivation in cancer cells with compensatory autophagy induction increases sensitivity to autophagy inhibitors. Mol Cell Oncol 2024; 11:2377404. [PMID: 39021618 PMCID: PMC11253891 DOI: 10.1080/23723556.2024.2377404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Inhibition of autophagy is an important strategy in cancer therapy. However, prolonged inhibition of certain autophagies in established cancer cells may increase therapeutic resistance, though the underlying mechanisms of its induction and enhancement remain unclear. This study sought to elucidate the mechanisms of therapeutic resistance through repeated autophagy inhibition and amino acid deprivation (AD) in an in vitro model of in vivo chronic nutrient deprivation associated with cancer cell treatment. In the human cervical cancer cell line HeLa and human breast cancer cell line MCF-7, initial extracellular AD induced the immediate expression of endosomal microautophagy (eMI). However, repeated inhibition of eMI with U18666A and extracellular AD induced macroautophagy (MA) to compensate for reduced eMI, simultaneously decreasing cytotoxicity. Here, hyperphosphorylated JNK was transformed into a hypophosphorylated state, suggesting conversion of the cell death signal to a survival signal. In a nutrient medium, cell death could not be induced by MA inhibition. However, since LAT1 inhibitors induce intracellular AD, combining them with MA and eMI inhibitors successfully promoted cell death in resistant cells. Our study identified a novel therapeuic approach for promoting cell death and addressing therapeutic resistance in cancers under autophagy-inhibitor treatment.
Collapse
Affiliation(s)
- Takahito Fukui
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Manami Yabumoto
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Misuzu Nishida
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Shiori Hirokawa
- Graduate School of Environment and Energy Engineering, Waseda University, Tokyo, Japan
| | - Riho Sato
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Taichi Kurisu
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Miyu Nakai
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Md. Abul Hassan
- Faculty of Bioscience and Bioindustry, Tokushima University Graduate School of Advanced Technology and Science, Tokushima, Japan
| | - Koji Kishimoto
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Technology, Industrial and Social Sciences, Tokushima, Japan
| |
Collapse
|
7
|
Free TJ, Talley JP, Hyer CD, Miller CJ, Griffitts JS, Bundy BC. Engineering the Signal Resolution of a Paper-Based Cell-Free Glutamine Biosensor with Genetic Engineering, Metabolic Engineering, and Process Optimization. SENSORS (BASEL, SWITZERLAND) 2024; 24:3073. [PMID: 38793927 PMCID: PMC11124800 DOI: 10.3390/s24103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Specialized cancer treatments have the potential to exploit glutamine dependence to increase patient survival rates. Glutamine diagnostics capable of tracking a patient's response to treatment would enable a personalized treatment dosage to optimize the tradeoff between treatment success and dangerous side effects. Current clinical glutamine testing requires sophisticated and expensive lab-based tests, which are not broadly available on a frequent, individualized basis. To address the need for a low-cost, portable glutamine diagnostic, this work engineers a cell-free glutamine biosensor to overcome assay background and signal-to-noise limitations evident in previously reported studies. The findings from this work culminate in the development of a shelf-stable, paper-based, colorimetric glutamine test with a high signal strength and a high signal-to-background ratio for dramatically improved signal resolution. While the engineered glutamine test is important progress towards improving the management of cancer and other health conditions, this work also expands the assay development field of the promising cell-free biosensing platform, which can facilitate the low-cost detection of a broad variety of target molecules with high clinical value.
Collapse
Affiliation(s)
- Tyler J. Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Joseph P. Talley
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Chad D. Hyer
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Catherine J. Miller
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradley C. Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
8
|
Akinlalu A, Flaten Z, Rasuleva K, Mia MS, Bauer A, Elamurugan S, Ejjigu N, Maity S, Arshad A, Wu M, Xia W, Fan J, Guo A, Mathew S, Sun D. Integrated proteomic profiling identifies amino acids selectively cytotoxic to pancreatic cancer cells. Innovation (N Y) 2024; 5:100626. [PMID: 38699777 PMCID: PMC11063643 DOI: 10.1016/j.xinn.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers, characterized by extremely limited therapeutic options and a poor prognosis, as it is often diagnosed during late disease stages. Innovative and selective treatments are urgently needed, since current therapies have limited efficacy and significant side effects. Through proteomics analysis of extracellular vesicles, we discovered an imbalanced distribution of amino acids secreted by PDAC tumor cells. Our findings revealed that PDAC cells preferentially excrete proteins with certain preferential amino acids, including isoleucine and histidine, via extracellular vesicles. These amino acids are associated with disease progression and can be targeted to elicit selective toxicity to PDAC tumor cells. Both in vitro and in vivo experiments demonstrated that supplementation with these specific amino acids effectively eradicated PDAC cells. Mechanistically, we also identified XRN1 as a potential target for these amino acids. The high selectivity of this treatment method allows for specific targeting of tumor metabolism with very low toxicity to normal tissues. Furthermore, we found this treatment approach is easy-to-administer and with sustained tumor-killing effects. Together, our findings reveal that exocytosed amino acids may serve as therapeutic targets for designing treatments of intractable PDAC and potentially offer alternative treatments for other types of cancers.
Collapse
Affiliation(s)
- Alfred Akinlalu
- Department of Electrical and Computer Engineering, University of Denver, 2155 E Wesley Avenue, Denver, CO 80210, USA
| | - Zachariah Flaten
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Komila Rasuleva
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Md Saimon Mia
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, 1001 S. 1401 Albrecht Boulevard Sudro Hall, Fargo, ND 58102, USA
| | - Aaron Bauer
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Santhalingam Elamurugan
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Nega Ejjigu
- Biomedical Engineering Program, North Dakota State University; 1401 Centennial Boulevard, Engineering Administration, Room 203, Fargo, ND 58102, USA
| | - Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Amara Arshad
- Materials and Nanotechnology Program, North Dakota State University, 1410 North 14th Avenue, CIE 201, Fargo, ND 58102, USA
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Ang Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, 1001 S. 1401 Albrecht Boulevard Sudro Hall, Fargo, ND 58102, USA
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, 1001 S. 1401 Albrecht Boulevard Sudro Hall, Fargo, ND 58102, USA
| | - Dali Sun
- Department of Electrical and Computer Engineering, University of Denver, 2155 E Wesley Avenue, Denver, CO 80210, USA
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E Wesley Avenue, Denver, CO 80210, USA
| |
Collapse
|
9
|
Prasad YR, Anakha J, Pande AH. Treating liver cancer through arginine depletion. Drug Discov Today 2024; 29:103940. [PMID: 38452923 DOI: 10.1016/j.drudis.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Liver cancer, the sixth most common cancer globally and the second-leading cause of cancer-related deaths, presents a critical public health threat. Diagnosis often occurs in advanced stages of the disease, aligning incidence with fatality rates. Given that established treatments, such as stereotactic body radiation therapy and transarterial radioembolization, face accessibility and affordability challenges, the emerging focus on cancer cell metabolism, particularly arginine (Arg) depletion, offers a promising research avenue. Arg-depleting enzymes show efficacy against Arg-auxotrophic cancers, including hepatocellular carcinoma (HCC). Thus, in this review, we explore the limitations of current therapies and highlight the potential of Arg depletion, emphasizing various Arg-hydrolyzing enzymes in clinical development.
Collapse
Affiliation(s)
- Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
10
|
Han H, Zhang Y, Tang H, Zhou T, Khan A. A Review of the Use of Native and Engineered Probiotics for Colorectal Cancer Therapy. Int J Mol Sci 2024; 25:3896. [PMID: 38612706 PMCID: PMC11011422 DOI: 10.3390/ijms25073896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC) is a serious global health concern, and researchers have been investigating different strategies to prevent, treat, or support conventional therapies for CRC. This review article comprehensively covers CRC therapy involving wild-type bacteria, including probiotics and oncolytic bacteria as well as genetically modified bacteria. Given the close relationship between CRC and the gut microbiota, it is crucial to compile and present a comprehensive overview of bacterial therapies used in the context of colorectal cancer. It is evident that the use of native and engineered probiotics for colorectal cancer therapy necessitates research focused on enhancing the therapeutic properties of probiotic strains.. Genetically engineered probiotics might be designed to produce particular molecules or to target cancer cells more effectively and cure CRC patients.
Collapse
Affiliation(s)
- Huawen Han
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yifan Zhang
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China; (H.T.); (T.Z.)
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China; (H.T.); (T.Z.)
| | - Aman Khan
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
11
|
Raboni S, Fumagalli F, Ceccone G, La Spina R, Ponti J, Mehn D, Guerrini G, Bettati S, Mozzarelli A, D'Acunto M, Presciuttini G, Cristallini C, Gabellieri E, Cioni P. Conjugation to gold nanoparticles of methionine gamma-lyase, a cancer-starving enzyme. Physicochemical characterization of the nanocomplex for prospective nanomedicine applications. Int J Pharm 2024; 653:123882. [PMID: 38342324 DOI: 10.1016/j.ijpharm.2024.123882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
The pyridoxal 5'-dependent enzyme methionine γ-lyase (MGL) catalyzes the degradation of methionine. This activity has been profitable to develop an antitumor agent exploiting the strict dependence of most malignant cells on the availability of methionine. Indeed, methionine depletion blocks tumor proliferation and leads to an increased susceptibility to anticancer drugs. Here, we explore the conjugation of MGL to gold nanoparticles capped with citrate (AuNPs) as a novel strategy to deliver MGL to cancer cells. Measurements of Transmission Electron Microscopy, Dynamic Light Scattering, Asymmetrical Flow Field-Flow Fractionation, X-ray Photoelectron Spectroscopy, and Circular Dichroism allowed to achieve an extensive biophysical and biochemical characterization of the MGL-AuNP complex including particle size, size distribution, MGL loading yield, enzymatic activity, and impact of gold surface on protein structure. Noticeably, we found that activity retention was improved over time for the enzyme adsorbed to AuNPs with respect to the enzyme free in solution. The acquired body of knowledge on the nanocomplex properties and this encouraging stabilizing effect upon conjugation are the necessary basis for further studies aimed at the evaluation of the therapeutic potential of MGL-AuNP complex in a biological milieu.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy; Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy.
| | - Francesco Fumagalli
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Giacomo Ceccone
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Giuditta Guerrini
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy.
| | - Stefano Bettati
- Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy; Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43126 Parma, Italy; Interdepartmental Center Biopharmanet-TEC, University of Parma, Parma, Italy.
| | - Andrea Mozzarelli
- Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy.
| | - Mario D'Acunto
- Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy.
| | | | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF Pisa - CNR, Largo Lucio Lazzarino 2, 56122 Pisa, Italy.
| | - Edi Gabellieri
- Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy.
| | - Patrizia Cioni
- Institute of Biophysics, IBF Pisa - CNR, via G. Moruzzi, 1, 56124 Pisa, Italy.
| |
Collapse
|
12
|
Vázquez X, Lumbreras-Iglesias P, Rodicio MR, Fernández J, Bernal T, Moreno AF, de Ugarriza PL, Fernández-Verdugo A, Margolles A, Sabater C. Study of the intestinal microbiota composition and the effect of treatment with intensive chemotherapy in patients recovered from acute leukemia. Sci Rep 2024; 14:5585. [PMID: 38454103 PMCID: PMC10920697 DOI: 10.1038/s41598-024-56054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
A dataset comprising metagenomes of outpatients (n = 28) with acute leukemia (AL) and healthy controls (n = 14) was analysed to investigate the associations between gut microbiota composition and metabolic activity and AL. According to the results obtained, no significant differences in the microbial diversity between AL outpatients and healthy controls were found. However, significant differences in the abundance of specific microbial clades of healthy controls and AL outpatients were found. We found some differences at taxa level. The relative abundance of Enterobacteriaceae, Prevotellaceae and Rikenellaceae was increased in AL outpatients, while Bacteirodaceae, Bifidobacteriaceae and Lachnospiraceae was decreased. Interestingly, the abundances of several taxa including Bacteroides and Faecalibacterium species showed variations based on recovery time from the last cycle of chemotherapy. Functional annotation of metagenome-assembled genomes (MAGs) revealed the presence of functional domains corresponding to therapeutic enzymes including L-asparaginase in a wide range of genera including Prevotella, Ruminococcus, Faecalibacterium, Alistipes, Akkermansia. Metabolic network modelling revealed potential symbiotic relationships between Veillonella parvula and Levyella massiliensis and several species found in the microbiota of AL outpatients. These results may contribute to develop strategies for the recovery of microbiota composition profiles in the treatment of patients with AL.
Collapse
Grants
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
Collapse
Affiliation(s)
- Xenia Vázquez
- Dairy Research Institute of Asturias (IPLA), Spanish National Research Council, (CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), MicroHealth Group, Oviedo, Spain
| | - Pilar Lumbreras-Iglesias
- Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Clinical Microbiology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Department of Hematology Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - M Rosario Rodicio
- Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Functional Biology, Microbiology Area, University of Oviedo, Oviedo, Spain
| | - Javier Fernández
- Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Clinical Microbiology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain
| | - Teresa Bernal
- Department of Hematology Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Ainhoa Fernández Moreno
- Department of Hematology Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Paula López de Ugarriza
- Department of Hematology Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Ana Fernández-Verdugo
- Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Clinical Microbiology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Abelardo Margolles
- Dairy Research Institute of Asturias (IPLA), Spanish National Research Council, (CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), MicroHealth Group, Oviedo, Spain
| | - Carlos Sabater
- Dairy Research Institute of Asturias (IPLA), Spanish National Research Council, (CSIC), Villaviciosa, Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), MicroHealth Group, Oviedo, Spain.
| |
Collapse
|
13
|
Wang H, Liu J, Zhang Z, Peng J, Wang Z, Yang L, Wang X, Hu S, Hong L. β-Sitosterol targets ASS1 for Nrf2 ubiquitin-dependent degradation, inducing ROS-mediated apoptosis via the PTEN/PI3K/AKT signaling pathway in ovarian cancer. Free Radic Biol Med 2024; 214:137-157. [PMID: 38364944 DOI: 10.1016/j.freeradbiomed.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
The exploration of drugs derived from natural sources holds significant promise in addressing current limitations in ovarian cancer (OC) treatments. While previous studies have highlighted the remarkable anti-cancer properties of the natural compound β-sitosterol (SIT) across various tumors, its specific role in OC treatment remains unexplored. This study aims to investigate the anti-tumor activity of SIT in OC using in vitro and in vivo models, delineate potential mechanisms, and establish a preclinical theoretical foundation for future clinical trials, thus fostering further research. Utilizing network pharmacology, we pinpoint SIT as a promising candidate for OC treatment and predict its potential targets and pathways. Through a series of in vitro and in vivo experiments, we unveil a novel mechanism through which SIT mitigates the malignant biological behaviors of OC cells by modulating redox status. Specifically, SIT selectively targets argininosuccinate synthetase 1 (ASS1), a protein markedly overexpressed in OC tissues and cells. Inhibiting ASS1, SIT enhances the interaction between Nrf2 and Keap1, instigating the ubiquitin-dependent degradation of Nrf2, subsequently diminishing the transcriptional activation of downstream antioxidant genes HO-1 and NQO1. The interruption of the antioxidant program by SIT results in the substantial accumulation of reactive oxygen species (ROS) in OC cells. This, in turn, upregulates PTEN, exerting negative regulation on the phosphorylation activation of AKT. The suppression of AKT signaling disrupted downstream pathways associated with cell cycle, cell survival, apoptosis, migration, and invasion, ultimately culminating in the death of OC cells. Our research uncovers new targets and mechanisms of SIT against OC, contributing to the existing knowledge on the anti-tumor effects of natural products in the context of OC. Additionally, this research unveils a novel role of ASS1 in regulating the Nrf2-mediated antioxidant program and governing redox homeostasis in OC, providing a deeper understanding of this complex disease.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Zhi Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Lian Yang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Xinqi Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Siyuan Hu
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Li Hong
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| |
Collapse
|
14
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
15
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
16
|
Costa MDN, Silva TA, Guimarães DSPSF, Ricci-Azevedo R, Teixeira FR, Silveira LR, Gomes MD, Faça VM, de Oliveira EB, Calado RT, Silva RN. The recombinant L-lysine α-oxidase from the fungus Trichoderma harzianum promotes apoptosis and necrosis of leukemia CD34 + hematopoietic cells. Microb Cell Fact 2024; 23:51. [PMID: 38355518 PMCID: PMC10865671 DOI: 10.1186/s12934-024-02315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND In hematologic cancers, including leukemia, cells depend on amino acids for rapid growth. Anti-metabolites that prevent their synthesis or promote their degradation are considered potential cancer treatment agents. Amino acid deprivation triggers proliferation inhibition, autophagy, and programmed cell death. L-lysine, an essential amino acid, is required for tumor growth and has been investigated for its potential as a target for cancer treatment. L-lysine α-oxidase, a flavoenzyme that degrades L-lysine, has been studied for its ability to induce apoptosis and prevent cancer cell proliferation. In this study, we describe the use of L-lysine α-oxidase (LO) from the filamentous fungus Trichoderma harzianum for cancer treatment. RESULTS The study identified and characterized a novel LO from T. harzianum and demonstrated that the recombinant protein (rLO) has potent and selective cytotoxic effects on leukemic cells by triggering the apoptotic cascade through mitochondrial dysfunction. CONCLUSIONS The results support future translational studies using the recombinant LO as a potential drug for the treatment of leukemia.
Collapse
Affiliation(s)
- Mariana do Nascimento Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago Aparecido Silva
- Department of Cell Biology and Molecular and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences in Araraquara, Sao Paulo State University, Araraquara, SP, Brazil
| | | | - Rafael Ricci-Azevedo
- Department of Cell Biology and Molecular and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Roberti Teixeira
- Department of Genetics and Evolution, Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Leonardo Reis Silveira
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo Damário Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vítor Marcel Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Brandt de Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
Chen J, Cui L, Lu S, Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis 2024; 15:42. [PMID: 38218942 PMCID: PMC10787762 DOI: 10.1038/s41419-024-06435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Amino acid metabolism plays important roles in tumor biology and tumor therapy. Accumulating evidence has shown that amino acids contribute to tumorigenesis and tumor immunity by acting as nutrients, signaling molecules, and could also regulate gene transcription and epigenetic modification. Therefore, targeting amino acid metabolism will provide new ideas for tumor treatment and become an important therapeutic approach after surgery, radiotherapy, and chemotherapy. In this review, we systematically summarize the recent progress of amino acid metabolism in malignancy and their interaction with signal pathways as well as their effect on tumor microenvironment and epigenetic modification. Collectively, we also highlight the potential therapeutic application and future expectation.
Collapse
Affiliation(s)
- Jie Chen
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
18
|
Shang Z, Ma Z, Wu E, Chen X, Tuo B, Li T, Liu X. Effect of metabolic reprogramming on the immune microenvironment in gastric cancer. Biomed Pharmacother 2024; 170:116030. [PMID: 38128177 DOI: 10.1016/j.biopha.2023.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract with a high mortality rate worldwide, a low early detection rate and a poor prognosis. The rise of metabolomics has facilitated the early detection and treatment of GC. Metabolism in the GC tumor microenvironment (TME) mainly includes glucose metabolism, lipid metabolism and amino acid metabolism, which provide energy and nutrients for GC cell proliferation and migration. Abnormal tumor metabolism can influence tumor progression by regulating the functions of immune cells and immune molecules in the TME, thereby contributing to tumor immune escape. Thus, in this review, we summarize the impact of metabolism on the TME during GC progression. We also propose novel strategies to modulate antitumor immune responses by targeting metabolism.
Collapse
Affiliation(s)
- Zhengye Shang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xingzhao Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi 563000, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
19
|
Miranda J, Lefin N, Beltran JF, Belén LH, Tsipa A, Farias JG, Zamorano M. Enzyme Engineering Strategies for the Bioenhancement of L-Asparaginase Used as a Biopharmaceutical. BioDrugs 2023; 37:793-811. [PMID: 37698749 DOI: 10.1007/s40259-023-00622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Over the past few years, there has been a surge in the industrial production of recombinant enzymes from microorganisms due to their catalytic characteristics being highly efficient, selective, and biocompatible. L-asparaginase (L-ASNase) is an enzyme belonging to the class of amidohydrolases that catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. It has been widely investigated as a biologic agent for its antineoplastic properties in treating acute lymphoblastic leukemia. The demand for L-ASNase is mainly met by the production of recombinant type II L-ASNase from Escherichia coli and Erwinia chrysanthemi. However, the presence of immunogenic proteins in L-ASNase sourced from prokaryotes has been known to result in adverse reactions in patients undergoing treatment. As a result, efforts are being made to explore strategies that can help mitigate the immunogenicity of the drug. This review gives an overview of recent biotechnological breakthroughs in enzyme engineering techniques and technologies used to improve anti-leukemic L-ASNase, taking into account the pharmacological importance of L-ASNase.
Collapse
Affiliation(s)
- Javiera Miranda
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Nicolás Lefin
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Jorge F Beltran
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Argyro Tsipa
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
| | - Jorge G Farias
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Mauricio Zamorano
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile.
| |
Collapse
|
20
|
Huang Y, Li C, Li Z, Xie Y, Chen H, Li S, Liang Y, Wu Z. Design, Synthesis, and Biological Evaluation of a Novel [ 18F]-Labeled Arginine Derivative for Tumor Imaging. Pharmaceuticals (Basel) 2023; 16:1477. [PMID: 37895948 PMCID: PMC10610273 DOI: 10.3390/ph16101477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
To better diagnose and treat tumors related to arginine metabolism, (2S,4S)-2-amino-4-(4-(2-(fluoro-18F)ethoxy)benzyl)-5-guanidinopentanoic acid ([18F]7) was designed and prepared by introducing [18F]fluoroethoxy benzyl on carbon-4 of arginine. [18F]7 and 7 were successfully prepared using synthesis methods similar to those used for (2S,4S)-4-[18F]FEBGln and (2S,4S)-4-FEBGln, respectively. In vitro experiments on cell transport mechanisms showed that [18F]7 was similar to (2S,4S)4-[18F]FPArg and was transported into tumor cells by cationic amino acid transporters. However, [18F]7 can also enter MCF-7 cells via ASC and ASC2 amino acid transporters. Further microPET-CT imaging showed that the initial uptake and retention properties of [18F]7 in MCF-7 subcutaneous tumors were good (2.29 ± 0.09%ID/g at 2.5 min and 1.71 ± 0.09%ID/g at 60 min after administration), without significant defluorination in vivo. However, compared to (2S,4S)4-[18F]FPArg (3.06 ± 0.59%ID/g at 60 min after administration), [18F]7 exhibited lower tumor uptake and higher nonspecific uptake. When further applied to U87MG imaging, [18F]7 can quickly visualize brain gliomas (tumor-to-brain, 1.85 at 60 min after administration). Therefore, based on the above results, [18F]7 will likely be applied for the diagnosis of arginine nutrition-deficient tumors and efficacy evaluations.
Collapse
Affiliation(s)
- Yong Huang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Chengze Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zhongjing Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yi Xie
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
21
|
Martins C, Sarmento B. Multi-ligand functionalized blood-to-tumor sequential targeting strategies in the field of glioblastoma nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1893. [PMID: 37186374 DOI: 10.1002/wnan.1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 05/17/2023]
Abstract
Glioblastoma (GBM) is an unmet clinical need characterized by a standard of care (SOC) 5-year survival rate of only 5%, and a treatment mostly palliative. Significant hurdles in GBM therapies include an effective penetration of therapeutics through the brain protective barrier, namely the blood-brain barrier (BBB), and a successful therapeutic delivery to brain-invading tumor cells post-BBB crossing. These hurdles, along with the poor prognosis and critical heterogeneity of the disease, have shifted attention to treatment modalities with capacity to precisely and sequentially target (i) BBB cells, inducing blood-to-brain transport, and (ii) GBM cells, leading to a higher therapeutic accumulation at the tumor site. This sequential targeting allows therapeutic molecules to reach the brain parenchyma and compromise molecular processes that support tumor cell invasion. Besides improving formulation and pharmacokinetics constraints of drugs, nanomedicines offer the possibility of being surface functionalized with multiple possibilities of targeting ligands, while delivering the desired therapeutic cargos to the biological sites of interest. Targeting ligands exploit the site-specific expression or overexpression of specific molecules on BBB and GBM cells, triggering brain plus tumor transport. Since the efficacy of single-ligand functionalized nanomedicines is limited due to the GBM anatomical site (brain) and disease complexity, this review presents an overview of multi-ligand functionalized, BBB and GBM sequentially- and dual-targeted nanomedicines reported in literature over the last 10 years. The role of the BBB in GBM progression, treatment options, and the multiple possibilities of currently available targeting ligands will be summarized. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- IUCS-CESPU, Gandra, Portugal
| |
Collapse
|
22
|
Xu J, Kang Y, Zhong Y, Ye W, Sheng T, Wang Q, Zheng J, Yang Q, Yi P, Li Z. Alteration of gut microbiome and correlated amino acid metabolism are associated with acute myelocytic leukemia carcinogenesis. Cancer Med 2023; 12:16431-16443. [PMID: 37409640 PMCID: PMC10469656 DOI: 10.1002/cam4.6283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the profiles of gut microbiota and metabolites in acute myelocytic leukemia (AML) patients treated with/without chemotherapy. METHODS Herein, high-throughput 16S rRNA gene sequencing was performed to analysis gut microbiota profiles, and liquid chromatography and mass spectrometry were performed to analysis metabolites profiles. The correlation between gut microbiota biomarkers identified by LEfSe and differentially expressed metabolites were determined by spearman association analysis. RESULTS The results showed the distinguished gut microbiota and metabolites profiles between AML patients and control individuals or AML patients treated with chemotherapy. Compared to normal populations, the ratio of Firmicutes to Bacteroidetes was increased at the phylum level than that in AML patients, and LEfSe analysis identified Collinsella and Coriobacteriaceae as biomarkers of AML patients. Differential metabolite analysis indicated that, compared to AML patients, numerous differential amino acids and analogs could be observed in control individuals and AML patients treated with chemotherapy. Interestingly, spearman association analysis demonstrated that plenty of bacteria biomarkers shows statistical correlations with differentially expressed amino acid metabolites. In addition, we found that both Collinsella and Coriobacteriaceae demonstrate remarkable positive correlation with hydroxyprolyl-hydroxyproline, prolyl-tyrosine, and tyrosyl-proline. CONCLUSION In conclusion, our present study investigated the role of the gut-microbiome-metabolome axis in AML and revealed the possibility of AML treatment by gut-microbiome-metabolome axis in the further.
Collapse
Affiliation(s)
- Jing Xu
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yong Kang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yan Zhong
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of General MedicineGanzhou People's hospitalGanzhouChina
| | - Wencan Ye
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Tianle Sheng
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qingming Wang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jifu Zheng
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qiuyue Yang
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Ping Yi
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Zhenjiang Li
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
23
|
Estevez H, Garcia-Calvo E, Mena ML, Alvarez-Fernandez Garcia R, Luque-Garcia JL. Unraveling the Mechanisms of Ch-SeNP Cytotoxicity against Cancer Cells: Insights from Targeted and Untargeted Metabolomics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2204. [PMID: 37570523 PMCID: PMC10420838 DOI: 10.3390/nano13152204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Although chitosan-stabilized selenium nanoparticles (Ch-SeNPs) have emerged as a promising chemical form of selenium for anticancer purposes, gathering more profound knowledge related to molecular dysfunctions contributes significantly to the promotion of their evolution as a chemotherapeutic drug. In this sense, metabolites are the end products in the flow of gene expression and, thus, the most sensitive to changes in the physiological state of a biological system. Therefore, metabolomics provides a functional readout of the biochemical activity and cell state. In the present study, we evaluated alterations in the metabolomes of HepG2 cells after the exposure to Ch-SeNPs to elucidate the biomolecular mechanisms involved in their therapeutic effect. A targeted metabolomic approach was conducted to evaluate the levels of four of the main energy-related metabolites (adenosine triphosphate (ATP); adenosine diphosphate (ADP); nicotinamide adenine dinucleotide (NAD+); and 1,4-dihydronicotinamide adenine dinucleotide (NADH)), revealing alterations as a result of exposure to Ch-SeNPs related to a shortage in the energy supply system in the cell. In addition, an untargeted metabolomic experiment was performed, which allowed for the study of alterations in the global metabolic profile as a consequence of Ch-SeNP exposure. The results indicate that the TCA cycle and glycolytic pathways were impaired, while alternative pathways such as glutaminolysis and cysteine metabolism were upregulated. Additionally, increased fructose levels suggested the induction of hypoxia-like conditions. These findings highlight the potential of Ch-SeNPs to disrupt cancer cell metabolism and provide insights into the mechanisms underlying their antitumor effects.
Collapse
Affiliation(s)
| | | | | | | | - Jose L. Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (H.E.); (E.G.-C.); (M.L.M.); (R.A.-F.G.)
| |
Collapse
|
24
|
Assi G, Faour WH. Arginine deprivation as a treatment approach targeting cancer cell metabolism and survival: A review of the literature. Eur J Pharmacol 2023:175830. [PMID: 37277030 DOI: 10.1016/j.ejphar.2023.175830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Amino acid requirement of metabolically active cells is a key element in cellular survival. Of note, cancer cells were shown to have an abnormal metabolism and high-energy requirements including the high amino acid requirement needed for growth factor synthesis. Thus, amino acid deprivation is considered a novel approach to inhibit cancer cell proliferation and offer potential treatment prospects. Accordingly, arginine was proven to play a significant role in cancer cell metabolism and therapy. Arginine depletion induced cell death in various types of cancer cells. Also, the various mechanisms of arginine deprivation, e.g., apoptosis and autophagy were summarized. Finally, the adaptive mechanisms of arginine were also investigated. Several malignant tumors had high amino acid metabolic requirements to accommodate their rapid growth. Antimetabolites that prevent the production of amino acids were also developed as anticancer therapies and are currently under clinical investigation. The aim of this review is to provide a concise literature on arginine metabolism and deprivation, its effects in different tumors, its different modes of action, as well as the related cancerous escape mechanisms.
Collapse
Affiliation(s)
- Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon, P.O. Box 36
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon, P.O. Box 36.
| |
Collapse
|
25
|
Hababag EAC, Cauilan A, Quintero D, Bermudes D. Tryptophanase Expressed by Salmonella Halts Breast Cancer Cell Growth In Vitro and Inhibits Production of Immunosuppressive Kynurenine. Microorganisms 2023; 11:1355. [PMID: 37317329 DOI: 10.3390/microorganisms11051355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Tryptophan is an essential amino acid required for tumor cell growth and is also the precursor to kynurenine, an immunosuppressive molecule that plays a role in limiting anticancer immunity. Tryptophanase (TNase) is an enzyme expressed by different bacterial species that converts tryptophan into indole, pyruvate and ammonia, but is absent in the Salmonella strain VNP20009 that has been used as a therapeutic delivery vector. We cloned the Escherichia coli TNase operon tnaCAB into the VNP20009 (VNP20009-tnaCAB), and were able to detect linear production of indole over time, using Kovács reagent. In order to conduct further experiments using the whole bacteria, we added the antibiotic gentamicin to stop bacterial replication. Using a fixed number of bacteria, we found that there was no significant effect of gentamicin on stationary phase VNP20009-tnaCAB upon their ability to convert tryptophan to indole over time. We developed a procedure to extract indole from media while retaining tryptophan, and were able to measure tryptophan spectrophotometrically after exposure to gentamicin-inactivated whole bacterial cells. Using the tryptophan concentration equivalent to that present in DMEM cell culture media, a fixed number of bacteria were able to deplete 93.9% of the tryptophan in the culture media in 4 h. In VNP20009-tnaCAB depleted tissue culture media, MDA-MB-468 triple negative breast cancer cells were unable to divide, while those treated with media exposed only to VNP20009 continued cell division. Re-addition of tryptophan to conditioned culture media restored tumor cell growth. Treatment of tumor cells with molar equivalents of the TNase products indole, pyruvate and ammonia only caused a slight increase in tumor cell growth. Using an ELISA assay, we confirmed that TNase depletion of tryptophan also limits the production of immunosuppressive kynurenine in IFNγ-stimulated MDA-MB-468 cancer cells. Our results demonstrate that Salmonella VNP20009 expressing TNase has improved potential to stop tumor cell growth and reverse immunosuppression.
Collapse
Affiliation(s)
| | - Allea Cauilan
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | - David Quintero
- Los Angeles Medical Facility, Los Angeles, CA 90027, USA
| | - David Bermudes
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| |
Collapse
|
26
|
Anakha J, Prasad YR, Sharma N, Pande AH. Human arginase I: a potential broad-spectrum anti-cancer agent. 3 Biotech 2023; 13:159. [PMID: 37152001 PMCID: PMC10156892 DOI: 10.1007/s13205-023-03590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/23/2023] [Indexed: 05/09/2023] Open
Abstract
With high rates of morbidity and mortality, cancer continues to pose a serious threat to public health on a global scale. Considering the discrepancies in metabolism between cancer and normal cells, metabolism-based anti-cancer biopharmaceuticals are gaining importance. Normal cells can synthesize arginine, but they can also take up extracellular arginine, making it a semi-essential amino acid. Arginine auxotrophy occurs when a cancer cell has abnormalities in the enzymes involved in arginine metabolism and relies primarily on extracellular arginine to support its biological functions. Taking advantage of arginine auxotrophy in cancer cells, arginine deprivation, which can be induced by introducing recombinant human arginase I (rhArg I), is being developed as a broad-spectrum anti-cancer therapy. This has led to the development of various rhArg I variants, which have shown remarkable anti-cancer activity. This article discusses the importance of arginine auxotrophy in cancer and different arginine-hydrolyzing enzymes that are in various stages of clinical development and reviews the need for a novel rhArg I that mitigates the limitations of the existing therapies. Further, we have also analyzed the necessity as well as the significance of using rhArg I to treat various arginine-auxotrophic cancers while considering the importance of their genetic profiles, particularly urea cycle enzymes.
Collapse
Affiliation(s)
- J. Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Abhay H. Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| |
Collapse
|
27
|
Pedroso A, Herrera Belén L, Beltrán JF, Castillo RL, Pessoa A, Pedroso E, Farías JG. In Silico Design of a Chimeric Humanized L-asparaginase. Int J Mol Sci 2023; 24:ijms24087550. [PMID: 37108713 PMCID: PMC10144303 DOI: 10.3390/ijms24087550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children worldwide, characterized by an overproduction of undifferentiated lymphoblasts in the bone marrow. The treatment of choice for this disease is the enzyme L-asparaginase (ASNase) from bacterial sources. ASNase hydrolyzes circulating L-asparagine in plasma, leading to starvation of leukemic cells. The ASNase formulations of E. coli and E. chrysanthemi present notorious adverse effects, especially the immunogenicity they generate, which undermine both their effectiveness as drugs and patient safety. In this study, we developed a humanized chimeric enzyme from E. coli L-asparaginase which would reduce the immunological problems associated with current L-asparaginase therapy. For these, the immunogenic epitopes of E. coli L-asparaginase (PDB: 3ECA) were determined and replaced with those of the less immunogenic Homo sapiens asparaginase (PDB:4O0H). The structures were modeled using the Pymol software and the chimeric enzyme was modeled using the SWISS-MODEL service. A humanized chimeric enzyme with four subunits similar to the template structure was obtained, and the presence of asparaginase enzymatic activity was predicted by protein-ligand docking.
Collapse
Affiliation(s)
- Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Avenida Carlos Schorr 255, Talca 3460000, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Rodrigo L Castillo
- Department of Internal Medicine, East Division, Faculty of Medicine, University of Chile, Santiago 7500922, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Enrique Pedroso
- Department of Family Medicine, Faculty of Medicine, University of Medical Sciences Matanzas, Matanzas 42300, Cuba
| | - Jorge G Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
28
|
Cai X, Shi S, Chen G, Zhong M, Yang Y, Mai Z, Tian Y, Tan J, He L, Cui C, Yu Z, Wang X. Glutamine metabolism targeting liposomes for synergistic chemosensitization and starvation therapy in ovarian cancer. Acta Biomater 2023; 158:560-570. [PMID: 36596434 DOI: 10.1016/j.actbio.2022.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Platinum-based chemotherapy is a first-line therapeutic regimen against ovarian cancer (OC); however, the therapeutic potential is always reduced by glutamine metabolism. Herein, a valid strategy of inhibiting glutamine metabolism was proposed to cause tumor starvation and chemosensitization. Specifically, reactive oxygen species-responsive liposomes were developed to co-deliver cisplatin (CDDP) and bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) [C@B LPs]. The C@B LPs induced effective tumor cell starvation and significantly sensitized OC cells to CDDP by reducing glutathione generation to prevent CDDP detoxification, suppressing ATP production to avoid CDDP efflux, hindering nucleotide synthesis to aggravate DNA damage induced by CDDP, and blocking mammalian target of rapamycin (mTOR) signaling to promote cell apoptosis. More importantly, C@B LPs remarkably inhibited tumor growth in vivo and reduced the side effects. Taken together, this study provided a successful strategy of synergistic chemosensitization and starvation therapy escalating the rate of therapeutic success in OCs. STATEMENT OF SIGNIFICANCE: This work proposed a valid strategy of inhibiting glutamine metabolism to cause tumor starvation and chemosensitization. Specifically, ROS-responsive liposomes were developed to co-deliver cisplatin CDDP and BPTES [C@B LPs]. The C@B LPs induced effective tumor cell starvation and significantly sensitized OC cells to cisplatin by reducing glutathione generation to prevent cisplatin detoxification, suppressing ATP production to avoid cisplatin efflux, hindering nucleotide synthesis to aggravate DNA damage induced by cisplatin, and blocking mTOR signaling to promote cell apoptosis. More importantly, C@B LPs remarkably inhibited tumor growth in vivo and reduced the side effects. Taken together, this study provided a successful strategy of synergistic chemosensitization and starvation therapy escalating the rate of therapeutic success in OCs.
Collapse
Affiliation(s)
- Xuzi Cai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China; Department of Obstetrics and Gynecology, Guangzhou Women and Children' s Medical Center, Guangzhou 510623, China
| | - Si Shi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Gui Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min Zhong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Ziyi Mai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yang Tian
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Jinxiu Tan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Lijuan He
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China.
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Guardamagna I, Iaria O, Lonati L, Mentana A, Previtali A, Uggè V, Ivaldi GB, Liotta M, Tabarelli de Fatis P, Scotti C, Pessino G, Maggi M, Baiocco G. Asparagine and Glutamine Deprivation Alters Ionizing Radiation Response, Migration and Adhesion of a p53 null Colorectal Cancer Cell Line. Int J Mol Sci 2023; 24:ijms24032983. [PMID: 36769302 PMCID: PMC9917910 DOI: 10.3390/ijms24032983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the most prominent form of colon cancer for both incidence (38.7 per 100,000 people) and mortality (13.9 per 100,000 people). CRC's poor response to standard therapies is linked to its high heterogeneity and complex genetic background. Dysregulation or depletion of the tumor suppressor p53 is involved in CRC transformation and its capability to escape therapy, with p53null cancer subtypes known, in fact, to have a poor prognosis. In such a context, new therapeutic approaches aimed at reducing CRC proliferation must be investigated. In clinical practice, CRC chemotherapy is often combined with radiation therapy with the aim of blocking the expansion of the tumor mass or removing residual cancer cells, though contemporary targeting of amino acid metabolism has not yet been explored. In the present study, we used the p53null Caco-2 model cell line to evaluate the effect of a possible combination of radiation and L-Asparaginase (L-ASNase), a protein drug that blocks cancer proliferation by impairing asparagine and glutamine extracellular supply. When L-ASNase was administered immediately after IR, we observed a reduced proliferative capability, a delay in DNA-damage response and a reduced capability to adhere and migrate. Our data suggest that a correctly timed combination of X-rays and L-ASNase treatment could represent an advantage in CRC therapy.
Collapse
Affiliation(s)
- Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Ombretta Iaria
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Alice Mentana
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Previtali
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Virginia Uggè
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | | | - Marco Liotta
- Unit of Medical Physics, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | | | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence:
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
30
|
Free TJ, Tucker RW, Simonson KM, Smith SA, Lindgren CM, Pitt WG, Bundy BC. Engineering At-Home Dilution and Filtration Methods to Enable Paper-Based Colorimetric Biosensing in Human Blood with Cell-Free Protein Synthesis. BIOSENSORS 2023; 13:104. [PMID: 36671942 PMCID: PMC9855769 DOI: 10.3390/bios13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Diagnostic blood tests can guide the administration of healthcare to save and improve lives. Most clinical biosensing blood tests require a trained technician and specialized equipment to process samples and interpret results, which greatly limits test accessibility. Colorimetric paper-based diagnostics have an equipment-free readout, but raw blood obscures a colorimetric response which has motivated diverse efforts to develop blood sample processing techniques. This work uses inexpensive readily-available materials to engineer user-friendly dilution and filtration methods for blood sample collection and processing to enable a proof-of-concept colorimetric biosensor that is responsive to glutamine in 50 µL blood drop samples in less than 30 min. Paper-based user-friendly blood sample collection and processing combined with CFPS biosensing technology represents important progress towards the development of at-home biosensors that could be broadly applicable to personalized healthcare.
Collapse
|
31
|
Sharma D, Mishra A. Apoptosis induction in leukemic cells by L-asparaginase preparation from Bacillus indicus: bench-scale production, purification and therapeutic application. 3 Biotech 2023; 13:21. [PMID: 36568498 PMCID: PMC9772365 DOI: 10.1007/s13205-022-03440-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
With the emergence of multiple side effects on the usage of commercial L-asparaginase formulations, keen interest is provoked to investigate new sources of L-asparaginases that possess antileukemic properties with minimal side effects. The present study reports the cost-effective bench-scale production, homogeneity purification and apoptosis induction potential of a new L-asparaginase preparation from Bacillus indicus against human leukemia cells. The enzyme is highly specific toward the natural substrate L-asparagine. The study initiated with the enzyme production using cost-effective substrates in which a 3.28-fold enhancement of enzyme activity was achieved in comparison with an unoptimized medium using the central composite experimental design approach. The scale-up of the process in a 3.7-L batch bioreactor resulted in 16.42 ± 0.17 IU/mL of L-asparaginase activity in 24 h. The crude extracellular enzyme was purified to homogeneity using anion exchange chromatography followed by gel filtration chromatography. A single band of approximately 35 kDa molecular weight was obtained on SDS-PAGE, while native PAGE analysis confirmed it to be a tetramer of four identical subunits. The circular dichroism spectroscopic study revealed the α + β mixed type of secondary structure with 38.7% α-helices and 27.4% β pleated sheets. The antitumor toxicity exhibited on the MOLT-4 leukemia cells by the new L-asparaginase was revealed using the MTT assay and acridine orange/propidium iodide dual staining for live/dead cells. The flow cytometry analysis established the potential of the purified L-asparaginase to induce the apoptotic cell death mechanism in MOLT-4 leukemia cells. Conclusively, the L-asparaginase of Bacillus indicus is a highly promising candidate that can be introduced as a new enzyme therapeutic against various leukemia disorders.
Collapse
Affiliation(s)
- Deepankar Sharma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005 India
| |
Collapse
|
32
|
Rebsamen M, Girardi E, Sedlyarov V, Scorzoni S, Papakostas K, Vollert M, Konecka J, Guertl B, Klavins K, Wiedmer T, Superti-Furga G. Gain-of-function genetic screens in human cells identify SLC transporters overcoming environmental nutrient restrictions. Life Sci Alliance 2022; 5:e202201404. [PMID: 36114003 PMCID: PMC9481932 DOI: 10.26508/lsa.202201404] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Solute carrier (SLC) transporters control fluxes of nutrients and metabolites across membranes and thereby represent a critical interface between the microenvironment and cellular and subcellular metabolism. Because of substantial functional overlap, the interplay and relative contributions of SLCs in response to environmental stresses remain poorly elucidated. To infer functional relationships between SLCs and metabolites, we developed a strategy to identify SLCs able to sustain cell viability and proliferation under growth-limiting concentrations of essential nutrients. One-by-one depletion of 13 amino acids required for cell proliferation enabled gain-of-function genetic screens using a SLC-focused CRISPR/Cas9-based transcriptional activation approach to uncover transporters relieving cells from growth-limiting metabolic bottlenecks. Among the transporters identified, we characterized the cationic amino acid transporter SLC7A3 as a gene that, when up-regulated, overcame low availability of arginine and lysine by increasing their uptake, whereas SLC7A5 was able to sustain cellular fitness upon deprivation of several neutral amino acids. Moreover, we identified metabolic compensation mediated by the glutamate/aspartate transporters SLC1A2 and SLC1A3 under glutamine-limiting conditions. Overall, this gain-of-function approach using human cells uncovered functional transporter-nutrient relationships and revealed that transport activity up-regulation may be sufficient to overcome environmental metabolic restrictions.
Collapse
Affiliation(s)
- Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefania Scorzoni
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Konstantinos Papakostas
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Manuela Vollert
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Justyna Konecka
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Guertl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Costa MN, Silva RN. Cytotoxic activity of l-lysine alpha-oxidase against leukemia cells. Semin Cancer Biol 2022; 86:590-599. [PMID: 34606983 DOI: 10.1016/j.semcancer.2021.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/27/2023]
Abstract
Cancer cells exhibit higher proliferation rates than normal cells, and as a consequence, a higher nutritional demand for metabolites such as amino acids. Such cells demonstrate high expression of amino acid transporters and are significantly dependent on the external uptake of amino acids. Moreover, some types of cancer cells exhibit oncogenic mutations that render them auxotrophic to certain amino acids. This metabolic difference between tumor and normal cells has been explored for developing anticancer drugs. Enzymes capable of depleting certain amino acids in the bloodstream can be employed to inhibit the proliferation of cancer cells and promote cell death. Certain microbial enzymes, such as l-asparaginase and l-amino acid oxidases, have been studied for this purpose. In this paper, we discuss the role of l-asparaginase, the only enzyme currently used as a chemotherapeutic agent. We also review the studies on a new potential antineoplastic agent, l-lysine α-oxidase, an enzyme of l-amino acid oxidase family.
Collapse
Affiliation(s)
- Mariana N Costa
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil.
| |
Collapse
|
34
|
Li W, Zou Z, An N, Wang M, Liu X, Mei Z. A multifaceted and feasible prognostic model of amino acid metabolism-related genes in the immune response and tumor microenvironment of head and neck squamous cell carcinomas. Front Oncol 2022; 12:996222. [DOI: 10.3389/fonc.2022.996222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the role of amino acid metabolism (AAM) in head and neck squamous cell carcinoma (HNSCC) tissues to explore its prognostic value and potential therapeutic strategies. A risk score based on four AAM-related genes (AMG) was constructed that could predict the prognosis of HNSCC. These four genes were up-regulated in HNSCC tissues and might act as oncogenes. Internal validation in The Cancer Genome Atlas (TCGA) by bootstrapping showed that patients with high-risk scores had a poorer prognosis than patients with low-risk scores, and this was confirmed in the Gene Expression Omnibus (GEO) cohort. There were also differences between the high-risk and low-risk groups in clinical information and different anatomical sites such as age, sex, TNM stage, grade stage, surgery or no surgery, chemotherapy, radiotherapy, no radiotherapy, neck lymph node dissection or not, and neck lymphovascular invasion, larynx, overlapping lesion of lip, and oral cavity and pharynx tonsil of overall survival (OS). Immune-related characteristics, tumor microenvironment (TME) characteristics, and immunotherapy response were significantly different between high- and low-risk groups. The four AMGs were also found to be associated with the expression of markers of various immune cell subpopulations. Therefore, our comprehensive approach revealed the characterization of AAM in HNSCC to predict prognosis and guide clinical therapy.
Collapse
|
35
|
Angka L, Tanese de Souza C, Baxter KE, Khan ST, Market M, Martel AB, Tai LH, Kennedy MA, Bell JC, Auer RC. Perioperative arginine prevents metastases by accelerating natural killer cell recovery after surgery. Mol Ther 2022; 30:3270-3283. [PMID: 35619558 PMCID: PMC9552810 DOI: 10.1016/j.ymthe.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Profound natural killer (NK) cell suppression after cancer surgery is a main driver of metastases and recurrence, for which there is no clinically approved intervention available. Surgical stress is known to cause systemic postoperative changes that negatively modulate NK cell function including the expansion of surgery-induced myeloid-derived suppressor cells (Sx-MDSCs) and a marked reduction in arginine bioavailability. In this study, we determine that Sx-MDSCs regulate systemic arginine levels in the postoperative period and that restoring arginine imbalance after surgery by dietary intake alone was sufficient to significantly reduce surgery-induced metastases in our preclinical murine models. Importantly, the effects of perioperative arginine were dependent upon NK cells. Although perioperative arginine did not prevent immediate NK cell immunoparalysis after surgery, it did accelerate their return to preoperative cytotoxicity, interferon gamma secretion, and activating receptor expression. Finally, in a cohort of patients with colorectal cancer, postoperative arginine levels were shown to correlate with their Sx-MDSC levels. Therefore, this study lends further support for the use of perioperative arginine supplementation by improving NK cell recovery after surgery.
Collapse
Affiliation(s)
- Leonard Angka
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | | | - Katherine E Baxter
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Sarwat T Khan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marisa Market
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Andre B Martel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Lee-Hwa Tai
- Department of Immunology & Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Michael A Kennedy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - John C Bell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
36
|
Yu Z, Zhou X, Wang X. Metabolic Reprogramming in Hematologic Malignancies: Advances and Clinical Perspectives. Cancer Res 2022; 82:2955-2963. [PMID: 35771627 PMCID: PMC9437558 DOI: 10.1158/0008-5472.can-22-0917] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer progression. Metabolic activity supports tumorigenesis and tumor progression, allowing cells to uptake essential nutrients from the environment and use the nutrients to maintain viability and support proliferation. The metabolic pathways of malignant cells are altered to accommodate increased demand for energy, reducing equivalents, and biosynthetic precursors. Activated oncogenes coordinate with altered metabolism to control cell-autonomous pathways, which can lead to tumorigenesis when abnormalities accumulate. Clinical and preclinical studies have shown that targeting metabolic features of hematologic malignancies is an appealing therapeutic approach. This review provides a comprehensive overview of the mechanisms of metabolic reprogramming in hematologic malignancies and potential therapeutic strategies to target cancer metabolism.
Collapse
Affiliation(s)
- Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China.,Corresponding Authors: Xin Wang, Department of Hematology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; Fax: 8653-1870-61197; E-mail: ; Xiangxiang Zhou, Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, Shandong 250021, China. Phone: 8653-1687-76358; E-mail:
| |
Collapse
|
37
|
Huang Y, Zhang L, Wang M, Li C, Zheng W, Chen H, Liang Y, Wu Z. Optimization of Precursor Synthesis Conditions of (2S,4S)4–[18F]FPArg and Its Application in Glioma Imaging. Pharmaceuticals (Basel) 2022; 15:ph15080946. [PMID: 36015094 PMCID: PMC9416586 DOI: 10.3390/ph15080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Although the tracer (2S,4S)4–[18F]FPArg is expected to provide a powerful imaging method for the diagnosis and treatment of clinical tumors, it has not been realized due to the low yield of chemical synthesis and radiolabeling. A simple synthetic method for the radiolabeled precursor of (2S,4S)4–[18F]FPArg in stable yield was obtained by adjusting the sequence of the synthetic steps. Furthermore, the biodistribution experiments confirmed that (2S,4S)4–[18F]FPArg could be cleared out quickly in wild type mouse. Cell uptake experiments and U87MG tumor mouse microPET–CT imaging experiments showed that the tumor had high uptake of (2S,4S)4–[18F]FPArg and the clearance was slow, but (2S,4S)4–[18F]FPArg was rapidly cleared in normal brain tissue. MicroPET–CT imaging of nude mice bearing orthotopic HS683–Luc showed that (2S,4S)4–[18F]FPArg can penetrate blood–brain barrier and image gliomas with a high contrast. Therefore, (2S,4S)4–[18F]FPArg is expected to be further applied in the diagnosis and efficacy evaluation of clinical glioma.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Meng Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
- Correspondence: (Y.L.); (Z.W.)
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
- Correspondence: (Y.L.); (Z.W.)
| |
Collapse
|
38
|
Hou X, Chen S, Zhang P, Guo D, Wang B. Targeted Arginine Metabolism Therapy: A Dilemma in Glioma Treatment. Front Oncol 2022; 12:938847. [PMID: 35898872 PMCID: PMC9313538 DOI: 10.3389/fonc.2022.938847] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Efforts in the treatment of glioma which is the most common primary malignant tumor of the central nervous system, have not shown satisfactory results despite a comprehensive treatment model that combines various treatment methods, including immunotherapy. Cellular metabolism is a determinant of the viability and function of cancer cells as well as immune cells, and the interplay of immune regulation and metabolic reprogramming in tumors has become an active area of research in recent years. From the perspective of metabolism and immunity in the glioma microenvironment, we elaborated on arginine metabolic reprogramming in glioma cells, which leads to a decrease in arginine levels in the tumor microenvironment. Reduced arginine availability significantly inhibits the proliferation, activation, and function of T cells, thereby promoting the establishment of an immunosuppressive microenvironment. Therefore, replenishment of arginine levels to enhance the anti-tumor activity of T cells is a promising strategy for the treatment of glioma. However, due to the lack of expression of argininosuccinate synthase, gliomas are unable to synthesize arginine; thus, they are highly dependent on the availability of arginine in the extracellular environment. This metabolic weakness of glioma has been utilized by researchers to develop arginine deprivation therapy, which ‘starves’ tumor cells by consuming large amounts of arginine in circulation. Although it has shown good results, this treatment modality that targets arginine metabolism in glioma is controversial. Exploiting a suitable strategy that can not only enhance the antitumor immune response, but also “starve” tumor cells by regulating arginine metabolism to cure glioma will be promising.
Collapse
|
39
|
Wu L, Xie W, Li Y, Ni Q, Timashev P, Lyu M, Xia L, Zhang Y, Liu L, Yuan Y, Liang X, Zhang Q. Biomimetic Nanocarriers Guide Extracellular ATP Homeostasis to Remodel Energy Metabolism for Activating Innate and Adaptive Immunity System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105376. [PMID: 35396800 PMCID: PMC9189650 DOI: 10.1002/advs.202105376] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Indexed: 05/14/2023]
Abstract
Metabolic interventions via targeting intratumoral dysregulated metabolism pathways have shown promise in reinvigorating antitumor immunity. However, approved small molecule immunomodulators often suffer from ineffective response rates and severe off-target toxicity. ATP occupies a crucial role in energy metabolism of components that form the tumor microenvironment (TME) and influences cancer immunosurveillance. Here, a nanocarrier-assisted immunometabolic therapy strategy that targets the ATP-adenosine axis for metabolic reprogramming of TME is reported. An ecto-enzyme (CD39) antagonist POM1 and AMP-activated protein kinase (AMPK) agonist metformin are both encapsulated into cancer cell-derived exosomes and used as nanocarriers for tumor targeting delivery. This method increases the level of pro-inflammatory extracellular ATP (eATP) while preventing the accumulation of immunosuppressive adenosine and alleviating hypoxia. Elevated eATP triggers the activation of P2X7-NLRP3-inflammasome to drive macrophage pyroptosis, potentiates the maturation and antigen capacity of dendritic cells (DCs) to enhance the cytotoxic function of T cells and natural killer (NK) cells. As a result, synergistic antitumor immune responses are initiated to suppress tumor progress, inhibit tumor distant metastases, provide long-term immune memory that offers protection against tumor recurrence and overcome anti-PD1 resistance. Overall, this study provides an innovative strategy to advance eATP-driven antitumor immunity in cancer therapy.
Collapse
Affiliation(s)
- Long Wu
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071P. R. China
| | - Wei Xie
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071P. R. China
| | - Yang Li
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Qiankun Ni
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative MedicineSechenov UniversityMoscow119991Russia
| | - Meng Lyu
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Ligang Xia
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Yuan Zhang
- Fujian GTR Biotech Co. Ltd.FuzhouFujian350108P. R. China
| | - Lingrong Liu
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071P. R. China
| | - Xing‐Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qiqing Zhang
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| |
Collapse
|
40
|
Johny TK, Puthusseri RM, Saidumohamed BE, Sheela UB, Puthusseri SP, Sasidharan RS, Bhat SG. Appraisal of cytotoxicity and acrylamide mitigation potential of L-asparaginase SlpA from fish gut microbiome. Appl Microbiol Biotechnol 2022; 106:3583-3598. [PMID: 35579684 DOI: 10.1007/s00253-022-11954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
L-asparaginase catalyzes the hydrolysis of L-asparagine to L-aspartic acid and ammonia. It has application in the treatment of acute lymphoblastic leukemia in children, as well as in other malignancies, in addition to its role as a food processing aid for the mitigation of acrylamide formation in the baking industry. Its use in cancer chemotherapy is limited due to problems such as its intrinsic glutaminase activity and associated side effects, leading to an increased interest in the search for novel L-asparaginases without L-glutaminase activity. This study reports the cloning and expression of an L-asparaginase contig obtained from whole metagenome shotgun sequencing of Sardinella longiceps gut microbiota. Purified recombinant glutaminase-free L-asparaginase SlpA was a 74 kDa homodimer, with maximal activity at pH 8 and 30 °C. Km and Vmax of SlpA were determined to be 3.008 mM and 0.014 mM/min, respectively. SlpA displayed cytotoxic activity against K-562 (chronic myeloid leukemia) and MCF-7 (breast cancer) cell lines with IC50 values of 0.3443 and 2.692 U/mL, respectively. SlpA did not show any cytotoxic activity against normal lymphocytes and was proved to be hemocompatible. Pre-treatment of biscuit and bread dough with different concentrations of SlpA resulted in a clear, dose-dependent reduction of acrylamide formation during baking. KEY POINTS: • Cloned and expressed L-asparaginase (SlpA) from fish gut microbiota • Purified SlpA displayed good cytotoxicity against K-562 and MCF-7 cell lines • SlpA addition caused a significant reduction of acrylamide formation during baking.
Collapse
Affiliation(s)
- Tina Kollannoor Johny
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Rinu Madhu Puthusseri
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | | | | | - Saipriya Parol Puthusseri
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Raghul Subin Sasidharan
- Department of Zoology, Government College Kariavattom, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Sarita Ganapathy Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India.
| |
Collapse
|
41
|
A. Hassabo A, H.Selim M, M.Saad M, Abdelraof M. Optimization of l-methioninase and l-arginase production by newly isolated marine yeast using response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Pan D, Zheng X, Zhang L, Li X, Zhu G, Gong M, Kopytynski M, Zhou L, Yi Y, Zhu H, Tian X, Chen R, Zhang H, Gu Z, Gong Q, Luo K. Synergistic Disruption of Metabolic Homeostasis through Hyperbranched Poly(ethylene glycol) Conjugates as Nanotherapeutics to Constrain Cancer Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109036. [PMID: 34990517 DOI: 10.1002/adma.202109036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Indexed: 02/05/2023]
Abstract
Combination therapy is a promising approach for effective treatment of tumors through synergistically regulating pathways. However, the synergistic effect is limited, likely by uncontrolled co-delivery of different therapeutic payloads in a single nanoparticle. Herein, a combination nanotherapeutic is developed by using two amphiphilic conjugates, hyperbranched poly(ethylene glycol)-pyropheophorbide-a (Ppa) (HP-P) and hyperbranched poly(ethylene glycol)-doxorubicin (DOX) (HP-D) to construct co-assembly nanoparticles (HP-PD NPs) for controllably co-loading and co-delivering Ppa and DOX. In vitro and in vivo antitumor studies confirm the synergistic effect of photodynamic therapy and chemotherapy from HP-PD NPs. Metabolic variations reveal that tumor suppression is associated with disruption of metabolic homeostasis, leading to reduced protein translation. This study uncovers the manipulation of metabolic changes in tumor cells through disruption of cellular homeostasis using HP-PD NPs and provides a new insight into the rational design of synergistic nanotherapeutics for combination therapy.
Collapse
Affiliation(s)
- Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuli Zheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Laboratory of Stem Cell Biology, Core Facility of West China Hospital, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Laboratory of Stem Cell Biology, Core Facility of West China Hospital, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guonian Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Laboratory of Stem Cell Biology, Core Facility of West China Hospital, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Laboratory of Stem Cell Biology, Core Facility of West China Hospital, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Michal Kopytynski
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Luonan Zhou
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yong Yi
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Laboratory of Stem Cell Biology, Core Facility of West China Hospital, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
43
|
An amino acid-defined diet impairs tumour growth in mice by promoting endoplasmic reticulum stress and mTOR inhibition. Mol Metab 2022; 60:101478. [PMID: 35367410 PMCID: PMC9014392 DOI: 10.1016/j.molmet.2022.101478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
|
44
|
Van Trimpont M, Peeters E, De Visser Y, Schalk AM, Mondelaers V, De Moerloose B, Lavie A, Lammens T, Goossens S, Van Vlierberghe P. Novel Insights on the Use of L-Asparaginase as an Efficient and Safe Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14040902. [PMID: 35205650 PMCID: PMC8870365 DOI: 10.3390/cancers14040902] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary L-asparaginase (L-ASNase) therapy is key for achieving the very high cure rate of pediatric acute lymphoblastic leukemia (ALL), yet its use is mostly confined to this indication. One main reason preventing the expansion of today’s FDA-approved L-ASNases to solid cancers is their high toxicity and side effects, which become especially challenging in adult patients. The design of optimized L-ASNase molecules provides opportunities to overcome these unwanted toxicities. An additional challenge to broader application of L-ASNases is how cells can counter the pharmacological effect of this drug and the identification of L-ASNases resistance mechanisms. In this review, we discuss recent insights into L-ASNase adverse effects, resistance mechanisms, and how novel L-ASNase variants and drug combinations can expand its clinical applicability, with a focus on both hematological and solid tumors. Abstract L-Asparaginase (L-ASNase) is an enzyme that hydrolyses the amino acid asparagine into aspartic acid and ammonia. Systemic administration of bacterial L-ASNase is successfully used to lower the bioavailability of this non-essential amino acid and to eradicate rapidly proliferating cancer cells with a high demand for exogenous asparagine. Currently, it is a cornerstone drug in the treatment of the most common pediatric cancer, acute lymphoblastic leukemia (ALL). Since these lymphoblasts lack the expression of asparagine synthetase (ASNS), these cells depend on the uptake of extracellular asparagine for survival. Interestingly, recent reports have illustrated that L-ASNase may also have clinical potential for the treatment of other aggressive subtypes of hematological or solid cancers. However, immunogenic and other severe adverse side effects limit optimal clinical use and often lead to treatment discontinuation. The design of optimized and novel L-ASNase formulations provides opportunities to overcome these limitations. In addition, identification of multiple L-ASNase resistance mechanisms, including ASNS promoter reactivation and desensitization, has fueled research into promising novel drug combinations to overcome chemoresistance. In this review, we discuss recent insights into L-ASNase adverse effects, resistance both in hematological and solid tumors, and how novel L-ASNase variants and drug combinations can expand its clinical applicability.
Collapse
Affiliation(s)
- Maaike Van Trimpont
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Evelien Peeters
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Yanti De Visser
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Amanda M. Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
| | - Veerle Mondelaers
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
- The Jesse Brown VA Medical Center, Chicago, IL 60607, USA
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
45
|
Chen MH, Zhou J, Wu CY, Zhang W, Long F, Zhou SS, Xu JD, Wu J, Zou YT, Li SL, Shen H. Gut microbiota influenced the xenograft MC38 tumor growth potentially through interfering host lipid and amino acid metabolisms, basing on the integrated analysis of microbiome and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1192:123136. [DOI: 10.1016/j.jchromb.2022.123136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
|
46
|
Insights into Asparaginase from Endophytic Fungus Lasiodiplodia theobromae: Purification, Characterization and Antileukemic Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020680. [PMID: 35055502 PMCID: PMC8775487 DOI: 10.3390/ijerph19020680] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
Endobiotic fungi are considered as a reservoir of numerous active metabolites. Asparaginase is used as an antileukemic drug specially to treat acute lymphoblastic leukaemia. The presented study aims to optimize the media conditions, purify, characterize, and test the antileukemic activity of the asparaginase induced from Lasiodiplodia theobromae. The culture medium was optimized using an experiment designed by The Taguchi model with an activity ranging from 10 to 175 IU/mL. Asparaginase was induced with an activity of 315 IU/mL. Asparaginase was purified with a specific activity of 468.03 U/mg and total activity of 84.4 IU/mL. The purified asparaginase showed an approximate size of 70 kDa. The purified asparaginase showed an optimum temperature of 37 °C and an optimum pH of 6. SDS reduced the activity of asparaginase to 0.65 U/mL while the used ionic surfactants enhanced the enzyme activity up to 151.92 IU/mL. The purified asparaginase showed a Km of 9.37 µM and Vmax of 127.00 µM/mL/min. The purified asparaginase showed an IC50 of 35.2 ± 0.7 IU/mL with leukemic M-NFS-60 cell lines and CC50 of 79.4 ± 1.9 IU/mL with the normal WI-38 cell line. The presented study suggests the use of endophytic fungi as a sustainable source for metabolites such as asparaginase, provides an opportunity to develop a facile, eco-friendly, cost-effective, and rapid synthesis of antileukemic drugs, which have the potential to be used as alternative and reliable sources for potent anticancer agents.
Collapse
|
47
|
Deciphering the Role of Pyrvinium Pamoate in the Generation of Integrated Stress Response and Modulation of Mitochondrial Function in Myeloid Leukemia Cells through Transcriptome Analysis. Biomedicines 2021; 9:biomedicines9121869. [PMID: 34944685 PMCID: PMC8698814 DOI: 10.3390/biomedicines9121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/15/2023] Open
Abstract
Pyrvinium pamoate, a widely-used anthelmintic agent, reportedly exhibits significant anti-tumor effects in several cancers. However, the efficacy and mechanisms of pyrvinium against myeloid leukemia remain unclear. The growth inhibitory effects of pyrvinium were tested in human AML cell lines. Transcriptome analysis of Molm13 myeloid leukemia cells suggested that pyrvinium pamoate could trigger an unfolded protein response (UPR)-like pathway, including responses to extracellular stimulus [p-value = 2.78 × 10-6] and to endoplasmic reticulum stress [p-value = 8.67 × 10-7], as well as elicit metabolic reprogramming, including sulfur compound catabolic processes [p-value = 2.58 × 10-8], and responses to a redox state [p-value = 5.80 × 10-5]; on the other hand, it could elicit a pyrvinium blunted protein folding function, including protein folding [p-value = 2.10 × 10-8] and an ATP metabolic process [p-value = 3.95 × 10-4]. Subsequently, pyrvinium was verified to induce an integrated stress response (ISR), demonstrated by activation of the eIF2α-ATF4 pathway and inhibition of mTORC1 signaling, in a dose- and time-dependent manner. Additionally, pyrvinium could co-localize with mitochondria and then decrease the mitochondrial basal oxidative consumption rate, ultimately dysregulating the mitochondrial function. Similar effects were observed in cabozantinib-resistant Molm13-XR cell lines. Furthermore, pyrvinium treatment retarded Molm13 and Molm13-XR xenograft tumor growth. Thus, we concluded that pyrvinium exerts anti-tumor activity, at least, via the modulation of the mitochondrial function and by triggering ISR.
Collapse
|
48
|
Lukasheva EV, Babayeva G, Karshieva SS, Zhdanov DD, Pokrovsky VS. L-Lysine α-Oxidase: Enzyme with Anticancer Properties. Pharmaceuticals (Basel) 2021; 14:1070. [PMID: 34832852 PMCID: PMC8618108 DOI: 10.3390/ph14111070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
L-lysine α-oxidase (LO), one of L-amino acid oxidases, deaminates L-lysine with the yield of H2O2, ammonia, and α-keto-ε-aminocaproate. Multiple in vitro and in vivo studies have reported cytotoxic, antitumor, antimetastatic, and antitumor activity of LO. Unlike asparaginase, LO has a dual mechanism of action: depletion of L-lysine and formation of H2O2, both targeting tumor growth. Prominent results were obtained on murine and human tumor models, including human colon cancer xenografts HCT 116, LS174T, and T47D with maximum T/C 12, 37, and 36%, respectively. The data obtained from human cancer xenografts in immunodeficient mice confirm the potential of LO as an agent for colon cancer treatment. In this review, we discuss recently discovered molecular mechanisms of biological action and the potential of LO as anticancer enzyme.
Collapse
Affiliation(s)
- Elena V. Lukasheva
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya Street 6, 117198 Moscow, Russia; (E.V.L.); (G.B.)
| | - Gulalek Babayeva
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya Street 6, 117198 Moscow, Russia; (E.V.L.); (G.B.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Saida Sh. Karshieva
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10/8, 119121 Moscow, Russia;
| | - Vadim S. Pokrovsky
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya Street 6, 117198 Moscow, Russia; (E.V.L.); (G.B.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia;
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 1 Olimpiisky Prospect, 354340 Sochi, Russia
| |
Collapse
|
49
|
Liu YH, Li YL, Shen HT, Chien PJ, Sheu GT, Wang BY, Chang WW. L-Type Amino Acid Transporter 1 Regulates Cancer Stemness and the Expression of Programmed Cell Death 1 Ligand 1 in Lung Cancer Cells. Int J Mol Sci 2021; 22:ijms222010955. [PMID: 34681614 PMCID: PMC8537563 DOI: 10.3390/ijms222010955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/16/2023] Open
Abstract
The l-type amino acid transporter 1 (LAT1) is a membranous transporter that transports neutral amino acids for cells and is dysregulated in various types of cancer. Here, we first observed increased LAT1 expression in pemetrexed-resistant non-small cell lung cancer (NSCLC) cells with high cancer stem cell (CSC) activity, and its mRNA expression level was associated with shorter overall survival in the lung adenocarcinoma dataset of the Cancer Genome Atlas database. The inhibition of LAT1 by a small molecule inhibitor, JPH203, or by RNA interference led to a significant reduction in tumorsphere formation and the downregulation of several cancer stemness genes in NSCLC cells through decreased AKT serine/threonine kinase (AKT)/mammalian target of rapamycin (mTOR) activation. The treatment of the cell-permeable leucine derivative promoted AKT/mTOR phosphorylation and reversed the inhibitory effect of JPH203 in the reduction of CSC activity in pemetrexed-resistant lung cancer cells. Furthermore, we observed that LAT1 silencing caused the downregulation of programmed cell death 1 ligand 1 (PD-L1) on lung cancer cells. The PD-L1+/LAT1+ subpopulation of NSCLC cells displayed great CSC activity with increased expression of several cancer stemness genes. These data suggest that LAT1 inhibitors can serve as anti-CSC agents and could be used in combination with immune checkpoint inhibitors in lung cancer therapy.
Collapse
Affiliation(s)
- Yi-Heng Liu
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (Y.-H.L.); (H.-T.S.)
| | - Yu-Ling Li
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 40201, Taiwan; (Y.-L.L.); (P.-J.C.)
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, No. 135 Nanhsiao Str., Changhua City 50006, Taiwan
| | - Huan-Ting Shen
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (Y.-H.L.); (H.-T.S.)
| | - Peng-Ju Chien
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 40201, Taiwan; (Y.-L.L.); (P.-J.C.)
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 40201, Taiwan;
| | - Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, No. 135 Nanhsiao Str., Changhua City 50006, Taiwan
- School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 40201, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
- College of Medicine, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
- Correspondence: (B.-Y.W.); (W.-W.C.); Tel.: +886-(4)-7238595 (B.-Y.W.); +886-4-24730022 (ext. 12305) (W.-W.C.)
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 40201, Taiwan; (Y.-L.L.); (P.-J.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 40201, Taiwan
- Correspondence: (B.-Y.W.); (W.-W.C.); Tel.: +886-(4)-7238595 (B.-Y.W.); +886-4-24730022 (ext. 12305) (W.-W.C.)
| |
Collapse
|
50
|
Li M, Qin J, Xiong K, Jiang B, Zhang T. Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges. Crit Rev Biotechnol 2021; 42:651-667. [PMID: 34612104 DOI: 10.1080/07388551.2021.1947962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a committed step in the urea cycle, arginase cleaves l-arginine to form l-ornithine and urea. l-Ornithine is essential to: cell proliferation, collagen formation and other physiological functions, while the urea cycle itself converts highly toxic ammonia to urea for excretion. Recently, arginase was exploited as an efficient catalyst for the environmentally friendly synthesis of l-ornithine, an abundant nonprotein amino acid that is widely employed as a food supplement and nutrition product. It was also proposed as an arginine-reducing agent in order to treat arginase deficiency and to be a means of depleting arginine to treat arginine auxotrophic tumors. Targeting arginase inhibitors of the arginase/ornithine pathway offers great promise as a therapy for: cardiovascular, central nervous system diseases and cancers with high arginase expression. In this review, recent advances in the characteristics, structure, catalytic mechanism and preparation of arginase were summarized, with a focus being placed on the biotechnical and medical applications of arginase. In particular, perspectives have been presented on the challenges and opportunities for the environmentally friendly utilization of arginase during l-ornithine production and in therapies.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|