1
|
Oliveira-Silva JM, Oliveira LS, Chiminazo CB, Fonseca R, de Souza CVE, Aissa AF, de Almeida Lima GD, Ionta M, Castro-Gamero AM. WT161, a selective HDAC6 inhibitor, decreases growth, enhances chemosensitivity, promotes apoptosis, and suppresses motility of melanoma cells. Cancer Chemother Pharmacol 2025; 95:22. [PMID: 39821335 DOI: 10.1007/s00280-024-04731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE Histone deacetylase 6 (HDAC6) plays a critical role in tumorigenesis and tumor progression, contributing to proliferation, chemoresistance, and cell motility by regulating microtubule architecture. Despite its upregulation in melanoma tissues and cell lines, the specific biological roles of HDAC6 in melanoma are not well understood. This study aims to explore the functional effects and underlying mechanisms of WT161, a selective HDAC6 inhibitor, in melanoma cell lines. METHODS Cell proliferation was assessed using both 2D and 3D cell culture systems, including MTT assays, spheroid growth analyses, and colony formation assays. The interaction between WT161 and the chemotherapeutic agents temozolomide (TMZ) or dacarbazine (DTIC) was evaluated using the Chou-Talalay method. Apoptotic cell death was analyzed through flow cytometry, while migration, adhesion, and invasion assays were conducted to evaluate the motility capacities of melanoma cells. Western blot assays quantified α-tubulin acetylation (Lys40), PARP cleavage, and protein levels of β-catenin and E-cadherin. RESULTS WT161 significantly reduced cell growth in both 2D and 3D cultures, decreased clonogenic capacity, and showed synergistic interactions with TMZ and DTIC. The inhibitor also induced apoptotic cell death and enhanced TMZ-induced apoptosis. Additionally, WT161 reduced cell migration and invasion while increasing cell adhesion. These effects were linked to changes in β-catenin and E-cadherin levels, depending on the specific cell type evaluated. CONCLUSION Our study underscores the pivotal role of HDAC6 in melanoma progression, establishing it as a promising therapeutic target. We provide the first comprehensive evidence of WT161's anti-melanoma effects, setting the stage for further research into HDAC6 inhibitors as a potential strategy for melanoma treatment.
Collapse
Affiliation(s)
- João Marcos Oliveira-Silva
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Leilane Sales Oliveira
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Carolina Berraut Chiminazo
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | | | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Graziela Domingues de Almeida Lima
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil.
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
2
|
Wagih N, Abdel-Rahman IM, El-Koussi NA, El-Din A Abuo-Rahma G. Anticancer benzimidazole derivatives as inhibitors of epigenetic targets: a review article. RSC Adv 2025; 15:966-1010. [PMID: 39807197 PMCID: PMC11726184 DOI: 10.1039/d4ra05014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy. Benzimidazole derivatives have gained attention for their potent epigenetic modulatory effects as they interact with various epigenetic targets, including DNA methyltransferases, histone deacetylases and histone methyltransferases. This review provides a comprehensive overview of benzimidazole derivatives that inhibit different acetylation and methylation reader, writer and eraser epigenetic targets. Herein, we emphasize the therapeutic potential of these compounds in developing targeted, less toxic cancer therapies. Presently, some promising benzimidazole derivatives have entered clinical trials and shown great advancements in the fields of hematological and solid malignancy therapies. Accordingly, we highlight the recent advancements in benzimidazole research as epigenetic agents that could pave the way for designing new multi-target drugs to overcome resistance and improve clinical outcomes for cancer patients. This review can help researchers in designing new anticancer benzimidazole derivatives with better properties.
Collapse
Affiliation(s)
- Nardin Wagih
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Islam M Abdel-Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Nawal A El-Koussi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
| | - Gamal El-Din A Abuo-Rahma
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| |
Collapse
|
3
|
Xiao D, Ran H, Chen L, Li Y, Cai Y, Zhang S, Qi Q, Wu H, Zhang C, Cao S, Mi L, Huang H, Qi J, Han Q, Tu H, Li H, Zhou T, Li F, Li A, Man J. FSD1 inhibits glioblastoma diffuse infiltration through restriction of HDAC6-mediated microtubule deacetylation. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2616-7. [PMID: 39808222 DOI: 10.1007/s11427-024-2616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025]
Abstract
The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization. This inhibitory interaction is disrupted upon phosphorylation of FSD1 at its Ser317 and Ser324 residues by activated CDK5, leading to FSD1 dissociation from microtubules and facilitating HDAC6-mediated α-tubulin deacetylation. Furthermore, increased expression of FSD1 or interference with FSD1 phosphorylation reduces microtubule deacetylation, suppresses invasion of GBM stem cells, and ultimately mitigates tumor infiltration in orthotopic GBM xenografts. Importantly, GBM tissues exhibit diminished levels of FSD1 expression, correlating with microtubule deacetylation and unfavorable clinical outcomes in GBM patients. These findings elucidate the mechanistic involvement of microtubule deacetylation in driving GBM cell invasion and offer potential avenues for managing GBM infiltration.
Collapse
Affiliation(s)
- Dake Xiao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Haowen Ran
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese PLA, Wuhan, 430070, China
| | - Lishu Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yuanyuan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Songyang Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Qinghui Qi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huiran Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Cheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Shuailiang Cao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Lanjuan Mi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China
| | - Haohao Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese PLA, Wuhan, 430070, China
| | - Ji Qi
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, 100070, China
| | - Qiuying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Haiqing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Fangye Li
- Department of Neurosurgery, First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Jianghong Man
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| |
Collapse
|
4
|
Jin J, Meng T, Yu Y, Wu S, Jiao CC, Song S, Li YX, Zhang Y, Zhao YY, Li X, Wang Z, Liu YF, Huang R, Qin J, Chen Y, Cao H, Tan X, Ge X, Jiang C, Xue J, Yuan J, Wu D, Wu W, Jiang CZ, Wang P. Human HDAC6 senses valine abundancy to regulate DNA damage. Nature 2025; 637:215-223. [PMID: 39567688 DOI: 10.1038/s41586-024-08248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
As an essential branched amino acid, valine is pivotal for protein synthesis, neurological behaviour, haematopoiesis and leukaemia progression1-3. However, the mechanism by which cellular valine abundancy is sensed for subsequent cellular functions remains undefined. Here we identify that human histone deacetylase 6 (HDAC6) serves as a valine sensor by directly binding valine through a primate-specific SE14 repeat domain. The nucleus and cytoplasm shuttling of human, but not mouse, HDAC6 is tightly controlled by the intracellular levels of valine. Valine deprivation leads to HDAC6 retention in the nucleus and induces DNA damage. Mechanistically, nuclear-localized HDAC6 binds and deacetylates ten-eleven translocation 2 (TET2) to initiate active DNA demethylation, which promotes DNA damage through thymine DNA glycosylase-driven excision. Dietary valine restriction inhibits tumour growth in xenograft and patient-derived xenograft models, and enhances the therapeutic efficacy of PARP inhibitors. Collectively, our study identifies human HDAC6 as a valine sensor that mediates active DNA demethylation and DNA damage in response to valine deprivation, and highlights the potential of dietary valine restriction for cancer treatment.
Collapse
Affiliation(s)
- Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuanyuan Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuheng Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chen-Chen Jiao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sihui Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ya-Xu Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Zhang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan-Yuan Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinran Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zixin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu-Fan Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Runzhi Huang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieling Qin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Hao Cao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ge
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianhuang Xue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Yuan
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Wei Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ci-Zhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Bornes KE, Moody MA, Huckaba TM, Benz MC, McConnell EC, Foroozesh M, Barnes VH, Collins‐Burow BM, Burow ME, Watt TJ, Toro TB. Lysine deacetylase inhibitors have low selectivity in cells and exhibit predominantly off-target effects. FEBS Open Bio 2025; 15:94-107. [PMID: 39482806 PMCID: PMC11705486 DOI: 10.1002/2211-5463.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/08/2024] [Accepted: 09/06/2024] [Indexed: 11/03/2024] Open
Abstract
Lysine deacetylases (KDACs or HDACs) are metal-dependent enzymes that regulate lysine acetylation, a post-translational modification that is present on thousands of human proteins, essential for many cellular processes, and often misregulated in diseases. The selective inhibition of KDACs would allow for understanding of the biological roles of individual KDACs and therapeutic targeting of individual enzymes. Recent studies have suggested that purportedly specific KDAC inhibitors have significant off-target binding, but the biological consequences of off-target binding were not evaluated. We compared the effects of treatment with two of the reportedly most KDAC-selective inhibitors, Tubastatin A and PCI-34051, in HT1080 cells in which the endogenous KDAC6 or KDAC8 gene has been mutated to inactivate enzyme catalysis while retaining enzyme expression. Genetic inactivation results in much stronger deacetylation defects on known targets compared to inhibitor treatment. Gene expression analysis revealed that both inhibitors have extensive and extensively overlapping off-target effects in cells, even at low inhibitor doses. Furthermore, Tubastatin A treatment led to increased histone acetylation, while inactivation of KDAC6 or KDAC8 did not. Genetic inactivation of KDAC6, but not KDAC8, impaired tumor formation in a xenograft model system, in contrast to previous reports with KDAC inhibitors suggesting the reverse. We conclude that the majority of observed biological effects of treatment with KDAC inhibitors are due to off-target effects rather than the intended KDAC inhibition. Developing a truly specific KDAC6 inhibitor could be a promising therapeutic avenue, but it is imperative to develop new inhibitors that selectively mimic genetic inactivation of individual KDACs.
Collapse
Affiliation(s)
- Kiara E. Bornes
- Department of ChemistryXavier University of LouisianaNew OrleansLAUSA
| | | | | | - Megan C. Benz
- Tulane University School of MedicineNew OrleansLAUSA
| | | | - Maryam Foroozesh
- Department of ChemistryXavier University of LouisianaNew OrleansLAUSA
| | - Van H. Barnes
- Tulane University School of MedicineNew OrleansLAUSA
| | | | | | - Terry J. Watt
- Department of ChemistryXavier University of LouisianaNew OrleansLAUSA
| | - Tasha B. Toro
- Department of ChemistryXavier University of LouisianaNew OrleansLAUSA
| |
Collapse
|
6
|
Rui Y, Zhang H, Yu K, Qiao S, Gao C, Wang X, Yang W, Asadikaram G, Li Z, Zhang K, Peng J, Li J, He J, Wang H. N 6-Methyladenosine Regulates Cilia Elongation in Cancer Cells by Modulating HDAC6 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408488. [PMID: 39535388 PMCID: PMC11727115 DOI: 10.1002/advs.202408488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Primary cilia are microtubule-based organelles that function as cellular antennae to address multiple metabolic and extracellular cues. The past decade has seen significant advances in understanding the pro-tumorigenic role of N6-methyladenosine (m6A) modification in tumorigenesis. Nevertheless, whether m6A modification modulates the cilia dynamics during cancer progression remains unclear. Here, the results show that m6A methyltransferase METTL3 regulates cilia length in cancer cells via HDAC6-dependent deacetylation of axonemal α-tubulin, thereby controlling cancer development. Mechanically, METTL3 positively regulates the translation of HDAC6 in an m6A-dependent manner, while m6A methylation of A3678 in the coding sequence (CDS) of HDAC6 ameliorates its translation efficiency via facilitating the binding with YTHDF3. The upregulation of HDAC6 induced by METTL3 over-expression is capable of inhibiting cilia elongation and acetylation of α-tubulin, thereby shortening cilia length and accelerating the progression of cervical cancer both in vitro and in vivo. Collectively, depletion of METTL3-mediated m6A modification leads to abnormally elongated cilia via suppressing HDAC6-dependent deacetylation of axonemal α-tubulin, ultimately attenuating cell growth and cervical cancer development.
Collapse
Affiliation(s)
- Yalan Rui
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Kangning Yu
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Shiyao Qiao
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Chenglin Gao
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Xiansong Wang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Weifeng Yang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesMedical University CampusKerman7616913555Iran
| | - Zigang Li
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518067China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengdu Seventh People's HospitalAffiliated Cancer Hospital of Chengdu Medical CollegeSchool of Biological Sciences and TechnologyChengdu Medical CollegeChengdu610500China
| | - Jianxin Peng
- Department of Hepatobiliary SurgeryGuangdong Province Traditional Chinese Medical HospitalGuangzhou510120China
| | - Jiexin Li
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Junming He
- Department of Hepatobiliary SurgeryGuangdong Province Traditional Chinese Medical HospitalGuangzhou510120China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|
7
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
8
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
9
|
Hu H, Wang Q, Zhang Y, Yang S, Shen A, Yan J, Zhao D, Hu B. Effects of a novel HDAC6-selective inhibitor's radiosensitization on cancer cells. Mol Biol Rep 2024; 51:1151. [PMID: 39537948 DOI: 10.1007/s11033-024-10084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The radiation sensitivity of tumor cells is a critical determinant of their therapeutic response to radiotherapy. Histone deacetylase 6 (HDAC6), beyond its known role in modulating tubulin acetylation and influencing cell motility, is also involved in the DNA damage response, potentially enhancing tumor cell radiosensitivity. Targeted HDAC6 inhibitors have shown substantial promise in preclinical studies aimed at increasing radiosensitivity and inhibiting cellular migration. METHODS A new HDAC inhibitor, named OXHA, was designed by substituting the phenyl cap of SAHA with an N,5-diphenyloxazole-2-carboxamide group. The inhibitory activity of OXHA was evaluated via in vitro enzymatic assays. Its effects on tumor cell migration and radiosensitization potential were assessed using scratch wound healing assays, micronucleus formation, and clonogenic survival assays. RESULT Enzymatic assays confirmed OXHA's selective inhibition of HDAC6. Compared to SAHA, OXHA significantly increased α-tubulin acetylation while minimally impacting histone H3 acetylation, indicating a high selectivity for HDAC6. In combination with X-ray irradiation, OXHA markedly impaired wound healing in A549 and HepG2 cells, enhanced micronucleus formation, and reduced clonogenic survival across multiple tumor lines. CONCLUSION OXHA exhibits potent and selective HDAC6 inhibition, effectively impeding tumor cell migration and enhancing radiosensitivity across multiple cell lines. These findings suggest that OXHA has strong potential as a therapeutic strategy to improve radiotherapy efficacy.
Collapse
Affiliation(s)
- Huixiao Hu
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qi Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuni Zhang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shuhua Yang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Aihua Shen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Junfang Yan
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Denggao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Burong Hu
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
10
|
Cortesi M, Bravaccini S, Ravaioli S, Petracci E, Angeli D, Tumedei MM, Balzi W, Pirini F, Zanoni M, Possanzini P, Rocca A, Palleschi M, Ulivi P, Martinelli G, Maltoni R. HDAC6 as a Prognostic Factor and Druggable Target in HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:3752. [PMID: 39594707 PMCID: PMC11591923 DOI: 10.3390/cancers16223752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Adjuvant trastuzumab is the standard of care for HER2+ breast cancer (BC) patients. However, >50% of patients become resistant. This study aimed at the identification of the molecular factors associated with disease relapse and their further investigation as therapeutically exploitable targets. METHODS Analyses were conducted on formalin-fixed paraffin-embedded tissues of the primary tumors of relapsed (cases) and not relapsed (controls) HER2+ BC patients treated with adjuvant trastuzumab. The nCounter Human Breast Cancer Panel 360 was used. Logistic regression and partitioning around medoids were employed to identify the genes associated with disease recurrence. Cytotoxicity experiments using trastuzumab-resistant cell lines and a network pharmacology approach were carried out to investigate drug efficacy. RESULTS A total of 52 patients (26 relapsed and 26 not relapsed) were analyzed. We found that a higher expression of HDAC6 was significantly associated with an increased risk of recurrence, with an adjusted OR of 3.20 (95% CI 1.38-9.91, p = 0.016). Then, we investigated the cytotoxic activity of the selective HDAC6 inhibitor Nexturastat A (NextA) on HER2+ cell lines, which were both sensitive and trastuzumab-resistant. A sub-cytotoxic concentration of NextA, combined with trastuzumab, showed a synergistic effect on BC cell lines. Finally, using a network pharmacology approach, we identified HSP90AA1 as the putative molecular candidate responsible for the synergism observed in vitro. CONCLUSIONS Our findings encourage the exploration of the role of HDAC6 as a prognostic factor and the combinatorial use of HDAC6 selective inhibitors combined with trastuzumab in HER2+ BC, in particular for those patients experiencing drug resistance.
Collapse
Affiliation(s)
- Michela Cortesi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Elisabetta Petracci
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Davide Angeli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Maria Maddalena Tumedei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - William Balzi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Paola Possanzini
- Pathology Unit, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
| | - Andrea Rocca
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michela Palleschi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Paola Ulivi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Giovanni Martinelli
- Department of Hematology and Sciences Oncology, Institute of Haematology “L. and A. Seràgnoli”, S. Orsola University Hospital, 40138 Bologna, Italy
| | - Roberta Maltoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| |
Collapse
|
11
|
Scheuerer S, Motlova L, Schäker-Hübner L, Sellmer A, Feller F, Ertl FJ, Koch P, Hansen FK, Barinka C, Mahboobi S. Biological and structural investigation of tetrahydro-β-carboline-based selective HDAC6 inhibitors with improved stability. Eur J Med Chem 2024; 276:116676. [PMID: 39067437 DOI: 10.1016/j.ejmech.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Our previously reported HDAC6 inhibitor (HDAC6i) Marbostat-100 (4) has provided many arguments for further clinical evaluation. By the substitution of the acidic hydrogen of 4 for different carbon residues, we were able to generate an all-carbon stereocenter, which significantly improves the hydrolytic stability of the inhibitor. Further asymmetric synthesis has shown that the (S)-configured inhibitors preferentially bind to HDAC6. This led to the highly selective and potent methyl-substituted derivative S-29b, which elicited a long-lasting tubulin hyperacetylation in MV4-11 cells. Finally, a crystal structure of the HDAC6/S-29b complex provided mechanistic explanation for the high potency and stereoselectivity of synthesized compound series.
Collapse
Affiliation(s)
- Simon Scheuerer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Lucia Motlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany
| | - Felix Feller
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, 93040, Regensburg, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Siavosh Mahboobi
- Institute of Pharmacy, Department of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
12
|
Yang S, Aulas A, Anderson PJ, Ivanov P. Stress granule formation enables anchorage-independence survival in cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613064. [PMID: 39314476 PMCID: PMC11419135 DOI: 10.1101/2024.09.14.613064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Stress granules (SGs) are dynamic cytoplasmic structures assembled in response to various stress stimuli that enhance cell survival under adverse environmental conditions. Here we show that SGs contribute to breast cancer progression by enhancing the survival of cells subjected to anoikis stress. SG assembly is triggered by inhibition of Focal Adhesion Kinase (FAK) or loss of adhesion signals. Combined proteomic analysis and functional studies reveal that SG formation enhances cancer cell proliferation, resistance to metabolic stress, anoikis resistance, and migration. Importantly, inhibiting SG formation promotes the sensitivity of cancer cells to FAK inhibitors being developed as cancer therapeutics. Furthermore, we identify the Rho-ROCK- PERK-eIF2α axis as a critical signaling pathway activated by loss of adhesion signals and inhibition of the FAK-mTOR-eIF4F complex in breast cancer cells. By triggering SG assembly and AKT activation in response to anoikis stress, PERK functions as an oncoprotein in breast cancer cells. Overall, our study highlights the significance of SG formation in breast cancer progression and suggests that therapeutic inhibition of SG assembly may reverse anoikis resistance in treatment-resistant cancers such as triple-negative breast cancer (TNBC). Highlights Either anoikis stress or loss of adhesion induce stress granule (SG) formationThe Rho-ROCK-PERK-eIF2α axis is a crucial signaling pathway triggered by the absence of adhesion signals, leading to the promotion of SG formation along with the inhibition of the FAK- AKT/mTOR-eIF4F complex under anoikis stress.PERK functions as an oncogene in breast cancer cells, initiating SG formation and activating AKT under anoikis stress.Inhibiting SG formation significantly enhances the sensitivity to Focal Adhesion Kinase (FAK) inhibitors, suggesting a potential for combined therapy to improve cancer treatment efficacy.
Collapse
|
13
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
14
|
Xu L, Zhang L, Li G, Zhang X, Sun Q, Hu Z, Cao X, Wang Y, Shi F, Zhang S. Inhibiting histone deacetylase 6 suppresses the proliferation of microvascular endothelial cells by epigenetically activating miR-375-3p, potentially contributing to bone loss during mechanical unloading. J Transl Med 2024; 22:811. [PMID: 39223648 PMCID: PMC11367820 DOI: 10.1186/s12967-024-05608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Mechanical unloading-induced bone loss threatens prolonged spaceflight and human health. Recent studies have confirmed that osteoporosis is associated with a significant reduction in bone microvessels, but the relationship between them and the underlying mechanism under mechanical unloading are still unclear. METHODS We established a 2D clinostat and hindlimb-unloaded (HLU) mouse model to simulate unloading in vitro and in vivo. Micro-CT scanning was performed to assess changes in the bone microstructure and mass of the tibia. The levels of CD31, Endomucin (EMCN) and histone deacetylase 6 (HDAC6) in tibial microvessels were detected by immunofluorescence (IF) staining. In addition, we established a coculture system of microvascular endothelial cells (MVECs) and osteoblasts, and qRT‒PCR or western blotting was used to detect RNA and protein expression; cell proliferation was detected by CCK‒8 and EdU assays. ChIP was used to detect whether HDAC6 binds to the miRNA promoter region. RESULTS Bone mass and bone microvessels were simultaneously significantly reduced in HLU mice. Furthermore, MVECs effectively promoted the proliferation and differentiation of osteoblasts under coculture conditions in vitro. Mechanistically, we found that the HDAC6 content was significantly reduced in the bone microvessels of HLU mice and that HDAC6 inhibited the expression of miR-375-3p by reducing histone acetylation in the miR-375 promoter region in MVECs. miR-375-3p was upregulated under unloading and it could inhibit MVEC proliferation by directly targeting low-density lipoprotein-related receptor 5 (LRP5) expression. In addition, silencing HDAC6 promoted the miR-375-3p/LRP5 pathway to suppress MVEC proliferation under mechanical unloading, and regulation of HDAC6/miR-375-3p axis in MVECs could affect osteoblast proliferation under coculture conditions. CONCLUSION Our study revealed that disuse-induced bone loss may be closely related to a reduction in the number of bone microvessels and that the modulation of MVEC function could improve bone loss induced by unloading. Mechanistically, the HDAC6/miR-375-3p/LRP5 pathway in MVECs might be a promising strategy for the clinical treatment of unloading-induced bone loss.
Collapse
Affiliation(s)
- Liqun Xu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, Hebei, 050081, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
- The 94498th Unit of Chinese PLA, Nanyang, Henan, 473000, China
| | - Xiaoyan Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
- Department of Otolaryngology Head and Neck Surgery, Western Theater Air Force Hospital of PLA, Chengdu, Sichuan, 610065, China
| | - Quan Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
- Department of Gastroenterology, The 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
15
|
Xu D, Luo XM, Reilly CM. HDAC6 Deletion Decreases Pristane-induced Inflammation. Immunohorizons 2024; 8:668-678. [PMID: 39259207 PMCID: PMC11447689 DOI: 10.4049/immunohorizons.2400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by excessive inflammation and production of pathogenic Abs. Histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase. It has been reported that selective HDAC6 inhibition decreases inflammation in lupus mouse models. In this study, sex- and age-matched wild-type (WT) and HDAC6-/- mice on the C57BL/6 background were administered 0.5 ml of pristane or PBS i.p. at 8-12 wk of age and were euthanized 10 d later. At sacrifice, body weight and spleen weight were measured, sera were collected, and splenocytes and peritoneal cells were harvested for flow cytometry. We found pristane administration increased the spleen weight with no difference between WT and HDAC6-/- mice. Pristane administration promoted the population of CD11b+Ly6C++ inflammatory monocytes and CD11b+Ly6G+ neutrophils. Peritoneal recruitment of these inflammatory monocytes and neutrophils was significantly decreased in HDAC6-/- mice compared with the WT mice. Flow cytometry results showed that the number of CD69+ T and B cells was increased in HDAC6-/- mice. Pristane administration also induced the IFN signature genes as determined by RT-qPCR. Furthermore, IFN signature genes were not affected in HDAC6-/- mice compared with the WT mice. In vitro studies in J774A.1 cells revealed that the selective HDAC6 inhibitor (ACY-738) increased acetylation of NF-κB while increasing Stat1 phosphorylation, which resulted in inducible NO synthase production in LPS/IFN-γ-stimulated cells. Taken together, these results demonstrate that although HDAC6 inhibition may inhibit some inflammatory pathways, others remain unaffected.
Collapse
Affiliation(s)
- Dao Xu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Edward Via College of Osteopathic Medicine, Blacksburg, VA
| |
Collapse
|
16
|
Zamperla MG, Illi B, Barbi V, Cencioni C, Santoni D, Gagliardi S, Garofalo M, Zingale GA, Pandino I, Sbardella D, Cipolla L, Sabbioneda S, Farsetti A, Ripamonti C, Fossati G, Steinkühler C, Gaetano C, Atlante S. HDAC6 inhibition disrupts HDAC6-P300 interaction reshaping the cancer chromatin landscape. Clin Epigenetics 2024; 16:109. [PMID: 39155390 PMCID: PMC11331611 DOI: 10.1186/s13148-024-01725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) are crucial regulators of gene expression, DNA synthesis, and cellular processes, making them essential targets in cancer research. HDAC6, specifically, influences protein stability and chromatin dynamics. Despite HDAC6's potential therapeutic value, its exact role in gene regulation and chromatin remodeling needs further clarification. This study examines how HDAC6 inactivation influences lysine acetyltransferase P300 stabilization and subsequent effects on chromatin structure and function in cancer cells. METHODS AND RESULTS We employed the HDAC6 inhibitor ITF3756, siRNA, or CRISPR/Cas9 gene editing to inactivate HDAC6 in different epigenomic backgrounds. Constantly, this inactivation led to significant changes in chromatin accessibility, particularly increased acetylation of histone H3 lysines 9, 14, and 27 (ATAC-seq and H3K27Ac ChIP-seq analysis). Transcriptomics, proteomics, and gene ontology analysis revealed gene changes in cell proliferation, adhesion, migration, and apoptosis. Significantly, HDAC6 inactivation altered P300 ubiquitination, stabilizing P300 and leading to downregulating genes critical for cancer cell survival. CONCLUSIONS Our study highlights the substantial impact of HDAC6 inactivation on the chromatin landscape of cancer cells and suggests a role for P300 in contributing to the anticancer effects. The stabilization of P300 with HDAC6 inhibition proposes a potential shift in therapeutic focus from HDAC6 itself to its interaction with P300. This finding opens new avenues for developing targeted cancer therapies, improving our understanding of epigenetic mechanisms in cancer cells.
Collapse
Affiliation(s)
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Veronica Barbi
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Daniele Santoni
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | | | | | | | - Lina Cipolla
- Institute of Molecular Genetics, National Research Council (CNR), 27100, Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics, National Research Council (CNR), 27100, Pavia, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Chiara Ripamonti
- New Drug Incubator Department, Italfarmaco Group, 20092, Cinisello Balsamo, Italy
| | - Gianluca Fossati
- New Drug Incubator Department, Italfarmaco Group, 20092, Cinisello Balsamo, Italy
| | | | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Sandra Atlante
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| |
Collapse
|
17
|
Li X, Wang C, Chai X, Liu X, Qiao K, Fu Y, Jin Y, Jia Q, Zhu F, Zhang Y. Discovery of Potent Selective HDAC6 Inhibitors with 5-Phenyl-1 H-indole Fragment: Virtual Screening, Rational Design, and Biological Evaluation. J Chem Inf Model 2024; 64:6147-6161. [PMID: 39042494 DOI: 10.1021/acs.jcim.4c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Among the HDACs family, histone deacetylase 6 (HDAC6) has attracted extensive attention due to its unique structure and biological functions. Numerous studies have shown that compared with broad-spectrum HDACs inhibitors, selective HDAC6 inhibitors exert ideal efficacy in tumor treatment with insignificant toxic and side effects, demonstrating promising clinical application prospect. Herein, we carried out rational drug design by integrating a deep learning model, molecular docking, and molecular dynamics simulation technology to construct a virtual screening process. The designed derivatives with 5-phenyl-1H-indole fragment as Cap showed desirable cytotoxicity to the various tumor cell lines, all of which were within 15 μM (ranging from 0.35 to 14.87 μM), among which compound 5i had the best antiproliferative activities against HL-60 (IC50 = 0.35 ± 0.07 μM) and arrested HL-60 cells in the G0/G1 phase. In addition, 5i exhibited better isotype selective inhibitory activities due to the potent potency against HDAC6 (IC50 = 5.16 ± 0.25 nM) and the reduced inhibitory activities against HDAC1 (selective index ≈ 124), which was further verified by immunoblotting results. Moreover, the representative binding conformation of 5i on HDAC6 was revealed and the key residues contributing 5i's binding were also identified via decomposition free-energy analysis. The discovery of lead compound 5i also indicates that virtual screening is still a beneficial tool in drug discovery and can provide more molecular skeletons with research potential for drug design, which is worthy of widespread application.
Collapse
Affiliation(s)
- Xuedong Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chengzhao Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xu Chai
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xingang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Kening Qiao
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yan Fu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yanzhao Jin
- Shijiazhuang Xianyu Digital Biotechnology Co., Ltd, Shijiazhuang 050024, PR China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Feng Zhu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| |
Collapse
|
18
|
Wang B, Liu S, Hao K, Wang Y, Li Z, Lou Y, Chang Y, Qi W. HDAC6 modulates the cognitive behavioral function and hippocampal tissue pathological changes of APP/PS1 transgenic mice through HSP90-HSF1 pathway. Exp Brain Res 2024; 242:1983-1998. [PMID: 38935089 DOI: 10.1007/s00221-024-06858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
The aim of this study was to investigate histone deacetylase 6 (HDAC6) modifies the heat shock protein 90 (HSP90) and heat shock transcription factor 1 (HSF1) affect the levels of pathological markers such as Aβ oligomers (Aβo) and Tau phosphorylation (p-Tau) in APP/PS1 double transgenic mice hippocampal tissues or HT22 neurons as well as the changes in cognitive behavioral functions of mice. (1) APP/PS1 transgenic mice (6 months old, 25 ~ 30 g) were randomly assigned to 5 experimental groups, C57BL/6J mice (6 months old, 25 ~ 30 g) were used as 4 control groups, with 8 mice in each group. All mice underwent intracerebroventricular (i.c.v.) cannulation, and the experimental groups were administered with normal saline (APP + NS group), HDAC6 agonist tubastatin A hydrochloride (TSA) (APP + TSA group) or HDAC6 agonist theophylline (Theo) (APP + Theo group), HSP90 inhibitor Ganetespib (Gane) (APP + Gane group), or a combination of pre-injected Gane by TSA (APP + Gane + TSA group); the control group received i.c.v. injections of Gane (Gane group), TSA (TSA group), Theo (Theo group) or NS (NS group), respectively. (2) Mouse hippocampal neurons HT22 were randomly divided into a control group (Control) and an Aβ1-42 intervention group (Aβ). Within the Aβ group, further divisions were made for knockdown HSP90 (Aβ + siHSP90 group), overexpression HSP90 (Aβ + OE-HSP90 group), knockdown HSF1(Aβ + siHSF1 group) and knockdown HSF1 followed by overexpression HSP90 (Aβ + siHSF1 + OE-HSP90 group), resulting in a total of 6 groups. Morris water maze test was used to evaluate the cognitive behavior of the mice. Western blot and immunohistochemistry or immunofluorescence were performed to detect the levels of HDAC6, HSP90, HSF1, Aβ1-42, Tau protein, and p-Tau in the hippocampal tissue or HT22 cells. qRT-PCR was used to measure the levels of hdac6, hsp90, and hsf1 mRNA in the hippocampus or nerve cells. (1) The levels of HDAC6, Aβ1-42 and p-Tau were elevated, while HSP90 and HSF1 were decreased in the hippocampal tissue of APP/PS1 transgenic mice (all P < 0.01). Inhibiting HDAC6 upregulated the expressions of HSP90 and HSF1 in the hippocampal tissue of APP/PS1 mice, while decreasing the levels of Aβ1-42 and p-Tau as well as improving the spatial cognitive behavior in mice (P < 0.05 or P < 0.01). The opposite effects were observed upon HDAC6 activation. However, inhibiting HSP90 reduced the expression of HSF1 (P < 0.01) and increased the levels of Aβ1-42 and p-Tau (P < 0.05 or P < 0.01) but did not significantly affect the expression of HDAC6 (P > 0.05). No significant changes were observed in the aforementioned indicators in the 4 control groups (P > 0.05). (2) In the Aβ1-42 intervention group, HDAC6 and Aβ1-42, p-Tau expression levels were elevated, while HSP90 and HSF1 expressions were all decreased, and cell viability was reduced (P < 0.05 or P < 0.01). Overexpression of HSP90 upregulated HSF1 expression, decreased the levels of Aβ1-42 and p-Tau, and increased cell viability (P < 0.05 or P < 0.01). Knocking down HSP90 had the opposite effect; and knocking down HSF1 increased the levels of Aβ1-42 and p-Tau and decreased cells viability (all P < 0.01), but did not result in significant changes in the expression levels of HSP90 (P > 0.05). Inhibiting HDAC6 can upregulate the expressions of HSP90 and HSF1 but reduce the levels of Aβ1-42 and p-Tau in the hippocampus of APP/PS1 mice and improvement of cognitive behavioral function in mice; Overexpression of HSP90 can increase HSF1 but decrease Aβ1-42 and p-Tau levels in the hippocampal neurons and increase cell activity. It is suggested that HDAC6 may affect the formation of Aβ oligomers and the changes in Tau protein phosphorylation levels in the hippocampus of AD transgenic mouse as well as the alterations in cognitive behavioral functions by regulating the HSP90-HSF1 pathway.
Collapse
Affiliation(s)
- Bingyi Wang
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Siyu Liu
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Kaimin Hao
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - YaruWang Wang
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Zongjing Li
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Yuanyuan Lou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Yuan Chang
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Wenxiu Qi
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, China.
| |
Collapse
|
19
|
Anraku T, Murata M, Kuroki H, Kazama A, Shirono Y, Tasaki M, Bilim V, Tomita Y. Selective HDAC6 Inhibition Has the Potential for Anti-Cancer Effect in Renal Cell Carcinoma. J Pers Med 2024; 14:704. [PMID: 39063958 PMCID: PMC11278056 DOI: 10.3390/jpm14070704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant advancements in systemic therapy for renal cell carcinoma (RCC), the prognosis for patients with metastatic RCC remains poor, as they are often incurable. Consequently, there is an urgent need for innovative therapeutic strategies to further enhance the efficacy of RCC treatment and improve patient outcomes. One such promising avenue lies in targeting histone deacetylase (HDAC) 6, a protein known to regulate numerous crucial biological processes implicated in cancer progression by modulating the acetylation status of various cytoplasmic proteins. To explore the therapeutic potential of HDAC6 inhibition in RCC, our study focused on investigating the effects of HDAC6 inhibitors on cultured RCC cells. Utilizing a panel of 12 small molecule selective HDAC6 inhibitors and employing genetic knockdown techniques, we examined the impact of HDAC6 inhibition on RCC cellular dynamics. Our findings revealed that HDAC6 inhibition exerted a profound effect on RCC cells, resulting in decreased cell viability and DNA replication. Importantly, this effect was attributed to the induction of apoptosis. Our study provides valuable insights into the mechanisms underlying the anticancer effects of selective HDAC6 inhibitors on RCC. A detailed understanding of the molecular mechanisms underlying the anticancer effects of HDAC6 inhibition is important to explore new therapeutic strategies for metastatic RCC.
Collapse
Affiliation(s)
- Tsutomu Anraku
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Masaki Murata
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Hiroo Kuroki
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Akira Kazama
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Yuko Shirono
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Masayuki Tasaki
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| | - Vladimir Bilim
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
- Department of Urology, Kameda Daiichi Hospital, Niigata 950-0165, Japan
| | - Yoshihiko Tomita
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (M.M.); (H.K.); (A.K.); (Y.S.); (M.T.); (V.B.); (Y.T.)
| |
Collapse
|
20
|
Tinkov OV, Osipov VN, Kolotaev AV, Khachatryan DS, Grigorev VY. HT_PREDICT: a machine learning-based computational open-source tool for screening HDAC6 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:505-530. [PMID: 39007781 DOI: 10.1080/1062936x.2024.2371155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Histone deacetylase 6 (HDAC6) is a promising drug target for the treatment of human diseases such as cancer, neurodegenerative diseases (in particular, Alzheimer's disease), and multiple sclerosis. Considerable attention is paid to the development of selective non-toxic HDAC6 inhibitors. To this end, we successfully form a set of 3854 compounds and proposed adequate regression QSAR models for HDAC6 inhibitors. The models have been developed using the PubChem, Klekota-Roth, 2D atom pair fingerprints, and RDkit descriptors and the gradient boosting, support vector machines, neural network, and k-nearest neighbours methods. The models are integrated into the developed HT_PREDICT application, which is freely available at https://htpredict.streamlit.app/. In vitro studies have confirmed the predictive ability of the proposed QSAR models integrated into the HT_PREDICT web application. In addition, the virtual screening performed with the HT_PREDICT web application allowed us to propose two promising inhibitors for further investigations.
Collapse
Affiliation(s)
- O V Tinkov
- Department of Pharmacology and Pharmaceutical Chemistry, Medical Faculty, Shevchenko Transnistria State University, Tiraspol, Moldova
| | - V N Osipov
- Department of Chemical Synthesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Kolotaev
- Laboratory of Natural Compounds, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - D S Khachatryan
- Laboratory of Natural Compounds, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - V Y Grigorev
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
21
|
Banerjee S, Jana S, Jha T, Ghosh B, Adhikari N. An assessment of crucial structural contributors of HDAC6 inhibitors through fragment-based non-linear pattern recognition and molecular dynamics simulation approaches. Comput Biol Chem 2024; 110:108051. [PMID: 38520883 DOI: 10.1016/j.compbiolchem.2024.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Amidst the Zn2+-dependant isoforms of the HDAC family, HDAC6 has emerged as a potential target associated with an array of diseases, especially cancer and neuronal disorders like Rett's Syndrome, Alzheimer's disease, Huntington's disease, etc. Also, despite the availability of a handful of HDAC inhibitors in the market, their non-selective nature has restricted their use in different disease conditions. In this situation, the development of selective and potent HDAC6 inhibitors will provide efficacious therapeutic agents to treat different diseases. In this context, this study has been carried out to evaluate the potential structural contributors of quinazoline-cap-containing HDAC6 inhibitors via machine learning (ML), conventional classification-dependant QSAR, and MD simulation-based binding mode of interaction analysis toward HDAC6 binding. This combined conventional and modern molecular modeling study has revealed the significance of the quinazoline moiety, substitutions present at the quinazoline cap group, as well as the importance of molecular property, number of hydrogen bond donor-acceptor functions, carbon-chlorine distance that significantly affects the HDAC6 binding of these inhibitors, subsequently affecting their potency . Interestingly, the study also revealed that the substitutions such as the chloroethyl group, and bulky quinazolinyl cap group can affect the binding of the cap function with the amino acid residues present in the loops proximal to the catalytic site of HDAC6. Such contributions of cap groups can lead to both stabilization and destabilization of the cap function after occupying the hydrophobic catalytic site by the aryl hydroxamate linker-ZBG functions.
Collapse
Affiliation(s)
- Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sandeep Jana
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
22
|
Abdulwahab HG, Mansour RES, Farghaly TA, El-Sehrawi HM. Discovery of novel benzimidazole derivatives as potent HDACs inhibitors against leukemia with (Thio)Hydantoin as zinc-binding moiety: Design, synthesis, enzyme inhibition, and cellular mechanistic study. Bioorg Chem 2024; 146:107284. [PMID: 38493640 DOI: 10.1016/j.bioorg.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Based on the well-established pharmacophoric features required for histone deacetylase (HDAC) inhibition, a novel series of easy-to-synthesize benzimidazole-linked (thio)hydantoin derivatives was designed and synthesized as HDAC6 inhibitors. All target compounds potently inhibited HDAC6 at nanomolar levels with compounds 2c, 2d, 4b and 4c (IC50s = 51.84-74.36 nM) being more potent than SAHA reference drug (IC50 = 91.73 nM). Additionally, the most potent derivatives were further assessed for their in vitro cytotoxic activity against two human leukemia cells. Hydantoin derivative 4c was equipotent/superior to SAHA against MOLT-4/CCRF-CEM leukemia cells, respectively and demonstrated safety profile better than that of SAHA against non-cancerous human cells. 4c was also screened against different HDAC isoforms. 4c was superior to SAHA against HDAC1. Cell-based assessment of 4c revealed a significant cell cycle arrest and apoptosis induction. Moreover, western blotting analysis showed increased levels of acetylated histone H3, histone H4 and α-tubulin in CCRF-CEM cells. Furthermore, docking study exposed the ability of title compounds to chelate Zn2+ located within HDAC6 active site. As well, in-silico evaluation of physicochemical properties showed that target compounds are promising candidates in terms of pharmacokinetic aspects.
Collapse
Affiliation(s)
- Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Reda El-Sayed Mansour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Hend M El-Sehrawi
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Pu J, Liu T, Wang X, Sharma A, Schmidt-Wolf IGH, Jiang L, Hou J. Exploring the role of histone deacetylase and histone deacetylase inhibitors in the context of multiple myeloma: mechanisms, therapeutic implications, and future perspectives. Exp Hematol Oncol 2024; 13:45. [PMID: 38654286 DOI: 10.1186/s40164-024-00507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Histone deacetylase inhibitors (HDACis) are a significant category of pharmaceuticals that have developed in the past two decades to treat multiple myeloma. Four drugs in this category have received approval from the U.S. Food and Drug Administration (FDA) for use: Panobinonstat (though canceled by the FDA in 2022), Vorinostat, Belinostat and Romidepsin. The efficacy of this group of drugs is attributed to the disruption of many processes involved in tumor growth through the inhibition of histone deacetylase, and this mode of action leads to significant anti-multiple myeloma (MM) activity. In MM, inhibition of histone deacetylase has many downstream consequences, including suppression of NF-κB signaling and HSP90, upregulation of cell cycle regulators (p21, p53), and downregulation of antiapoptotic proteins including Bcl-2. Furthermore, HDACis have a variety of direct and indirect oxidative effects on cellular DNA. HDAC inhibitors enhance normal immune function, thereby decreasing the proliferation of malignant plasma cells and promoting autophagy. The various biological effects of inhibiting histone deacetylase have a combined or additional impact when used alongside other chemotherapeutic and targeted drugs for multiple myeloma. This helps to decrease resistance to treatment. Combination treatment regimens that include HDACis have become an essential part of the therapy for multiple myeloma. These regimens incorporate drugs from other important classes of anti-myeloma agents, such as immunomodulatory drugs (IMiDs), conventional chemotherapy, monoclonal antibodies, and proteasome inhibitors. This review provides a comprehensive evaluation of the clinical efficacy and safety data pertaining to the currently approved histone deacetylase inhibitors, as well as an explanation of the crucial function of histone deacetylase in multiple myeloma and the characteristics of the different histone deacetylase inhibitors. Moreover, it provides a concise overview of the most recent developments in the use of histone deacetylase inhibitors for treating multiple myeloma, as well as potential future uses in treatment.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Xuzhen Wang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
24
|
Zhao Z, Wu Y, Geng X, Yuan C, Yang G. Single-Cell Analysis Reveals Histone Deacetylation Factor Guide Intercellular Communication of Tumor Microenvironment that Contribute to Colorectal Cancer Progression and Immunotherapy. Biochem Genet 2024:10.1007/s10528-024-10730-8. [PMID: 38637426 DOI: 10.1007/s10528-024-10730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/31/2024] [Indexed: 04/20/2024]
Abstract
In this study, single-cell RNA-seq data were collected to analyze the characteristics of Histone deacetylation factor (HDF). The tumor microenvironment (TME) cell clusters related to prognosis and immune response were identified by using CRC tissue transcriptome and immunotherapy cohorts from public repository. We explored the expression characteristics of HDF in stromal cells, macrophages, T lymphocytes, and B lymphocytes of the CRC single-cell dataset TME and further identified 4 to 6 cell subclusters using the expression profiles of HDF-associated genes, respectively. The regulatory role of HDF-associated genes on the CRC tumor microenvironment was explored by using single-cell trajectory analysis, and the cellular subtypes identified by biologically characterized genes were compared with those identified by HDF-associated genes. The interaction of HDF-associated gene-mediated microenvironmental cell subtypes and tumor epithelial cells were explored by using intercellular communication analysis, revealing the molecular regulatory mechanism of tumor epithelial cell heterogeneity. Based on the expression of feature genes mediated by HDF-related genes in the microenvironment T-cell subtypes, enrichment scoring was performed on the feature gene expression in the CRC tumor tissue transcriptome dataset. It was found that the feature gene scoring of microenvironment T-cell subtypes (HDF-TME score) has a certain predictive ability for the prognosis and immunotherapy benefits of CRC tumor patients, providing data support for precise immunotherapy in CRC tumors.
Collapse
Affiliation(s)
- Zihan Zhao
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Yarui Wu
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Xuhua Geng
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Congrui Yuan
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Guibin Yang
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China.
| |
Collapse
|
25
|
Cheng Y, Dai Y, Tang H, Lu X, Xie J, Xie W, Zhang Q, Liu Y, Lin S, Yao H, Shang H, Yang K, Liu H, Wu X, Zhang J, Zhang X, Xue L, Wu ZB. Therapeutic potential of targeting Nrf2 by panobinostat in pituitary neuroendocrine tumors. Acta Neuropathol Commun 2024; 12:61. [PMID: 38637883 PMCID: PMC11025224 DOI: 10.1186/s40478-024-01775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Xingyu Lu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqun Xie
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Hanbing Shang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Kun Yang
- Department of Neurosurgery, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xuefeng Wu
- Center for Immune-Related DiseasesShanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianming Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Zhang
- Neuroendocrine Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China.
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Feltran GDS, de Andrade AF, Fernandes CJDC, da Silva RAF, Zambuzzi WF. BMP7-induced osteoblast differentiation requires hedgehog signaling and involves nuclear mechanisms of gene expression control. Cell Biol Int 2024. [PMID: 38591759 DOI: 10.1002/cbin.12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/02/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
During the morphological changes occurring in osteoblast differentiation, Sonic hedgehog (Shh) plays a crucial role. While some progress has been made in understanding this process, the epigenetic mechanisms governing the expression of Hh signaling members in response to bone morphogenetic protein 7 (BMP7) signaling in osteoblasts remain poorly understood. To delve deeper into this issue, we treated pre-osteoblasts (pObs) with 100 ng/mL of BMP7 for up to 21 days. Initially, we validated the osteogenic phenotype by confirming elevated expression of well-defined gene biomarkers, including Runx2, Osterix, Alkaline Phosphatase (Alp), and bone sialoprotein (Bsp). Simultaneously, Hh signaling-related members Sonic (Shh), Indian (Ihh), and Desert (Dhh) Hedgehog (Hh) exhibited nuanced modulation over the 21 days in vitro period. Subsequently, we evaluated epigenetic markers, and our data revealed a notable change in the CpG methylation profile, considering the methylation/hydroxymethylation ratio. CpG methylation is a reversible process regulated by DNA methyltransferases and demethylases, including Ten-eleven translocation (Tets), which also exhibited changes during the acquisition of the osteogenic phenotype. Specifically, we measured the methylation pattern of Shh-related genes and demonstrated a positive Pearson correlation for GLI Family Zinc Finger 1 (Gli1) and Patched (Ptch1). This data underscores the significance of the epigenetic machinery in modulating the BMP7-induced osteogenic phenotype by influencing the activity of Shh-related genes. In conclusion, this study highlights the positive impact of epigenetic control on the expression of genes related to hedgehog signaling during the morphogenetic changes induced by BMP7 signaling in osteoblasts.
Collapse
Affiliation(s)
- Georgia da Silva Feltran
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, Botucatu, São Paulo, Brazil
| | - Amanda Fantini de Andrade
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, Botucatu, São Paulo, Brazil
| | - Célio Jr da C Fernandes
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, Botucatu, São Paulo, Brazil
| | - Rodrigo A Foganholi da Silva
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, Botucatu, São Paulo, Brazil
- Department of Biology, Dental School, University of Taubaté, Taubaté, São Paulo, Brazil
- CEEpiRG-Center for Epigenetic Study and Genic Regulation, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Willian F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
27
|
Guan D, Men Y, Bartlett A, Hernández MAS, Xu J, Yi X, Li HS, Kong D, Mazitschek R, Ozcan U. Central inhibition of HDAC6 re-sensitizes leptin signaling during obesity to induce profound weight loss. Cell Metab 2024; 36:857-876.e10. [PMID: 38569472 DOI: 10.1016/j.cmet.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/02/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Leptin resistance during excess weight gain significantly contributes to the recidivism of obesity to leptin-based pharmacological therapies. The mechanisms underlying the inhibition of leptin receptor (LepR) signaling during obesity are still elusive. Here, we report that histone deacetylase 6 (HDAC6) interacts with LepR, reducing the latter's activity, and that pharmacological inhibition of HDAC6 activity disrupts this interaction and augments leptin signaling. Treatment of diet-induced obese mice with blood-brain barrier (BBB)-permeable HDAC6 inhibitors profoundly reduces food intake and leads to potent weight loss without affecting the muscle mass. Genetic depletion of Hdac6 in Agouti-related protein (AgRP)-expressing neurons or administration with BBB-impermeable HDAC6 inhibitors results in a lack of such anti-obesity effect. Together, these findings represent the first report describing a mechanistically validated and pharmaceutically tractable therapeutic approach to directly increase LepR activity as well as identifying centrally but not peripherally acting HDAC6 inhibitors as potent leptin sensitizers and anti-obesity agents.
Collapse
Affiliation(s)
- Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuqin Men
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Bartlett
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jie Xu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinchi Yi
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hu-Song Li
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dong Kong
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ralph Mazitschek
- Massachusetts General Hospital, Center for Systems Biology, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Sun C, Xie K, Yang L, Cai S, Wang M, Zhu Y, Tao B, Zhu Y. HDAC6 Enhances Endoglin Expression through Deacetylation of Transcription Factor SP1, Potentiating BMP9-Induced Angiogenesis. Cells 2024; 13:490. [PMID: 38534334 PMCID: PMC10969049 DOI: 10.3390/cells13060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the acetylation of non-histone proteins and is notably implicated in angiogenesis, though its underlying mechanisms were previously not fully understood. This study conducted transcriptomic and proteomic analyses on vascular endothelial cells with HDAC6 knockdown, identifying endoglin (ENG) as a key downstream protein regulated by HDAC6. This protein is vital for maintaining vascular integrity and plays a complex role in angiogenesis, particularly in its interaction with bone morphogenetic protein 9 (BMP9). In experiments using human umbilical vein endothelial cells (HUVECs), the pro-angiogenic effects of BMP9 were observed, which diminished following the knockdown of HDAC6 and ENG. Western blot analysis revealed that BMP9 treatment increased SMAD1/5/9 phosphorylation, a process hindered by HDAC6 knockdown, correlating with reduced ENG expression. Mechanistically, our study indicates that HDAC6 modulates ENG transcription by influencing promoter activity, leading to increased acetylation of transcription factor SP1 and consequently altering its transcriptional activity. Additionally, the study delves into the structural role of HDAC6, particularly its CD2 domain, in regulating SP1 acetylation and subsequently ENG expression. In conclusion, the present study underscores the critical function of HDAC6 in modulating SP1 acetylation and ENG expression, thereby significantly affecting BMP9-mediated angiogenesis. This finding highlights the potential of HDAC6 as a therapeutic target in angiogenesis-related processes.
Collapse
Affiliation(s)
- Chen Sun
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China;
| | - Kuifang Xie
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Lejie Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Shengyang Cai
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Mingjie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China;
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China
| | - Beibei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Yichun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| |
Collapse
|
29
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
30
|
Kar S, Mukherjee R, Guha S, Talukdar D, Das G, Murmu N. Modulating the acetylation of α-tubulin by LncRNAs and microRNAs helps in the progression of cancer. Cell Biochem Funct 2024; 42:e3953. [PMID: 38414166 DOI: 10.1002/cbf.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Malignant tumor cells go through morphological and gene expression alterations, including rearrangement of cytoskeleton proteins that promote invasion and metastasis. Microtubules form a major cytoskeleton component that plays a significant role in regulating multiple cellular activities and function depending on the presence of posttranslational modification (PTM). Acetylation is a type of PTM that generally occurs in the lysine 40 region of α-tubulin and is known to be critically associated with cancer metastasis. Current evidence demonstrates that noncoding RNAs, such as long noncoding RNA (lncRNA) and microRNA (or miRNA), which are correlated with gene regulation modulate the expression of acetylated tubulin in the development and metastasis of cancer. This review provides an overview about the role of lncRNA and miRNA in regulation of tubulin acetylation in various types of cancer.
Collapse
Affiliation(s)
- Sneha Kar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Subhabrata Guha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Debojit Talukdar
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
31
|
Biersack B, Nitzsche B, Höpfner M. Immunomodulatory properties of HDAC6 inhibitors in cancer diseases: New chances for sophisticated drug design and treatment optimization. Semin Cell Dev Biol 2024; 154:286-294. [PMID: 36127263 DOI: 10.1016/j.semcdb.2022.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Histone deacetylases (HDACs) are promising targets for the design of anticancer drugs. HDAC6 is of particular interest since it is a cytoplasmic HDAC regulating the acetylation state of cancer-relevant cytoplasmic proteins such as tubulin, Hsp90, p53, and others. HDAC6 also influences the immune system, and the combination of HDAC6 inhibitors with immune therapy showed promising anticancer results. In addition, the design of new HDAC6 inhibitors led to potent anticancer drugs with immunomodulatory activities. This review describes the current state of play, and the recent developments in the research on the interactions of HDAC6 inhibitors with the immune system, and the development of new HDAC6 inhibitors with immunomodulatory activities to improve the therapy options for cancer patients.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
32
|
Wei W, Huang C, Zhang J, Chen Q, Liu Z, Ren X, Gan S, Wu P, Wang D, Tang BZ, Sun H. HDAC6-Activatable Multifunctional Near-Infrared Probe for Glioma Cell Detection and Elimination. Anal Chem 2024; 96:2406-2414. [PMID: 38308568 DOI: 10.1021/acs.analchem.3c04319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor associated with limited treatment options and high drug resistance, presenting significant challenges in the pursuit of effective treatment strategies. Epigenetic modifications have emerged as promising diagnostic biomarkers and therapeutic targets for GBM. For instance, histone deacetylase 6 (HDAC6) has been identified as a potential pharmacological target for GBM. Furthermore, the overexpression of monoamine oxidase A (MAO A) in glioma has been linked to tumor progression, making it an attractive target for therapy. In this study, we successfully engineered HDAC-MB, an activatable multifunctional small-molecule probe with the goal of efficiently detecting and killing glioma cells. HDAC-MB can be selectively activated by HDAC6, leading to the "turn on" of near-infrared fluorescence and effective inhibition of MAO A, along with potent photodynamic therapy (PDT) effects. Consequently, HDAC-MB not only enables the imaging of HDAC6 in live glioma cells but also exhibits the synergistic effect of MAO A inhibition and PDT, effectively inhibiting glioma invasion and inducing cellular apoptosis. The distinctive combination of features displayed by HDAC-MB positions it as a versatile and highly effective tool for the accurate diagnosis and treatment of glioma cells. This opens up opportunities to enhance therapy outcomes and explore future applications in glioma theranostics.
Collapse
Affiliation(s)
- Wenyu Wei
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Chen Huang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Zhiyang Liu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Xiaojie Ren
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Pingzhou Wu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Dongqing Wang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
33
|
Zhang Q, Yan L, Lu Y, Liu X, Yin Y, Wang Q, Gu X, Zhou X. HDAC6-selective inhibitor CAY10603 ameliorates cigarette smoke-induced small airway remodeling by regulating epithelial barrier dysfunction and reversing. Respir Res 2024; 25:66. [PMID: 38317159 PMCID: PMC10840206 DOI: 10.1186/s12931-024-02688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Small airway remodelling is a vital characteristic of chronic obstructive pulmonary disease (COPD), which is mainly caused by epithelial barrier dysfunction and epithelial-mesenchymal transition (EMT). Recent studies have indicated that histone deacetylase 6 (HDAC6) plays an important role in the dysregulation of epithelial function. In this study, we investigated the therapeutic effects and underlying mechanisms of an inhibitor with high selectivity for HDAC6 in COPD. METHODS Cigarette smoke (CS) exposure was used to establish a CS-induced COPD mouse model. CAY10603 at doses of 2.5 and 10 mg/kg was injected intraperitoneally on alternate days. The protective effects of CAY10603 against CS-induced emphysema, epithelial barrier function and small airway remodeling were evaluated using hematoxylin and eosin (H&E) staining, Masson's trichrome staining, immunohistochemical staining, and western blot. The human lung bronchial epithelial cell line (HBE) was used to elucidate the underlying molecular mechanism of action of CAY10603. RESULTS HDAC6 levels in the lung homogenates of CS-exposed mice were higher than that those in control mice. Compared to the CS group, the mean linear intercept (MLI) of the CAY10603 treatment group decreased and the mean alveolar number (MAN)increased. Collagen deposition was reduced in groups treated with CAY10603. The expression of α-SMA was markedly upregulated in the CS group, which was reversed by CAY10603 treatment. Conversely, E-cadherin expression in the CS group was further downregulated, which was reversed by CAY10603 treatment. CAY10603 affects the tight junction protein expression of ZO-1 and occludin. ZO-1 and occludin expression were markedly downregulated in the CS group. After CAY10603treatment, the protein expression level of ZO-1 and occludin increased significantly. In HBE cells, Cigarette smoke extract (CSE) increased HDAC6 levels. CAY10603 significantly attenuated the release of TGF-β1 induced by CSE. CAY10603 significantly increased the E-cadherin levels in TGF-β1 treated HBE cells, while concurrently attenuated α-SMA expression. This effect was achieved through the suppression of Smad2 and Smad3 phosphorylation. CAY10603 also inhibited TGF-β1 induced cell migration. CONCLUSIONS These findings suggested that CAY10603 inhibited CS induced small airway remodelling by regulating epithelial barrier dysfunction and reversing EMT via the TGF-β1/Smad2/3 signalling pathway.
Collapse
Affiliation(s)
- Qin Zhang
- National Center for Respiratory Medicine, Shenyang, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Shenyang, China
- National Clinical Research Center for Respiratory Diseases, Shenyang, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Shenyang, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liming Yan
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Ye Lu
- Department of Respiratory and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Liu
- Department of Respiratory and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaoming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
34
|
Jha S, Kim JH, Kim M, Nguyen AH, Ali KH, Gupta SK, Park SY, Ha E, Seo YH. Design, synthesis, and biological evaluation of HDAC6 inhibitors targeting L1 loop and serine 531 residue. Eur J Med Chem 2024; 265:116057. [PMID: 38142511 DOI: 10.1016/j.ejmech.2023.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
Histone deacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones, leading to the silencing of genes. Targeting specific isoforms of HDACs has emerged as a promising approach for cancer therapy, as it can overcome drawbacks associated with pan-HDAC inhibitors. HDAC6 is a unique HDAC isoform that deacetylates non-histone proteins and is primarily located in the cytoplasm. It also has two catalytic domains and a zinc-finger ubiquitin binding domain (Zf-UBD) unlike other HDACs. HDAC6 plays a critical role in various cellular processes, including cell motility, protein degradation, cell proliferation, and transcription. Hence, the deregulation of HDAC6 is associated with various malignancies. In this study, we report the design and synthesis of a series of HDAC6 inhibitors. We evaluated the synthesized compounds by HDAC enzyme assay and identified that compound 8g exhibited an IC50 value of 21 nM and 40-fold selective activity towards HDAC6. We also assessed the effect of compound 8g on various cell lines and determined its ability to increase protein acetylation levels by Western blotting. Furthermore, the increased acetylation of α-tubulin resulted in microtubule polymerization and changes in cell morphology. Our molecular docking study supported these findings by demonstrating that compound 8g binds well to the catalytic pocket via L1 loop of HDAC6 enzyme. Altogether, compound 8g represents a preferential HDAC6 inhibitor that could serve as a lead for the development of more potent and specific inhibitors.
Collapse
Affiliation(s)
- Sonam Jha
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Ji Hyun Kim
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Mikyung Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 704-701, South Korea
| | - Ai-Han Nguyen
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Khan Hashim Ali
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Sunil K Gupta
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Sun You Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 41061, South Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 704-701, South Korea.
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea.
| |
Collapse
|
35
|
Yang HM, Lee C, Min J, Ha N, Bae D, Nam G, Park HJ. Development of a tetrahydroindazolone-based HDAC6 inhibitor with in-vivo anti-arthritic activity. Bioorg Med Chem 2024; 99:117587. [PMID: 38237257 DOI: 10.1016/j.bmc.2024.117587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
Histone deacetylase 6 (HDAC6) induces the expression of pro-inflammatory cytokines in macrophages; therefore, HDAC inhibitors may be beneficial for the treatment of macrophage-associated immune disorders and chronic inflammatory diseases, including atherosclerosis and rheumatoid arthritis. Structure-activity relationship studies were conducted on various phenyl hydroxamate HDAC6 inhibitors with indolone/indazolone-based bi- or tricyclic ring moieties as the cap group aiming to develop novel anti-arthritic drug candidates. Several compounds exhibited nanomolar activity and HDAC6 selectivity greater than 500-fold over HDAC1. Compound 21, a derivative with the tetrahydroindazolone cap group, is a potent HDAC6 inhibitor with an IC50 of 18 nM and 217-fold selectivity over HDAC1 and showed favorable oral bioavailability in animals. Compound 21 increases the acetylation level of tubulin without affecting histone acetylation in cutaneous T-cell lymphoma cells and inhibits TNF-α secretion in LPS-stimulated macrophage cells. The anti-arthritic effects of compound 21 were evaluated using a rat adjuvant-induced arthritis (AIA) model. Treatment with compound 21 significantly reduced the arthritis score, and combination treatment with methotrexate showed a synergistic effect in AIA models. We identified a novel HDAC6 inhibitor, compound 21, with excellent in vivo anti-arthritic efficacy, which can lead to the development of oral anti-arthritic drugs.
Collapse
Affiliation(s)
- Hyun-Mo Yang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea; Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Changsik Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Jaeki Min
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea; Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Nina Ha
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Daekwon Bae
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea.
| |
Collapse
|
36
|
Zhao W, Wu Y, Wang S, Zhao F, Liu W, Xue Z, Zhang L, Wang J, Han M, Li X, Huang B. HTRA1 promotes EMT through the HDAC6/Ac-α-tubulin pathway in human GBM cells. CNS Neurosci Ther 2024; 30:e14605. [PMID: 38334007 PMCID: PMC10853898 DOI: 10.1111/cns.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 01/07/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND The infiltrative nature of human gliomas renders complete surgical removal of tumors futile. Thus, illuminating mechanisms of their infiltrative properties may improve therapies and outcomes of glioma patients. METHODS Comprehensive bioinformatic analyses of PRSS family were undertaken. Transfection of HTRA1 siRNAs was used to suppress HTRA1 expression. CCK-8, EdU, and colony formation assay were employed to assess cell viability, and cell migration/invasion was detected by transwell, wound healing, and 3D tumor spheroid invasion assays. Immunoprecipitation was applied to study the mechanism that HTRA1 affected cell migration. In addition, in situ xenograft tumor model was employed to explore the role of HTRA1 in glioma growth in vivo. RESULTS HTRA1 knockdown could lead to suppression of cell viability, migration and invasion, as well as increased apoptosis. Immunoprecipitation results indicates HTRA1 might facilitate combination between HDAC6 and α-tubulin to enhance cell migration by decreasing α-tubulin acetylation. Besides, HTRA1 knockdown inhibited the growth of xenografts derived from orthotopic implantation of GBM cells and prolonged the survival time of tumor-bearing mice. CONCLUSION Our results indicate that HTRA1 promotes the proliferation and migration of GBM cells in vitro and in vivo, and thus may be a potential target for treatment in gliomas.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Yibo Wu
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Shuai Wang
- University of Pittsburgh Medical Center Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Feihu Zhao
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Wenyu Liu
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Zhiyi Xue
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
| | - Lin Zhang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanChina
| | - Jian Wang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Mingzhi Han
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Xingang Li
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Bin Huang
- Department of Neurosurgery, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Qilu HospitalShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| |
Collapse
|
37
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
38
|
Bayraktar G, Alptüzün V. Recent Molecular Targets and their Ligands for the Treatment of Alzheimer Disease. Curr Top Med Chem 2024; 24:2447-2464. [PMID: 39171472 DOI: 10.2174/0115680266318722240809050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Alzheimer's disease is a multifaceted neurodegenerative disease. Cholinergic dysfunction, amyloid β toxicity, tauopathies, oxidative stress, neuroinflammation are among the main pathologies of the disease. Ligands targeting more than one pathology, multi-target directed ligands, attract attention in the recent years to tackle Alzheimer's disease. In this review, we aimed to cover different biochemical pathways, that are revealed in recent years for the pathology of the disease, as druggable targets such as cannabinoid receptors, matrix metalloproteinases, histone deacetylase and various kinases including, glycogen synthase kinase-3, mitogen-activated protein kinase and c-Jun N-terminal kinase, and their ligands for the treatment of Alzheimer's disease in the hope of providing more realistic insights into the field.
Collapse
Affiliation(s)
- Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Ege University, Faculty of Pharmacy, Izmir, 35040, Turkey
| | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry, Ege University, Faculty of Pharmacy, Izmir, 35040, Turkey
| |
Collapse
|
39
|
Li H, Liu C, Cui Y, Chang P, Chong W. Effect of tubastatin A on NLRP3 inflammasome activation in macrophages under hypoxia/reoxygenation conditions. World J Emerg Med 2024; 15:289-296. [PMID: 39050221 PMCID: PMC11265631 DOI: 10.5847/wjem.j.1920-8642.2024.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/25/2023] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND There are currently no effective drugs to mitigate the ischemia/reperfusion injury caused by fluid resuscitation after hemorrhagic shock (HS). The aim of this study was to explore the potential of the histone deacetylase 6 (HDAC6)-specific inhibitor tubastatin A (TubA) to suppress nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation in macrophages under hypoxia/reoxygenation (H/R) conditions. METHODS The viability of RAW264.7 cells subjected to H/R after treatment with different concentrations of TubA was assessed using a cell-counting kit-8 (CCK8) assay. Briefly, 2.5 μmol/L TubA was used with RAW264.7 cells under H/R condition. RAW264.7 cells were divided into three groups, namely the control, H/R, and TubA groups. The levels of reactive oxygen species (ROS) in the cells were detected using fluorescence microscopy. The protein expression of HDAC6, heat shock protein 90 (Hsp90), inducible nitric oxide synthase (iNOS), NLRP3, gasdermin-D (GSDMD), Caspase-1, GSDMD-N, and Caspase-1 p20 was detected by western blotting. The levels of interleukin-1β (IL-1β) and IL-18 in the supernatants were detected using enzyme-linked immunosorbent assay (ELISA). RESULTS HDAC6, Hsp90, and iNOS expression levels were significantly higher (P<0.01) in the H/R group than in the control group, but lower in the TubA group than in the H/R group (P<0.05). When comparing the H/R group to the control group, ROS levels were significantly higher (P<0.01), but significantly reduced in the TubA group (P<0.05). The H/R group had higher NLRP3, GSDMD, Caspase-1, GSDMD-N, and Caspase-1 p20 expression levels than the control group (P<0.05), however, the TubA group had significantly lower expression levels than the H/R group (P<0.05). IL-1β and IL-18 levels in the supernatants were significantly higher in the H/R group compared to the control group (P<0.01), but significantly lower in the TubA group compared to the H/R group (P<0.01). CONCLUSION TubA inhibited the expression of HDAC6, Hsp90, and iNOS in macrophages subjected to H/R. This inhibition led to a decrease in the content of ROS in cells, which subsequently inhibited the activation of the NLRP3 inflammasome and the secretion of IL-1β and IL-18.
Collapse
Affiliation(s)
- Hao Li
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chang Liu
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Ying Cui
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Panpan Chang
- Trauma Medicine Center, Peking University People’s Hospital, Beijing 100871, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100871, China
- National Center for Trauma Medicine of China, Beijing 100871, China
| | - Wei Chong
- Department of Emergency Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
40
|
Baran M, Miziak P, Stepulak A, Cybulski M. The Role of Sirtuin 6 in the Deacetylation of Histone Proteins as a Factor in the Progression of Neoplastic Disease. Int J Mol Sci 2023; 25:497. [PMID: 38203666 PMCID: PMC10779230 DOI: 10.3390/ijms25010497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
SIRT6 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, predominantly located in the nucleus, that is involved in the processes of histone modification, DNA repair, cell cycle regulation, and apoptosis. Disturbances in SIRT6 expression levels have been observed in the development and progression of various types of cancer. Therefore, it is important to better understand the role of SIRT6 in biochemical pathways and assign it specific biological functions. This review aims to summarize the role of SIRT6 in carcinogenesis and tumor development. A better understanding of the factors influencing SIRT6 expression and its biological role in carcinogenesis may help to develop novel anti-cancer therapeutic strategies. Moreover, we discuss the anti-cancer effects and mechanism of action of small molecule SIRT6 modulators (both activators and inhibitors) in different types of cancer.
Collapse
Affiliation(s)
| | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (P.M.); (M.C.)
| | | |
Collapse
|
41
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Peng X, Yu Z, Surineni G, Deng B, Zhang M, Li C, Sun Z, Pan W, Liu Y, Liu S, Yu B, Chen J. Discovery of novel benzohydroxamate-based histone deacetylase 6 (HDAC6) inhibitors with the ability to potentiate anti-PD-L1 immunotherapy in melanoma. J Enzyme Inhib Med Chem 2023; 38:2201408. [PMID: 37096557 PMCID: PMC10132229 DOI: 10.1080/14756366.2023.2201408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
In this study, a novel series of histone deacetylases 6 (HDAC6) inhibitors containing polycyclic aromatic rings were discovered and evaluated for their pharmacological activities. The most potent compound 10c exhibited high HDAC6 inhibitory activity (IC50 = 261 nM) and excellent HDAC6 selectivity (SI = 109 for HDAC6 over HDAC3). 10c also showed decent antiproliferative activity in vitro with IC50 of 7.37-21.84 μM against four cancer cell lines, comparable to that of tubastatin A (average IC50 = 6.10 μM). Further mechanism studies revealed that 10c efficiently induced apoptosis and S-phase arrest in B16-F10 cells. In addition, 10c markedly increased the expression of acetylated-α-tubulin both in vitro and in vivo, without affecting the levels of acetylated-H3 (marker of HDAC1 inhibition). Furthermore, 10c (80 mg/kg) exhibited moderate antitumor efficacy in a melanoma tumour model with a tumour growth inhibition (TGI) of 32.9%, comparable to that (TGI = 31.3%) of tubastatin A. Importantly, the combination of 10c with NP19 (a small molecule PD-L1 inhibitor discovered by us before) decreased tumour burden substantially (TGI% = 60.1%) as compared to monotherapy groups. Moreover, the combination of 10c with NP19 enhanced the anti-tumour immune response, mediated by a decrease of PD-L1 expression levels and increased infiltration of anti-tumour CD8+ T cells in tumour tissues. Collectively, 10c represents a novel HDAC6 inhibitor deserving further investigation as a potential anti-cancer agent.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Ziwen Yu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Goverdhan Surineni
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Bulian Deng
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Meizhu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Chuan Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Zhiqiang Sun
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Wanyi Pan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Yao Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shenglan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjun Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Li XY, Yu JT, Dong YH, Shen XY, Hou R, Xie MM, Wei J, Hu XW, Dong ZH, Shan RR, Jin J, Shao W, Meng XM. Protein acetylation and related potential therapeutic strategies in kidney disease. Pharmacol Res 2023; 197:106950. [PMID: 37820854 DOI: 10.1016/j.phrs.2023.106950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.
Collapse
Affiliation(s)
- Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie Wei
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
44
|
Li T, Zeng Z, Fan C, Xiong W. Role of stress granules in tumorigenesis and cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189006. [PMID: 37913942 DOI: 10.1016/j.bbcan.2023.189006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Stress granules (SGs) are membrane-less organelles that cell forms via liquid-liquid phase separation (LLPS) under stress conditions such as oxidative stress, ER stress, heat shock and hypoxia. SG assembly is a stress-responsive mechanism by regulating gene expression and cellular signaling pathways. Cancer cells face various stress conditions in tumor microenvironment during tumorigenesis, while SGs contribute to hallmarks of cancer including proliferation, invasion, migration, avoiding apoptosis, metabolism reprogramming and immune evasion. Here, we review the connection between SGs and cancer development, the limitation of SGs on current cancer therapy and promising cancer therapeutic strategies targeting SGs in the future.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
45
|
Pu J, Sharma A, Hou J, Schmidt-Wolf IG. Histone deacetylase 6: at the interface of cancer and neurodegeneration. Epigenomics 2023; 15:1195-1203. [PMID: 38059314 DOI: 10.2217/epi-2023-0373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
With the recognition in the early 1960s that histones can be post-translationally modified, the list of different post-translational modifications of histones and their biological consequences has continued to expand. In addition, the idea of the 'histone code' hypothesis, later introduced by David Allis and colleagues, further broaden the horizon of chromatin biology. Currently, there is a wealth of knowledge about the transition between the active and the repressive state of chromatin, and modifications of histones remains at the center of chromatin biology. Histone deacetylases (HDACs) in particular are of great importance for the therapeutic success of cancer treatment. Focusing primarily on HDAC6, herein we have briefly highlighted its unique involvement in cancer and also apparently in neurodegeneration.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Jian Hou
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ingo Gh Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
46
|
Zhang J, Chen X, Chen G, Wang H, Jia L, Hao Y, Yao D. Identification of a novel PAK1/HDAC6 dual inhibitor ZMF-23 that triggers tubulin-stathmin regulated cell death in triple negative breast cancer. Int J Biol Macromol 2023; 251:126348. [PMID: 37586623 DOI: 10.1016/j.ijbiomac.2023.126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most poorly treated subtype of breast cancer, and targeting the heterogeneity of TNBC has emerged as a fascinating therapeutic strategy. In this study, we propose for the first time that dual-targeting PAK1 and HDAC6 is a promising novel strategy for TNBC treatment due to their essential roles in the regulation of energy metabolism and epigenetic modification. We discovered a novel dual-targeting PAK1/HDAC6 inhibitor, 6 - (2-(cyclopropylamino) - 6 - (2,4-dichlorophenyl) - 7 - oxopyrido [2,3-d] pyrimidin - 8 (7H) -yl) - N-hydroxyhexanamide (ZMF-23), which presented profound inhibitory activity against PAK1 and HDAC6 and robust antiproliferative potency in MDA-MB-231 cells. In addition, SPR and CETSA assay demonstrated the targeted binding of ZMF-23 with PAK1/HDAC6. Mechanically, ZMF-23 strongly inhibited the cellular PAK1 and HDAC6 activity, impeded PAK1 and HDAC6 regulated aerobic glycolysis and migration. By RNA-seq analysis, ZMF-23 was found to induce TNF-α-regulated necroptosis, which further enhanced apoptosis. Additionally, ZMF-23 triggered PAK1-tubulin/HDAC6-Stathmin regulated microtubule structure changes, which further induced the G2/M cycle arrest. Moreover, prominent anti-proliferative effect of ZMF-23 was confirmed in the TNBC xenograft zebrafish and mouse model via PAK1 and HDAC6 inhibition. Collectively, ZMF-23 is a novel dual PAK1/HDAC6 inhibitor with TNBC treatment potential.
Collapse
Affiliation(s)
- Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Gang Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Hailing Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Yue Hao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Dahong Yao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
47
|
Wang B, Liu Y, Zhang L, Wang Y, Li Z, Chen X. Design, Synthesis, and Antiproliferative Activity of Selective Histone Deacetylases 6 Inhibitors Containing a Tetrahydropyridopyrimidine Scaffold. Molecules 2023; 28:7323. [PMID: 37959743 PMCID: PMC10648541 DOI: 10.3390/molecules28217323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The development of selective histone deacetylase 6 inhibitors (sHDAC6is) is being recognized as a therapeutic approach for cancers. In this paper, we designed a series of novel tetrahydropyridopyrimidine derivatives as sHDAC6 inhibitors. The most potent compound, 8-(2, 4-bis(3-methoxyphenyl)-5, 8-dihydropyrido [3, 4-d]pyrimidin-7(6H)-yl)-N-hydroxy-8-oxooctanamide (8f), inhibited HDAC6 with IC50 of 6.4 nM, and showed > 48-fold selectivity over other subtypes. In Western blot assay, 8f elevated the levels of acetylated α-tubulin in a dose-dependent manner. In vitro, 8f inhibited RPMI-8226, HL60, and HCT116 tumor cells with IC50 of 2.8, 3.20, and 3.25 μM, respectively. Moreover, 8f showed good antiproliferative activity against a panel of tumor cells.
Collapse
Affiliation(s)
- Bin Wang
- Department of Biochemistry and Molecular Biology, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China; (B.W.); (L.Z.); (Y.W.)
| | - Youcai Liu
- Experimental Teaching Center of Biology & Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China;
| | - Lejing Zhang
- Department of Biochemistry and Molecular Biology, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China; (B.W.); (L.Z.); (Y.W.)
| | - Yajuan Wang
- Department of Biochemistry and Molecular Biology, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China; (B.W.); (L.Z.); (Y.W.)
| | - Zhaoxi Li
- Department of Biochemistry and Molecular Biology, Sanquan College of Xinxiang Medical University, Xinxiang 453003, China; (B.W.); (L.Z.); (Y.W.)
| | - Xin Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
48
|
Zhang C, He Y, Sun X, Wei W, Liu Y, Rao Y. PROTACs Targeting Epigenetic Proteins. ACTA MATERIA MEDICA 2023; 2:409-429. [PMID: 39221114 PMCID: PMC11364368 DOI: 10.15212/amm-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epigenetics, a field that investigates alterations in gene function that can be inherited without changes in DNA sequence, encompasses molecular pathways such as histone variants, posttranslational modifications of amino acids, and covalent modifications of DNA bases. These pathways modulate the transformation of genotypes into specific phenotypes. Epigenetics plays a substantial role in cell growth, development, and differentiation by dynamically regulating gene transcription and ensuring genomic stability. This regulation is carried out by three key players: writers, readers, and erasers. In recent years, epigenetic proteins have played a crucial role in epigenetic regulation and have gradually become important targets in drug research and development. Targeted therapy is an essential strategy; however, the effectiveness of targeted drugs is often limited by drug resistance, posing a significant dilemma in clinical practice. Targeted protein degradation technologies, including proteolysis-targeting chimeras (PROTACs), have great potential in overcoming drug resistance and targeting undruggable targets. These areas of research are gaining increasing attention to various epigenetic related disease. In this review, we have provided a summary of the recently developed degraders targeting epigenetic readers, writers, and erasers. Additionally, we have outlined new applications for epigenetic protein degraders. Finally, we have addressed several unresolved challenges within the PROTAC field and offered potential solutions from our perspective. As the field continues to advance, the integration of these innovative methodologies holds great promise for addressing the challenges associated with PROTAC development.
Collapse
Affiliation(s)
- Chao Zhang
- Changping Laboratory, Beijing 102206, China
| | - Yuna He
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiuyun Sun
- Changping Laboratory, Beijing 102206, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yu Rao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
49
|
Ripa L, Sandmark J, Hughes G, Shamovsky I, Gunnarsson A, Johansson J, Llinas A, Collins M, Jung B, Novén A, Pemberton N, Mogemark M, Xiong Y, Li Q, Tångefjord S, Ek M, Åstrand A. Selective and Bioavailable HDAC6 2-(Difluoromethyl)-1,3,4-oxadiazole Substrate Inhibitors and Modeling of Their Bioactivation Mechanism. J Med Chem 2023; 66:14188-14207. [PMID: 37797307 DOI: 10.1021/acs.jmedchem.3c01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.
Collapse
Affiliation(s)
- Lena Ripa
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Jenny Sandmark
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Glyn Hughes
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Igor Shamovsky
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Julia Johansson
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Antonio Llinas
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mia Collins
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Bomi Jung
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anna Novén
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Nils Pemberton
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mickael Mogemark
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Yao Xiong
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Qing Li
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Stefan Tångefjord
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Margareta Ek
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Annika Åstrand
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| |
Collapse
|
50
|
Xu L, Yan X, Wang J, Zhao Y, Liu Q, Fu J, Shi X, Su J. The Roles of Histone Deacetylases in the Regulation of Ovarian Cancer Metastasis. Int J Mol Sci 2023; 24:15066. [PMID: 37894746 PMCID: PMC10606123 DOI: 10.3390/ijms242015066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and metastasis is the major cause of death in patients with ovarian cancer, which is regulated by the coordinated interplay of genetic and epigenetic mechanisms. Histone deacetylases (HDACs) are enzymes that can catalyze the deacetylation of histone and some non-histone proteins and that are involved in the regulation of a variety of biological processes via the regulation of gene transcription and the functions of non-histone proteins such as transcription factors and enzymes. Aberrant expressions of HDACs are common in ovarian cancer. Many studies have found that HDACs are involved in regulating a variety of events associated with ovarian cancer metastasis, including cell migration, invasion, and the epithelial-mesenchymal transformation. Herein, we provide a brief overview of ovarian cancer metastasis and the dysregulated expression of HDACs in ovarian cancer. In addition, we discuss the roles of HDACs in the regulation of ovarian cancer metastasis. Finally, we discuss the development of compounds that target HDACs and highlight their importance in the future of ovarian cancer therapy.
Collapse
Affiliation(s)
- Long Xu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Xinyi Shi
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| |
Collapse
|