1
|
Li G, Liu W, Da X, Li Z, Pu J. The natural flavonoid pinocembrin shows antithrombotic activity and suppresses septic thrombosis. Int Immunopharmacol 2024; 142:113237. [PMID: 39340994 DOI: 10.1016/j.intimp.2024.113237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Sepsis, an extreme host response to systemic infection, remains one of the leading causes of mortality worldwide. Platelets, which are integral to both thrombosis and inflammation, play a crucial role in the pathophysiology of sepsis. Excessive platelet activation and aggregation significantly increase the risk of thrombosis, thereby elevating mortality in septic patients. However, the etiology and treatment of this condition have not been comprehensively studied. This study identifies pinocembrin, a natural flavonoid compound derived from propolis, as a potential therapeutic agent for mitigating platelet activation and treating sepsis. In vivo, pinocembrin effectively inhibited FeCl3-induced carotid arterial occlusive thrombus formation and collagen/epinephrine-induced pulmonary thromboembolism in mouse models. In vitro, pinocembrin treatment suppressed multiple facets of platelet activation, including aggregation, secretion, and αIIbβ3-mediated signaling events. Mechanistically, pinocembrin repressed platelet functions by inhibiting Src/Syk/PLCγ2/MAPK signaling pathway. Using cecal ligation and puncture (CLP) mouse model to simulate human sepsis, pinocembrin reduced inflammatory cytokine release and septic thrombosis, thereby improving the survival rate of septic mice. Lipopolysaccharide (LPS)-induced model further substantiated these results. Overall, the inhibition of platelet activity by pinocembrin demonstrates significant therapeutic potential for managing life-threatening septic thrombosis.
Collapse
Affiliation(s)
- Gaoxiang Li
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhua Liu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwen Da
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyan Li
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Ye Y, Leng M, Chai S, Yang L, Ren L, Wan W, Wang H, Li L, Li C, Meng Z. Antiplatelet effects of the CEACAM1-derived peptide QDTT. Platelets 2024; 35:2308635. [PMID: 38345065 DOI: 10.1080/09537104.2024.2308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) restricts platelet activation via platelet collagen receptor GPVI/FcRγ-chain. In this study, screening against collagen-induced platelet aggregation was performed to identify functional CEACAM1 extracellular domain fragments. CEACAM1 fragments, including Ala-substituted peptides, were synthesized. Platelet assays were conducted on healthy donor samples for aggregation, cytotoxicity, adhesion, spreading, and secretion. Mice were used for tail bleeding and FeCl3-induced thrombosis experiments. Clot retraction was assessed using platelet-rich plasma. Extracellular segments of CEACAM1 and A1 domain-derived peptide QDTT were identified, while N, A2, and B domains showed no involvement. QDTT inhibited platelet aggregation. Ala substitution for essential amino acids (Asp139, Thr141, Tyr142, Trp144, and Trp145) in the QDTT sequence abrogated collagen-induced aggregation inhibition. QDTT also suppressed platelet secretion and "inside-out" GP IIb/IIIa activation by convulxin, along with inhibiting PI3K/Akt pathways. QDTT curtailed FeCl3-induced mesenteric thrombosis without significantly prolonging bleeding time, implying the potential of CEACAM1 A1 domain against platelet activation without raising bleeding risk, thus paving the way for novel antiplatelet drugs.
Collapse
Affiliation(s)
- Yujia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Min Leng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Shengjie Chai
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lihong Yang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Longcheng Ren
- Cardiovascular Department, Tengchong Hospital of Traditional Chinese Medicine, Tengchong, PR China
| | - Wen Wan
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Huawei Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Longjun Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Chaozhong Li
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Zhaohui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| |
Collapse
|
3
|
Huang B, Tang P, Liu Y, Liu F, Zheng Y, Yang X, Zhang X, Xie H, Lin L, Lin B, Lin B. Xuefu Zhuyu decoction alleviates deep vein thrombosis through inhibiting the activation of platelets and neutrophils via sirtuin 1/nuclear factor kappa-B pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118485. [PMID: 38908490 DOI: 10.1016/j.jep.2024.118485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuefu Zhuyu Decoction (XZD), a renowned traditional Chinese medicine prescription, is widely employed for the management of conditions characterized by qi-stagnation and blood stasis. Although its anti-thrombotic effect on deep vein thrombosis (DVT) patients has been clinically observed, the underlying mechanism remains largely unexplored. AIM OF THE STUDY Our aim was to investigate the mechanisms by which XZD exerted its effect on DVT. MATERIALS AND METHODS The ultra performance liquid chromatography (UPLC) technique was employed to evaluate quality of XZD. To examine the effect of XZD on DVT, a DVT rat model with inferior vena cava (IVC) stenosis was established. The 4D-label-free proteomics approach was then utilized to uncover the possible mechanisms of XZD against DVT. Based on proteomics, citrullinated histone H3 (CitH3), along with serum levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) were observed the inhibitory activity of XZD on neutrophil activation. Subsequently, the marker of platelet activation, specifically glycoprotein IIb (CD41) and glycoprotein IIIa (CD61), were assessed along with the secretion of von Willebrand factor (vWF) to investigate the inhibitory activity of XZD on platelet activation. Finally, we explored the impact of XZD on the sirtuin 1 (SIRT1)/nuclear factor kappa-B (NF-κB) pathway, which was associated with the activation of platelets and neutrophils. RESULTS Eight distinct components were identified for the quality control of XZD. XZD effectively reduced thrombus weight and length in DVT rats, without affecting the coagulation function or hematological parameters in the systemic circulation. Proteomics analysis revealed that XZD alleviated DVT by inhibiting the activation of platelets and neutrophils. The protein expression of CitH3, along with serum levels of TNF-α and IL-1β, were reduced in XZD-treated DVT rats. Similarly, protein expressions of CD41 and CD61, along with the release of vWF, were markedly down-regulated in XZD-treated DVT rats. Finally, treatment with XZD resulted in an up-regulation of SIRT1 protein expression and a down-regulation of both acetylated NF-κB/p65 and phosphorylated NF-κB/p65 protein expressions in endothelium. CONCLUSIONS XZD alleviates DVT by inhibiting the activation of platelets and neutrophils at the injured endothelium via the regulation of SIRT1/NF-κB pathway.
Collapse
Affiliation(s)
- Boning Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Ping Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Youchen Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Fangle Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Yuying Zheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Xinrong Yang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Xiubing Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Huiyi Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Liuqing Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Bingqing Lin
- School of Mathematical Sciences, Shenzhen University, Shenzhen, Guangdong, China.
| | - Baoqin Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China.
| |
Collapse
|
4
|
Wang R, Tian Z, Zhu M, Zhang B, Li Y, Zheng Y, Mao Y, Zhao Y, Yang Y. SARS-CoV-2 spike protein potentiates platelet aggregation via upregulating integrin αIIbβ3 outside-in signaling pathway. J Thromb Thrombolysis 2024; 57:1225-1232. [PMID: 38981976 DOI: 10.1007/s11239-024-03008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 07/11/2024]
Abstract
Platelet hyperreactivity is one of the crucial causes of coagulative disorders in patients with COVID-19. Few studies have indicated that integrin αIIbβ3 may be a potential target for spike protein binding to platelets. This study aims to investigate whether spike protein interacts with platelet integrin αIIbβ3 and upregulates outside-in signaling to potentiate platelet aggregation. In this study, we found that spike protein significantly potentiated platelet aggregation induced by different agonists and platelet spreading in vitro. Mechanism studies revealed that spike protein upregulated the outside-in signaling, such as increased thrombin-induced phosphorylation of β3, c-Src. Moreover, using tirofiban to inhibit spike protein binding to αIIbβ3 or using PP2 to block outside-in signaling, we found that the potentiating effect of spike protein on platelet aggregation was abolished. These results demonstrate that SARS-CoV-2 spike protein directly enhances platelet aggregation via integrin αIIbβ3 outside-in signaling, and suggest a potential target for platelet hyperreactivity in patients with COVID-19. HIGHLIGHTS: • Spike protein potentiates platelet aggregation and upregulates αIIbβ3 outside-in signaling. • Spike protein interacts with integrin αIIbβ3 to potentiate platelet aggregation. • Blocking outside-in signaling abolishes the effect of spike protein on platelets.
Collapse
Affiliation(s)
- Ruijie Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangdong Province, Guangzhou, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangdong Province, Guangzhou, China
| | - Meiyan Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
| | - Bingying Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
| | - Yanzhang Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
| | - Yiqi Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong Province, Guangzhou, China
| | - Yuheng Mao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangdong Province, Guangzhou, China
| | - Yimin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangdong Province, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangdong Province, Guangzhou, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, Shenzhen, China.
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangdong Province, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangdong Province, Guangzhou, China.
| |
Collapse
|
5
|
Xie Q, Zhou J, He C, Xu Y, Tao F, Hu M. Unlocking the intricacies: Exploring the complex interplay between platelets and ovarian cancer. Crit Rev Oncol Hematol 2024; 202:104465. [PMID: 39097249 DOI: 10.1016/j.critrevonc.2024.104465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
Ovarian cancer, an aggressive malignancy of the female reproductive tract, is frequently linked to an elevated risk of thrombotic events. This association is manifested by a pronounced rise in platelet counts and activation levels. Current research firmly supports the pivotal role of platelets in the oncogenic processes of ovarian cancer, influencing tumor cell proliferation and metastasis. Platelets influence these processes through direct interactions with tumor cells or by secreting cytokines and growth factors that enhance tumor growth, angiogenesis, and metastasis. This review aims to thoroughly dissect the interactions between platelets and ovarian cancer cells, emphasizing their combined role in tumor progression and associated thrombotic events. Additionally, it summarizes therapeutic strategies targeting platelet-cancer interface which show significant promise. Such approaches could not only be effective in managing the primary ovarian tumor but also play a pivotal role in preventing metastasis and attenuating thrombotic complications associated with ovarian cancer.
Collapse
Affiliation(s)
- Qianxin Xie
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Zhou
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chaonan He
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye Xu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangfang Tao
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengjiao Hu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
6
|
Rodriguez Moore G, Melo-Escobar I, Stegner D, Bracko O. One immune cell to bind them all: platelet contribution to neurodegenerative disease. Mol Neurodegener 2024; 19:65. [PMID: 39334369 PMCID: PMC11438031 DOI: 10.1186/s13024-024-00754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) and related dementias (ADRD) collectively affect a significant portion of the aging population worldwide. The pathological progression of AD involves not only the classical hallmarks of amyloid beta (Aβ) plaque buildup and neurofibrillary tangle development but also the effects of vasculature and chronic inflammatory processes. Recently, platelets have emerged as central players in systemic and neuroinflammation. Studies have shown that patients with altered platelet receptor expression exhibit accelerated cognitive decline independent of traditional risk factors. Additionally, platelets from AD patients exhibit heightened unstimulated activation compared to control groups. Platelet granules contain crucial AD-related proteins like tau and amyloid precursor protein (APP). Dysregulation of platelet exocytosis contributes to disease phenotypes characterized by increased bleeding, stroke, and cognitive decline risk. Recent studies have indicated that these effects are not associated with the quantity of platelets present in circulation. This underscores the hypothesis that disruptions in platelet-mediated inflammation and healing processes may play a crucial role in the development of ADRD. A thorough look at platelets, encompassing their receptors, secreted molecules, and diverse roles in inflammatory interactions with other cells in the circulatory system in AD and ADRD, holds promising prospects for disease management and intervention. This review discusses the pivotal roles of platelets in ADRD.
Collapse
Affiliation(s)
| | - Isabel Melo-Escobar
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
7
|
Koutsaliaris IK, Pantazi D, Tsouka AN, Argyropoulou O, Tellis CC, Tselepis AD. Differential Effect of Omega-3 Fatty Acids on Platelet Inhibition by Antiplatelet Drugs In Vitro. Int J Mol Sci 2024; 25:10136. [PMID: 39337620 PMCID: PMC11432081 DOI: 10.3390/ijms251810136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The omega-3 polyunsaturated fatty acids (PUFAs) Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) exert multiple cardioprotective effects, influencing inflammation, platelet activation, endothelial function and lipid metabolism, besides their well-established triglyceride lowering properties. It is not uncommon for omega-3 PUFAs to be prescribed for hypertriglyceridemia, alongside antiplatelet therapy in cardiovascular disease (CVD) patients. In this regard, we studied the effect of EPA and DHA, in combination with antiplatelet drugs, in platelet aggregation and P-selectin and αIIbβ3 membrane expression. The antiplatelet drugs aspirin and triflusal, inhibitors of cyclooxygenase-1 (COX-1); ticagrelor, an inhibitor of the receptor P2Y12; vorapaxar, an inhibitor of the PAR-1 receptor, were combined with DHA or EPA and evaluated against in vitro platelet aggregation induced by agonists arachidonic acid (AA), adenosine diphosphate (ADP) and TRAP-6. We further investigated procaspase-activating compound 1 (PAC-1) binding and P-selectin membrane expression in platelets stimulated with ADP and TRAP-6. Both DHA and EPA displayed a dose-dependent inhibitory effect on platelet aggregation induced by AA, ADP and TRAP-6. In platelet aggregation induced by AA, DHA significantly improved acetylsalicylic acid (ASA) and triflusal's inhibitory activity, while EPA enhanced the inhibitory effect of ASA. In combination with EPA, ASA and ticagrelor expressed an increased inhibitory effect towards ADP-induced platelet activation. Both fatty acids could not improve the inhibitory effect of vorapaxar on AA- and ADP-induced platelet aggregation. In the presence of EPA, all antiplatelet drugs displayed a stronger inhibitory effect towards TRAP-6-induced platelet activation. Both omega-3 PUFAs inhibited the membrane expression of αIIbβ3, though they had no effect on P-selectin expression induced by ADP or TRAP-6. The antiplatelet drugs exhibited heterogeneity regarding their effect on P-selectin and αIIbβ3 membrane expression, while both omega-3 PUFAs inhibited the membrane expression of αIIbβ3, though had no effect on P-selectin expression induced by ADP or TRAP-6. The combinatory effect of DHA and EPA with the antiplatelet drugs did not result in enhanced inhibitory activity compared to the sum of the individual effects of each component.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandros D. Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece; (I.K.K.); (D.P.); (A.N.T.); (O.A.); (C.C.T.)
| |
Collapse
|
8
|
Guo Z, Bao S, Shi Z, Li X, Li P, Zhong B, Zhang M, Wu Q. USP15-Mediated Deubiquitination of FKBP 5 and Activation of the αIIbβ3 Signaling Pathway Regulate Thrombosis in Mice. FRONT BIOSCI-LANDMRK 2024; 29:325. [PMID: 39344328 DOI: 10.31083/j.fbl2909325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Platelets have the hemostatic function, and their aberrant activation is associated with occlusive thrombus formation. Plasma exosomes are rich in platelets containing ubiquitin-specific peptidase 15 (USP15). Herein, we aim to explore the effect of USP15 on thrombosis, as well as expounding whether USP15 acts as an upstream target of FK506 binding protein 5 (FKBP5) to regulate occlusive thrombus formation. METHODS Washed human platelets were treated with thrombin for measurement of USP15 and FKBP5 expressions. USP15 loss/gain-of-function variant in HEK293 cells was performed by cell transfection, and the interaction between USP15 and FKBP5 was examined using immunoprecipitation and ubiquitination assays. Mice with USP15-knockout platelets (Plt USP15-/-) were modeled, and subjected to calculation of bleeding time, artery thrombosis imaging and clot retraction assay. FKBP5 expression and the inhibitor of nuclear factor kappa B kinase subunit epsilon (IKBKE)/phosphatidylinositol 3-kinase (PI3K)/Rap1 pathway in wild-type and Plt USP15-/- mice-derived platelets were detected using Western blot. The activation of αIIbβ3 in washed platelets was analyzed using flow cytometry. RESULTS USP15 and FKBP5 expressions were upregulated in platelets after thrombin treatment. Following transfection of USP15 knockdown and USP15 overexpression plasmids into HEK293 cells, FKBP5 protein expression was downregulated by USP15 knockdown while being upregulated by USP15 overexpression. USP15 bound to FKBP5 and protected FKBP5 against ubiquitination. Knockdown of platelet USP15 prolonged bleeding time, inhibited arterial thrombosis and delayed clot retraction in mice. Knockdown of platelet USP15 also decreased protein expressions of FKBP5, IKBKE and Rap1, p-PI3K/PI3K ratio, and activation of αIIbβ3 in mice. CONCLUSION USP15 knockdown in platelets affects thrombosis in mice by promoting the instability of FKBP5 to repress the activation of IKBKE/PI3K/Rap1 pathway-mediated αIIbβ3.
Collapse
Affiliation(s)
- Ziwei Guo
- The Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Sixu Bao
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
- The Graduate School, Nanjing Medical University, 211166 Nanjing, Jinagsu, China
| | - Zehui Shi
- The Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Xuejiao Li
- The Graduate School, Dalian Medical University, 116044 Dalian, Liaoning, China
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Peijin Li
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
- The Graduate School, Nanjing Medical University, 211166 Nanjing, Jinagsu, China
| | - Bin Zhong
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Ming Zhang
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| | - Qiyong Wu
- Department of Cardiothoracic Surgery, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 213000 Changzhou, Jiangsu, China
| |
Collapse
|
9
|
Baxter RM, Harper MT. Dissecting the roles of dynamin and clathrin in platelet pinocytosis. Biochem Biophys Res Commun 2024; 725:150250. [PMID: 38870846 DOI: 10.1016/j.bbrc.2024.150250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Platelets endocytose many molecules from their environment. However, this process of pinocytosis in platelets is poorly understood. Key endocytic regulators such as dynamin, clathrin, CDC42 and Arf6 are expressed in platelets but their roles in pinocytosis is not known. Stimulated platelets form two subpopulations of pro-aggregatory and procoagulant platelets. The effect of stimulation on pinocytosis is also poorly understood. In this study, washed human platelets were treated with a range of endocytosis inhibitors and stimulated using different activators. The rate of pinocytosis was assessed using pHrodo green, a pH-sensitive 10 kDa dextran. In unstimulated platelets, pHrodo fluorescence increased over time and accumulated as intracellular puncta indicating constituently active pinocytosis. Stimulated platelets (both pro-aggregatory and procoagulant) had an elevated pinocytosis rate compared to unstimulated platelets. Dynamin inhibition blocked pinocytosis in unstimulated, pro-aggregatory and procoagulant platelets indicating that most platelet pinocytosis is dynamin dependent. Although pinocytosis was clathrin-independent in unstimulated and procoagulant populations, clathrin partially contributed to pinocytosis in pro-aggregatory platelets.
Collapse
Affiliation(s)
- Ruby M Baxter
- Department of Pharmacology, University of Cambridge, United Kingdom
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, United Kingdom.
| |
Collapse
|
10
|
Zhou X, Xin G, Wan C, Li F, Wang Y, Zhang K, Yu X, Li S, Huang W. Myricetin reduces platelet PANoptosis in sepsis to delay disseminated intravascular coagulation. Biochem Biophys Res Commun 2024; 724:150140. [PMID: 38852506 DOI: 10.1016/j.bbrc.2024.150140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
Sepsis is a severe inflammatory disease characterized by cytokine storm, often accompanied by disseminated intravascular coagulation (DIC). PANoptosis is a novel form of cell death triggered by cytokine storms, characterized by a cascade reaction of pyroptosis, apoptosis, and necroptosis. It exists in septic platelets and is closely associated with the onset and progression of DIC. However, there remains an unmet need for drugs targeting PANoptosis. The anti-PANoptosis effect of myricetin was predicted using network pharmacology and confirmed through molecular docking. In vitro platelet activation models demonstrated that myricetin significantly attenuated platelet particle release, integrin activation, adhesion, spreading, clot retraction, and aggregation. Moreover, in a sepsis model, myricetin reduced inflammatory infiltration in lung tissue and platelet activation while improving DIC. Additionally, whole blood sequencing samples from sepsis patients and healthy individuals were analyzed to elucidate the up-regulation of the PANoptosis targets. Our findings demonstrate the inhibitory effect of myricetin on septic platelet PANoptosis, indicating its potential as a novel anti-cellular PANoptosis candidate and therapeutic agent for septic DIC. Furthermore, our study establishes a foundation for utilizing network pharmacology in the discovery of new drugs to treat various diseases.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China; College of Health, Yuncheng Vocational and Technical University, China
| | - Guang Xin
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Chengyu Wan
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Fan Li
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Yilan Wang
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Kun Zhang
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Xiuxian Yu
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Shiyi Li
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Wen Huang
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China.
| |
Collapse
|
11
|
Ke HY, Chen JH, Kao SY, Tsao CM, Kuo CW, Wu CC, Shih CC. Heat stress-induced platelet dysfunction is associated with loss of fibrinogen and is improved by fibrinogen supplementation. Thromb Res 2024; 241:109091. [PMID: 38986215 DOI: 10.1016/j.thromres.2024.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Heatstroke is a critical heat-related condition characterized by coagulopathy and multiple organ dysfunction. One of the most severe complications of heatstroke is disseminated intravascular coagulation. This condition manifests as excessive clot formation and bleeding that are primarily due to platelet depletion and dysfunction. Fibrinogen plays a crucial role in hemostasis because it links integrin αIIbβ3 on adjacent platelets, thereby promoting the platelet activation and aggregation necessary for clot formation. However, reduced fibrinogen levels may impair the formation of the initial platelet plug and increase the risk of bleeding. The current study explored the effect of fibrinogen on platelet dysfunction in a heatstroke model. MATERIALS AND METHODS Male Wistar rats were subjected to heat stress, and subsequent changes in hemodynamic, biochemical, and coagulation parameters were analyzed. Platelet viability, aggregation, adhesion, spreading and fibrin clot retraction were assessed. RESULTS The rats with heatstroke exhibited a variety of clinical symptoms, including hypotension, tachycardia, multiple organ dysfunction, and coagulopathy. Platelet viability in the heatstroke group was comparable to that in the healthy control group. However, the heatstroke group exhibited significant reductions in plasma fibrinogen levels and platelet aggregation, adhesion, spreading, and fibrin clot retraction. Notably, fibrinogen supplementation markedly augmented the aggregation responses of platelets in the heatstroke group. The impairment of platelet adhesion, spreading, and fibrin clot retraction in the rats with heatstroke was partially ameliorated by fibrinogen supplementation. CONCLUSIONS An early use of fibrinogen replacement may serve as a therapeutic intervention to alleviate platelet hyporeactivity and prevent the complications in patients with heatstroke.
Collapse
Affiliation(s)
- Hung-Yen Ke
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jye-Hann Chen
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shih-Yao Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chia-Wen Kuo
- Department of Nephrology, Taichung Armed Forces General Hospital, Taichung, Taiwan, ROC
| | - Chin-Chen Wu
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chih-Chin Shih
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
12
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
13
|
Chen J, Liu S, Ruan Z, Wang K, Xi X, Mao J. Thrombotic events associated with immune checkpoint inhibitors and novel antithrombotic strategies to mitigate bleeding risk. Blood Rev 2024; 67:101220. [PMID: 38876840 DOI: 10.1016/j.blre.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Although immunotherapy is expanding treatment options for cancer patients, the prognosis of advanced cancer remains poor, and these patients must contend with both cancers and cancer-related thrombotic events. In particular, immune checkpoint inhibitors are associated with an increased risk of atherosclerotic thrombotic events. Given the fundamental role of platelets in atherothrombosis, co-administration of antiplatelet agents is always indicated. Platelets are also involved in all steps of cancer progression. Classical antithrombotic drugs can cause inevitable hemorrhagic side effects due to blocking integrin β3 bidirectional signaling, which regulates simultaneously thrombosis and hemostasis. Meanwhile, many promising new targets are emerging with minimal bleeding risk and desirable anti-tumor effects. This review will focus on the issue of thrombosis during immune checkpoint inhibitor treatment and the role of platelet activation in cancer progression as well as explore the mechanisms by which novel antiplatelet therapies may exert both antithrombotic and antitumor effects without excessive bleeding risk.
Collapse
Affiliation(s)
- Jiayi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng Ruan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaodong Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jianhua Mao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
14
|
Barreca MM, Raimondo S, Conigliaro A, Siragusa S, Napolitano M, Alessandro R, Corrado C. The Combination of Natural Compounds Escin-Bromelain-Ginkgo Biloba-Sage Miltiorrhiza (EBGS) Reduces Platelet Adhesion to TNFα-Activated Vascular Endothelium through FAK Signaling. Int J Mol Sci 2024; 25:9252. [PMID: 39273200 PMCID: PMC11395133 DOI: 10.3390/ijms25179252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Thrombosis is a key process that determines acute coronary syndrome and ischemic stroke and is the leading cause of morbidity and mortality in the world, together with cancer. Platelet adhesion and subsequent activation and aggregation are critical processes that cause thrombus formation after endothelial damage. To date, high hopes are associated with compounds of natural origin, which show anticoagulant action without undesirable effects and can be proposed as supportive therapies. We investigated the effect of the new combination of four natural compounds, escin-bromelain-ginkgo biloba-sage miltiorrhiza (EBGS), on the initial process of the coagulation cascade, which is the adhesion of platelets to activated vascular endothelium. Our results demonstrated that EBGS pretreatment of endothelial cells reduces platelet adhesion even in the presence of the monocyte-lymphocyte population. Our data indicate that EBGS exerts its effects by inhibiting the transcription of adhesion molecules, including P-selectin, platelet membrane glycoprotein GP1b, integrins αV and β3, and reducing the secretion of the pro-inflammatory cytokines interleukin 6, interleukin 8, and the metalloproteinases MMP-2 and MMP-9. Furthermore, we demonstrated that EBGS inhibited the expression of focal adhesion kinase (FAK), strictly involved in platelet adhesion, and whose activity is correlated with that of integrin β3. The results shown in this manuscript suggest a possible inhibitory role of the new combination EBGS in the reduction in platelet adhesion to activated endothelium, thus possibly preventing coagulation cascade initiation.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Biology and Genetics Section, University of Palermo, 90133 Palermo, Italy
| | - Stefania Raimondo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Biology and Genetics Section, University of Palermo, 90133 Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Biology and Genetics Section, University of Palermo, 90133 Palermo, Italy
| | - Sergio Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Haematology Section, University of Palermo, 90127 Palermo, Italy
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Haematology Section, University of Palermo, 90127 Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Biology and Genetics Section, University of Palermo, 90133 Palermo, Italy
| | - Chiara Corrado
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Biology and Genetics Section, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
15
|
Bian Y, Jin Q, He J, Ngo T, Bae ON, Xing L, Pi J, Chung HY, Xu Y. Biomedical application of TiO 2NPs can cause arterial thrombotic risks through triggering procoagulant activity, activation and aggregation of platelets. Cell Biol Toxicol 2024; 40:67. [PMID: 39110362 PMCID: PMC11306309 DOI: 10.1007/s10565-024-09908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Titanium dioxide nanoparticles (TiO2NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular. METHODS Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO2NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively. RESULTS Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO2NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO2NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO2NP treatment, which were crucial in TiO2NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO2NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT. CONCLUSIONS Together, our study provides evidence for an ignored health risk caused by TiO2NPs, specifically TiO2NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China.
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Qiushuo Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jinrui He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Thien Ngo
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
- Faculty of Pharmacy, Thai Binh University of Medicine and Pharmacy, Thai Binh City, 410000, Vietnam
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, Gyeonggido, 426-791, South Korea
| | - Liguo Xing
- Safety Evaluation Center of Shenyang Research Institute of Chemical Industry Ltd, Shenyang, 110021, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Han Young Chung
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China.
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
16
|
Zhang Y, Zeng J, Bao S, Zhang B, Li X, Wang H, Cheng Y, Zhang H, Zu L, Xu X, Xu S, Song Z. Cancer progression and tumor hypercoagulability: a platelet perspective. J Thromb Thrombolysis 2024; 57:959-972. [PMID: 38760535 DOI: 10.1007/s11239-024-02993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Venous thromboembolism, which is common in cancer patients and accompanies or even precedes malignant tumors, is known as cancer-related thrombosis and is an important cause of cancer- associated death. At present, the exact etiology of the elevated incidence of venous thrombosis in cancer patients remains elusive. Platelets play a crucial role in blood coagulation, which is intimately linked to the development of arterial thrombosis. Additionally, platelets contribute to tumor progression and facilitate immune evasion by tumors. Tumor cells can interact with the coagulation system through various mechanisms, such as producing hemostatic proteins, activating platelets, and directly adhering to normal cells. The relationship between platelets and malignant tumors is also significant. In this review article, we will explore these connections.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingtong Zeng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shihao Bao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianjie Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanqing Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Cheng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Xu
- Colleges of Nursing, Tianjin Medical University, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
17
|
Chen Y, Yang J, Liu Y, Liu X, Deng K, Xu K, Zhou H, Jiang X, Xing M, Zhang J. Ultra-Hydrophobic Gauze Driving Super-Haemostasis. Adv Healthc Mater 2024; 13:e2400148. [PMID: 38780479 DOI: 10.1002/adhm.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Indexed: 05/25/2024]
Abstract
Controlling bleeding by applying pressing cotton gauze is the most facile treatment in prehospital emergencies. However, the wettable nature of cotton fibers leads to unnecessary blood loss due to excessive blood absorption, inseparable adhesion-induced pain, and pliable to infection. Here, a kind of ultra-hydrophobic haemostatic anti-adhesive gauze whose surface is loaded with polydimethylsiloxane (PDMS) and hydrophobic-modified cellulose nanocrystals (CNCs), achieving a water contact angle of ≈160° is developed. It is demonstrated that the mechanism by which hydrophobic CNCs promote blood clotting is associated with their ability to activate coagulation factors, contributing to fibrin formation, and promoting platelet activation. The blood-restricting effect results from the low surface energy layer formed by PDMS and then the alkyl chains of hydrophobic CNCs are combined. The produced ultra-hydrophobic gauze resists blood flow and diffusion, decreases blood loss, is effortlessly peelable, and minimizes pathogen adhesion. Compared to the commercial cotton gauze, this gauze achieved effective haemostasis and antiadhesion by reducing blood loss by more than 90%, shortening haemostasis time by more than 75%, lowering peeling force by more than 90% and minifying bacterium attachment by more than 95%. This work presents promising applications in terms of prehospital first aid.
Collapse
Affiliation(s)
- Ying Chen
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), National Key Laboratory of Trauma and Chemical Poisoning?, Chongqing, 400038, China
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jinrui Yang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), National Key Laboratory of Trauma and Chemical Poisoning?, Chongqing, 400038, China
| | - Yuqing Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Xiaoqiang Liu
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), National Key Laboratory of Trauma and Chemical Poisoning?, Chongqing, 400038, China
| | - Kexin Deng
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), National Key Laboratory of Trauma and Chemical Poisoning?, Chongqing, 400038, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Hongling Zhou
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), National Key Laboratory of Trauma and Chemical Poisoning?, Chongqing, 400038, China
| | - Xupin Jiang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), National Key Laboratory of Trauma and Chemical Poisoning?, Chongqing, 400038, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jiaping Zhang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), National Key Laboratory of Trauma and Chemical Poisoning?, Chongqing, 400038, China
| |
Collapse
|
18
|
Zhu Z, Luo Y, Liao H, Guo R, Hao D, Lu Z, Huang M, Sun C, Yao J, Wei N, Zeng K, Tu P, Zhang G. Icaritin Sensitizes Thrombin- and TxA2-Induced Platelet Activation and Promotes Hemostasis via Enhancing PLCγ2-PKC Signaling Pathways. Thromb Haemost 2024; 124:753-769. [PMID: 38224965 DOI: 10.1055/a-2245-8457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
BACKGROUND Vascular injury results in uncontrollable hemorrhage in hemorrhagic diseases and excessive antithrombotic therapy. Safe and efficient hemostatic agents which can be orally administered are urgently needed. Platelets play indispensable roles in hemostasis, but there is no drug exerting hemostatic effects through enhancing platelet function. METHODS The regulatory effects of icaritin, a natural compound isolated from Herba Epimedii, on the dense granule release, thromboxane A2 (TxA2) synthesis, α-granule release, activation of integrin αIIbβ3, and aggregation of platelets induced by multiple agonists were investigated. The effects of icaritin on tail vein bleeding times of warfarin-treated mice were also evaluated. Furthermore, we investigated the underlying mechanisms by which icaritin exerted its pharmacological effects. RESULTS Icaritin alone did not activate platelets, but significantly potentiated the dense granule release, α-granule release, activation of integrin αIIbβ3, and aggregation of platelets induced by thrombin and U46619. Icaritin also shortened tail vein bleeding times of mice treated with warfarin. In addition, phosphorylated proteome analysis, immunoblotting analysis, and pharmacological research revealed that icaritin sensitized the activation of phospholipase Cγ2 (PLCγ2)-protein kinase C (PKC) signaling pathways, which play important roles in platelet activation. CONCLUSION Icaritin can sensitize platelet activation induced by thrombin and TxA2 through enhancing the activation of PLCγ2-PKC signaling pathways and promote hemostasis, and has potential to be developed into a novel orally deliverable therapeutic agent for hemorrhages.
Collapse
Affiliation(s)
- Zhixiang Zhu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanggan Luo
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hanjing Liao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Guo
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Doudou Hao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Lu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manjing Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi City, Shandong Province, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi City, Shandong Province, China
| | - Ning Wei
- Department of Oncology and Cancer Therapeutics Program, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi City, Shandong Province, China
| |
Collapse
|
19
|
Tang M, Zhang Z, Wang P, Zhao F, Miao L, Wang Y, Li Y, Li Y, Gao Z. Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells. Acta Pharm Sin B 2024; 14:3457-3475. [PMID: 39220884 PMCID: PMC11365446 DOI: 10.1016/j.apsb.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.
Collapse
Affiliation(s)
- Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
20
|
Yu D, Lu Z, Chong Y. Integrins as a bridge between bacteria and cells: key targets for therapeutic wound healing. BURNS & TRAUMA 2024; 12:tkae022. [PMID: 39015251 PMCID: PMC11250365 DOI: 10.1093/burnst/tkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/17/2023] [Accepted: 04/22/2024] [Indexed: 07/18/2024]
Abstract
Integrins are heterodimers composed of α and β subunits that are bonded through non-covalent interactions. Integrins mediate the dynamic connection between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs where these heterodimers participate in diverse physiological and pathological responses at the molecular level in living organisms. Wound healing is a crucial process in the recovery from traumatic diseases and comprises three overlapping phases: inflammation, proliferation and remodeling. Integrins are regulated during the entire wound healing process to enhance processes such as inflammation, angiogenesis and re-epithelialization. Prolonged inflammation may result in failure of wound healing, leading to conditions such as chronic wounds. Bacterial colonization of a wound is one of the primary causes of chronic wounds. Integrins facilitate the infectious effects of bacteria on the host organism, leading to chronic inflammation, bacterial colonization, and ultimately, the failure of wound healing. The present study investigated the role of integrins as bridges for bacteria-cell interactions during wound healing, evaluated the role of integrins as nodes for bacterial inhibition during chronic wound formation, and discussed the challenges and prospects of using integrins as therapeutic targets in wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| |
Collapse
|
21
|
Peng D, Sun S, Zhao M, Zhan L, Wang X. Current Advances in Nanomaterials Affecting Functions and Morphology of Platelets. J Funct Biomater 2024; 15:188. [PMID: 39057309 PMCID: PMC11278457 DOI: 10.3390/jfb15070188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanomaterials have been extensively used in the biomedical field due to their unique physical and chemical properties. They promise wide applications in the diagnosis, prevention, and treatment of diseases. Nanodrugs are generally transported to target tissues or organs by coupling targeting molecules or enhanced permeability and retention effect (EPR) passively. As intravenous injection is the most common means of administration of nanomedicine, the transport process inevitably involves the interactions between nanoparticles (NPs) and blood cells. Platelets are known to not only play a critical role in normal coagulation by performing adhesion, aggregation, release, and contraction functions, but also be associated with pathological thrombosis, tumor metastasis, inflammation, and immune reactions, making it necessary to investigate the effects of NPs on platelet function during transport, particularly the way in which their physical and chemical properties determine their interaction with platelets and the underlying mechanisms by which they activate and induce platelet aggregation. However, such data are lacking. This review is intended to summarize the effects of NPs on platelet activation, aggregation, release, and apoptosis, as well as their effects on membrane proteins and morphology in order to shed light on such key issues as how to reduce their adverse reactions in the blood system, which should be taken into consideration in NP engineering.
Collapse
Affiliation(s)
| | | | | | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; (D.P.); (S.S.); (M.Z.)
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; (D.P.); (S.S.); (M.Z.)
| |
Collapse
|
22
|
Ren H, Sun Y, Li Y, Yuan X, Jiang B, Zhang W, Liu G, Lu P. Potential Mechanism of Platelet GPIIb/IIIa and Fibrinogen on Retinal Vein Occlusion. Curr Eye Res 2024; 49:731-741. [PMID: 38482878 DOI: 10.1080/02713683.2024.2327055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE To explore the role of coagulation and fibrinolytic factors, and the potential mechanism of platelet aggregation in the pathogenesis of retinal vein occlusion. METHODS Coagulation and fibrinolytic parameters in patients with retinal vein occlusion were determined using hemagglutinin and HISCL-5000. Relationships between these elevated parameters and factors representing typical clinical manifestations of retinal vein occlusion were examined, and these parameters were analyzed using a STRING database to indicate the potential role of platelet aggregation. Platelet glycoprotein IIb/IIIa (GPIIb/IIIa) levels were evaluated by flow cytometry after antiplatelet treatment in patients and mouse models. Furthermore, the GPIIb/IIIa ligand fibrinogen in peripheral blood and retina of mouse models was assessed by the turbidimetric method and real-time PCR, respectively. RESULTS In patients, significant increases in peripheral blood fibrinogen and GPIIb/IIIa levels were observed (p = 0.0040, p < 0.0001, respectively). A positive correlation was observed between macular thickness (MT) and both fibrinogen and GPIIb/IIIa (r = 0.4528, p = 0.0063; r = 0.3789, p = 0.0427, respectively). After intravitreal injections of anti-vascular endothelial growth factor drugs, a significant reduction in fibrinogen levels was observed (p = 0.0072). In addition, the use of antiplatelet drugs resulted in a significant decrease in GPIIb/IIIa (p < 0.0001). In a mouse model, antiplatelet therapy significantly reduced both peripheral blood and retina fibrinogen levels and the overall rate of vein occlusion 3 days after occlusion (p < 0.0005). In addition, the reduction in GPIIb/IIIa levels after antiplatelet therapy was remarkable. CONCLUSION Fibrinogen and GPIIb/IIIa may be involved in retinal vein occlusion and blocking platelet aggregation may be a new therapeutic approach for retinal vein occlusion.
Collapse
Affiliation(s)
- Hang Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yueyue Sun
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanting Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xianbin Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bo Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
23
|
Liu J, Tan YY, Zheng W, Wang Y, Ju LA, Su QP. Nanoscale insights into hematology: super-resolved imaging on blood cell structure, function, and pathology. J Nanobiotechnology 2024; 22:363. [PMID: 38910248 PMCID: PMC11194919 DOI: 10.1186/s12951-024-02605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.
Collapse
Affiliation(s)
- Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuping Yolanda Tan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Wen Zheng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Heart Research Institute, Newtown, NSW, 2042, Australia.
| |
Collapse
|
24
|
Coffman RE, Bidone TC. Application of Funnel Metadynamics to the Platelet Integrin αIIbβ3 in Complex with an RGD Peptide. Int J Mol Sci 2024; 25:6580. [PMID: 38928286 PMCID: PMC11203998 DOI: 10.3390/ijms25126580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Integrin αIIbβ3 mediates platelet aggregation by binding the Arginyl-Glycyl-Aspartic acid (RGD) sequence of fibrinogen. RGD binding occurs at a site topographically proximal to the αIIb and β3 subunits, promoting the conformational activation of the receptor from bent to extended states. While several experimental approaches have characterized RGD binding to αIIbβ3 integrin, applying computational methods has been significantly more challenging due to limited sampling and the need for a priori information regarding the interactions between the RGD peptide and integrin. In this study, we employed all-atom simulations using funnel metadynamics (FM) to evaluate the interactions of an RGD peptide with the αIIb and β3 subunits of integrin. FM incorporates an external history-dependent potential on selected degrees of freedom while applying a funnel-shaped restraint potential to limit RGD exploration of the unbound state. Furthermore, it does not require a priori information about the interactions, enhancing the sampling at a low computational cost. Our FM simulations reveal significant molecular changes in the β3 subunit of integrin upon RGD binding and provide a free-energy landscape with a low-energy binding mode surrounded by higher-energy prebinding states. The strong agreement between previous experimental and computational data and our results highlights the reliability of FM as a method for studying dynamic interactions of complex systems such as integrin.
Collapse
Affiliation(s)
- Robert E. Coffman
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Tamara C. Bidone
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
25
|
Kounatidis D, Papadimitropoulos V, Vallianou N, Poulaki A, Dimitriou K, Tsiara I, Avramidis K, Alexopoulou A, Vassilopoulos D. Renal Vein Thrombosis Secondary to Pyelonephritis: Targeting a Thrombo-Inflammatory Entity. Clin Pract 2024; 14:1110-1122. [PMID: 38921266 PMCID: PMC11202970 DOI: 10.3390/clinpract14030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Renal vein thrombosis (RVT) is a relatively uncommon condition that is most frequently observed in individuals with nephrotic syndrome. While rare, pyelonephritis (PN) may serve as a predisposing factor for secondary RVT. In such cases, one should consider the possibility of RVT when patients fail to respond to appropriate antibiotic treatment. Typically, these patients require additional anticoagulation therapy for a duration of 3 to 6 months, with a generally favorable prognosis. In this report, we present the case of a 74-year-old female who developed RVT due to Klebsiella pneumoniae PN. Additionally, we reviewed 11 cases of PN complicated by RVT, which were documented in the PubMed database over a span of 40 years, emphasizing key elements in diagnostic and therapeutic approaches. Lastly, we elaborated upon the role of thrombo-inflammation, especially in the context of sepsis.
Collapse
Affiliation(s)
| | | | - Natalia Vallianou
- 2nd Department of Internal Medicine, Hippokration University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (V.P.); (K.D.); (K.A.); (D.V.)
| | | | | | | | | | | | | |
Collapse
|
26
|
Poscablo DM, Worthington AK, Smith-Berdan S, Rommel MGE, Manso BA, Adili R, Mok L, Reggiardo RE, Cool T, Mogharrab R, Myers J, Dahmen S, Medina P, Beaudin AE, Boyer SW, Holinstat M, Jonsson VD, Forsberg EC. An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis. Cell 2024; 187:3090-3107.e21. [PMID: 38749423 DOI: 10.1016/j.cell.2024.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/05/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024]
Abstract
Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production. This results in two molecularly and functionally distinct populations of megakaryocyte progenitors. The age-induced megakaryocyte progenitors have a profoundly enhanced capacity to engraft, expand, restore, and reconstitute platelets in situ and upon transplantation and produce an additional platelet population in old mice. The two pools of co-existing platelets cause age-related thrombocytosis and dramatically increased thrombosis in vivo. Strikingly, aging-enriched platelets are functionally hyper-reactive compared with the canonical platelet populations. These findings reveal stem cell-based aging as a mechanism for platelet dysregulation and age-induced thrombosis.
Collapse
Affiliation(s)
- Donna M Poscablo
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Program in Biomedical Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Atesh K Worthington
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Program in Biomedical Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stephanie Smith-Berdan
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Marcel G E Rommel
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bryce A Manso
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia Mok
- Program in Biomedical Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Roman E Reggiardo
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Program in Biomedical Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Taylor Cool
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Program in Biomedical Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Raana Mogharrab
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Program in Biomedical Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jenna Myers
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Program in Biomedical Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Steven Dahmen
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Paloma Medina
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anna E Beaudin
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Scott W Boyer
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Program in Biomedical Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vanessa D Jonsson
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Applied Mathematics, Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
27
|
Cao C, Yang Q, Xia X, Chen Z, Liu P, Wu X, Hu H, Ding Z, Li X. WY-14643, a novel antiplatelet and antithrombotic agent targeting the GPIbα receptor. Thromb Res 2024; 238:41-51. [PMID: 38669962 DOI: 10.1016/j.thromres.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND AND PURPOSE Hypolipidemia and platelet activation play key roles in atherosclerotic diseases. Pirinixic acid (WY-14643) was originally developed as a lipid-lowering drug. Here we focused on its antiplatelet and antithrombotic abilities and the underlying mechanism. EXPERIMENTAL APPROACH The effects of WY-14643 on platelet aggregation was measured using a lumi-aggregometer. Clot retraction and spreading on fibrinogen were also assayed. PPARα-/- platelets were used to identify the target of WY-14643. The interaction between WY-14643 and glycoprotein Ibα (GPIbα) was detected using cellular thermal shift assay (CETSA), surface plasmon resonance (SPR) spectroscopy and molecular docking. GPIbα downstream signaling was examined by Western blot. The antithrombotic effect was investigated using mouse mesenteric arteriole thrombosis model. Mouse tail bleeding model was used to study its effect on bleeding side effects. KEY RESULTS WY-14643 concentration-dependently inhibits human washed platelet aggregation, clot retraction, and spreading. Significantly, WY-14643 inhibits thrombin-induced activation of human washed platelets with an IC50 of 7.026 μM. The antiplatelet effect of WY-14643 is mainly dependent of GPIbα. CESTA, SPR and molecular docking results indicate that WY-14643 directly interacts with GPIbα and acts as a GPIbα antagonist. WY-14643 also inhibits phosphorylation of PLCγ2, Akt, p38, and Erk1/2 induced by thrombin. Noteworthily, 20 mg/kg oral administration of WY-14643 inhibits FeCl3-induced thrombosis of mesenteric arteries in mice similarly to clopidogrel without increasing bleeding. CONCLUSION AND IMPLICATIONS WY-14643 is not only a PPARα agonist with lipid-lowering effect, but also an antiplatelet agent as a GPIbα antagonist. It may have more significant therapeutic advantages than current antiplatelet agents for the treatment of atherosclerotic thrombosis, which have lipid-lowering effects without bleeding side effects.
Collapse
Affiliation(s)
- Chen Cao
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qingyuan Yang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiaowen Wu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Hu Hu
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310012, China
| | - Zhongren Ding
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
28
|
Wang R, Tian Z, Wang C, Zhang B, Zhu M, Yang Y. 1,25-Dihydroxyvitamin D3 attenuates platelet aggregation potentiated by SARS-CoV-2 spike protein via inhibiting integrin αIIbβ3 outside-in signaling. Cell Biochem Funct 2024; 42:e4039. [PMID: 38751189 DOI: 10.1002/cbf.4039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
Platelet hyperreactivity contributes to the pathogenesis of COVID-19, which is associated with a hypercoagulability state and thrombosis disorder. It has been demonstrated that Vitamin D deficiency is associated with the severity of COVID-19 infection. Vitamin D supplement is widely used as a dietary supplement due to its safety and health benefits. In this study, we investigated the direct effects and underlying mechanisms of 1,25(OH)2D3 on platelet hyperreactivity induced by SRAS-CoV-2 spike protein via Western blot and platelet functional studies in vitro. Firstly, we found that 1,25(OH)2D3 attenuated platelet aggregation and Src-mediated signaling. We further observed that 1,25(OH)2D3 attenuated spike protein-potentiated platelet aggregation in vitro. Mechanistically, 1,25(OH)2D3 attenuated spike protein upregulated-integrin αIIbβ3 outside-in signaling such as platelet spreading and the phosphorylation of β3, c-Src and Syk. Moreover, using PP2, the Src family kinase inhibitor to abolish spike protein-stimulated platelet aggregation and integrin αIIbβ3 outside-in signaling, the combination of PP2 and 1,25(OH)2D3 did not show additive inhibitory effects on spike protein-potentiated platelet aggregation and the phosphorylation of β3, c-Src and Syk. Thus, our data suggest that 1,25(OH)2D3 attenuates platelet aggregation potentiated by spike protein via downregulating integrin αIIbβ3 outside-in signaling.
Collapse
Affiliation(s)
- Ruijie Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Caixia Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bingying Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Meiyan Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Wu X, Yu X, Chen C, Chen C, Wang Y, Su D, Zhu L. Fibrinogen and tumors. Front Oncol 2024; 14:1393599. [PMID: 38779081 PMCID: PMC11109443 DOI: 10.3389/fonc.2024.1393599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Elevated plasma fibrinogen (Fg) levels consistently correlate with an unfavorable prognosis in various tumor patient cohorts. Within the tumor microenvironment, aberrant deposition and expression of Fg have been consistently observed, interacting with multiple cellular receptors and thereby accentuating its role as a regulator of inflammatory processes. Specifically, Fg serves to stimulate and recruit immune cells and pro-inflammatory cytokines, thereby contributing to the promotion of tumor progression. Additionally, Fg and its fragments exhibit dichotomous effects on tumor angiogenesis. Notably, Fg also facilitates tumor migration through both platelet-dependent and platelet-independent mechanisms. Recent studies have illuminated several tumor-related signaling pathways influenced by Fg. This review provides a comprehensive summary of the intricate involvement of Fg in tumor biology, elucidating its multifaceted role and the underlying mechanisms.
Collapse
Affiliation(s)
- Xinyuan Wu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Chen
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenlu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongyan Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqing Zhu
- Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
30
|
Liao M, He X, Zhou Y, Peng W, Zhao XM, Jiang M. Coenzyme Q10 in atherosclerosis. Eur J Pharmacol 2024; 970:176481. [PMID: 38493916 DOI: 10.1016/j.ejphar.2024.176481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Atherosclerotic disease is a chronic disease that predominantly affects the elderly and is the most common cause of cardiovascular death worldwide. Atherosclerosis is closely related to processes such as abnormal lipid transport and metabolism, impaired endothelial function, inflammation, and oxidative stress. Coenzyme Q10 (CoQ10) is a key component of complex Ⅰ in the electron transport chain and an important endogenous antioxidant that may play a role in decelerating the progression of atherosclerosis. Here, the different forms of CoQ10 presence in the electron transport chain are reviewed, as well as its physiological role in regulating processes such as oxidative stress, inflammatory response, lipid metabolism and cellular autophagy. It was also found that CoQ10 plays beneficial effects in atherosclerosis by mitigating lipid transportation, endothelial inflammation, metabolic abnormalities, and thrombotic processes from the perspectives of molecular mechanisms, animal experiments, and clinical evidence. Besides, the combined use of CoQ10 with other drugs has better synergistic therapeutic effects. It seems reasonable to suggest that CoQ10 could be used in the treatment of atherosclerotic cardiovascular diseases while more basic and clinical studies are needed.
Collapse
Affiliation(s)
- Minjun Liao
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xueke He
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China
| | - Yangyang Zhou
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Weiqiang Peng
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiao-Mei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, PR China.
| | - Miao Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
31
|
Lopuhaä BV, Guzel C, van der Lee A, van den Bosch TPP, van Kemenade FJ, Huisman MV, Kruip MJHA, Luider TM, von der Thüsen JH. Increase in venous thromboembolism in SARS-CoV-2 infected lung tissue: proteome analysis of lung parenchyma, isolated endothelium, and thrombi. Histopathology 2024; 84:967-982. [PMID: 38253958 DOI: 10.1111/his.15143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
AIMS COVID-19 pneumonia is characterized by an increased rate of deep venous thrombosis and pulmonary embolism. To better understand the pathophysiology behind thrombosis in COVID-19, we performed proteomics analysis on SARS-CoV-2 infected lung tissue. METHODS Liquid chromatography mass spectrometry was performed on SARS-CoV-2 infected postmortem lung tissue samples. Five protein profiling analyses were performed: whole slide lung parenchyma analysis, followed by analysis of isolated thrombi and endothelium, both stratified by disease (COVID-19 versus influenza) and thrombus morphology (embolism versus in situ). Influenza autopsy cases with pulmonary thrombi were used as controls. RESULTS Compared to influenza controls, both analyses of COVID-19 whole-tissue and isolated endothelium showed upregulation of proteins and pathways related to liver metabolism including urea cycle activation, with arginase being among the top upregulated proteins in COVID-19 lung tissue. Analysis of isolated COVID-19 thrombi showed significant downregulation of pathways related to platelet activation compared to influenza thrombi. Analysis of isolated thrombi based on histomorphology shows that in situ thrombi have significant upregulation of coronavirus pathogenesis proteins. CONCLUSIONS The decrease in platelet activation pathways in severe COVID-19 thrombi suggests a relative increase in venous thromboembolism, as thrombi from venous origin tend to contain fewer platelets than arterial thrombi. Based on histomorphology, in situ thrombi show upregulation of various proteins related to SARS-CoV-2 pathogenesis compared to thromboemboli, which may indicate increased in situ pulmonary thrombosis in COVID-19. Therefore, this study supports the increase of venous thromboembolism without undercutting the involvement of in situ thrombosis in severe COVID-19.
Collapse
Affiliation(s)
- Boaz V Lopuhaä
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Coşkun Guzel
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | | | | | | | - Menno V Huisman
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke J H A Kruip
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
32
|
Shen Y, Yu Y, Zhang X, Hu B, Wang N. Progress of nanomaterials in the treatment of thrombus. Drug Deliv Transl Res 2024; 14:1154-1172. [PMID: 38006448 DOI: 10.1007/s13346-023-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Thrombus has long been the major contributor of death and disability because it can cause adverse effects to varying degrees on the body, resulting in vascular blockage, embolism, heart valve deformation, widespread bleeding, etc. However, clinically, conventional thrombolytic drug treatments have hemorrhagic complication risks and easy to miss the best time of treatment window. Thus, it is an urgent need to investigate newly alternative treatment strategies that can reduce adverse effects and improve treatment effectiveness. Drugs based on nanomaterials act as a new biomedical strategy and promising tools, and have already been investigated for both diagnostic and therapeutic purposes in thrombus therapy. Recent studies have some encouraging progress. In the present review, we primarily concern with the latest developments in the areas of nanomedicines targeting thrombosis therapy. We present the thrombus' formation, characteristics, and biomarkers for diagnosis, overview recent emerging nanomedicine strategies for thrombus therapy, and focus on the future design directions, challenges, and prospects in the nanomedicine application in thrombus therapy.
Collapse
Affiliation(s)
- Yetong Shen
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110167, China
| | - Yang Yu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
- Department of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, 110122, China.
| |
Collapse
|
33
|
Ma L, Sun W, Li J, Wang H, Ding Z, He Q, Kang Y, Dong S, Chu Y. Regulation of platelet activation and thrombus formation in acute non-ST segment elevation myocardial infarction: Role of Beclin1. Clin Transl Sci 2024; 17:e13823. [PMID: 38771157 PMCID: PMC11107531 DOI: 10.1111/cts.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
This study aims to investigate the mechanism of platelet activation-induced thrombosis in patients with acute non-ST segment elevation myocardial infarction (NSTEMI) by detecting the expression of autophagy-associated proteins in platelets of patients with NSTEMI. A prospective study was conducted on 121 patients with NSTEMI who underwent emergency coronary angiography and optical coherence tomography. The participants were divided into two groups: the ST segment un-offset group (n = 64) and the ST segment depression group (n = 57). We selected a control group of 60 patients without AMI during the same period. The levels of autophagy-associated proteins and the expression of autophagy-associated proteins in platelets were measured using immunofluorescence staining and Western blot. In NSTEMI, the prevalence of red thrombus was higher in the ST segment un-offset myocardial infarction (STUMI) group, whereas white thrombus was more common in the ST segment depression myocardial infarction (STDMI) group. Furthermore, the platelet aggregation rate was significantly higher in the white thrombus group compared with the red thrombus group. Compared with the control group, the autophagy-related protein expression decreased, and the expression of αIIbβ3 increased in NSTEMI. The overexpression of Beclin1 could activate platelet autophagy and inhibit the expression of αIIbβ3. The results suggested that the increase in platelet aggregation rate in patients with NSTEMI may be potentially related to the change in autophagy. And the overexpression of Beclin1 could reduce the platelet aggregation rate by activating platelet autophagy. Our findings demonstrated that Beclin1 could be a potential therapeutic target for inhibiting platelet aggregation in NSTEMI.
Collapse
Affiliation(s)
- Lingkun Ma
- Department of CardiologyZhengzhou University People's HospitalZhengzhouChina
| | - Wenjing Sun
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Jingchao Li
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Hailan Wang
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Zihan Ding
- Department of CardiologyZhengzhou University People's HospitalZhengzhouChina
| | - Qing He
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Yue Kang
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Shujuan Dong
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Yingjie Chu
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
34
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
35
|
Xue J, Deng J, Qin H, Yan S, Zhao Z, Qin L, Liu J, Wang H. The interaction of platelet-related factors with tumor cells promotes tumor metastasis. J Transl Med 2024; 22:371. [PMID: 38637802 PMCID: PMC11025228 DOI: 10.1186/s12967-024-05126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.
Collapse
Affiliation(s)
- Jie Xue
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Jianzhao Deng
- Clinical Laboratory, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Hongwei Qin
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Songxia Yan
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Zhen Zhao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Lifeng Qin
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Jiao Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China.
| |
Collapse
|
36
|
Wang B, Tang N, Hou H, Chen J, Wang X, Li J. Heterozygous ITGA2B Phe1024 Deletion Associated with Abnormal αIIbβ3 Function in a Patient with Congenital Thrombocytopenia. Semin Thromb Hemost 2024. [PMID: 38604226 DOI: 10.1055/s-0044-1785655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Bin Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junkun Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Zhang S, Zhang Q, Lu Y, Chen J, Liu J, Li Z, Xie Z. Roles of Integrin in Cardiovascular Diseases: From Basic Research to Clinical Implications. Int J Mol Sci 2024; 25:4096. [PMID: 38612904 PMCID: PMC11012347 DOI: 10.3390/ijms25074096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and β subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Yutong Lu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
| |
Collapse
|
38
|
Yubolphan R, Pratchayasakul W, Koonrungsesomboon N, Chattipakorn N, Chattipakorn SC. Potential links between platelets and amyloid-β in the pathogenesis of Alzheimer's disease: Evidence from in vitro, in vivo, and clinical studies. Exp Neurol 2024; 374:114683. [PMID: 38211684 DOI: 10.1016/j.expneurol.2024.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a prevalent comorbidity among patients with Alzheimer's disease (AD), present in up to 80% of cases with varying levels of severity. There is evidence to suggest that CAA might intensify cognitive deterioration in AD patients, thereby accelerating the development of AD pathology. As a source of amyloids, it has been postulated that platelets play a significant role in the pathogenesis of both AD and CAA. Although several studies have demonstrated that platelet activation plays an important role in the pathogenesis of AD and CAA, a clear understanding of the mechanisms involved in the three steps: platelet activation, platelet adhesion, and platelet aggregation in AD pathogenesis still remains elusive. Moreover, potential therapeutic targets in platelet-mediated AD pathogenesis have not been explicitly addressed. Therefore, the aim of this review is to collate and discuss the in vitro, in vivo, and clinical evidence related to platelet dysfunction, including associated activation, adhesion, and aggregation, with specific reference to amyloid-related AD pathogenesis. Potential therapeutic targets of platelet-mediated AD pathogenesis are also discussed. By enriching the understanding of the intricate relationship between platelet dysfunction and onset of AD, researchers may unveil new therapeutic targets or strategies to tackle this devastating neurodegeneration.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
39
|
Zou J, Sun S, De Simone I, ten Cate H, de Groot PG, de Laat B, Roest M, Heemskerk JW, Swieringa F. Platelet Activation Pathways Controlling Reversible Integrin αIIbβ3 Activation. TH OPEN 2024; 8:e232-e242. [PMID: 38911141 PMCID: PMC11193594 DOI: 10.1055/s-0044-1786987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/12/2024] [Indexed: 06/25/2024] Open
Abstract
Background Agonist-induced platelet activation, with the integrin αIIbβ3 conformational change, is required for fibrinogen binding. This is considered reversible under specific conditions, allowing a second phase of platelet aggregation. The signaling pathways that differentiate between a permanent or transient activation state of platelets are poorly elucidated. Objective To explore platelet signaling mechanisms induced by the collagen receptor glycoprotein VI (GPVI) or by protease-activated receptors (PAR) for thrombin that regulate time-dependent αIIbβ3 activation. Methods Platelets were activated with collagen-related peptide (CRP, stimulating GPVI), thrombin receptor-activating peptides, or thrombin (stimulating PAR1 and/or 4). Integrin αIIbβ3 activation and P-selectin expression was assessed by two-color flow cytometry. Signaling pathway inhibitors were applied before or after agonist addition. Reversibility of platelet spreading was studied by microscopy. Results Platelet pretreatment with pharmacological inhibitors decreased GPVI- and PAR-induced integrin αIIbβ3 activation and P-selectin expression in the target order of protein kinase C (PKC) > glycogen synthase kinase 3 > β-arrestin > phosphatidylinositol-3-kinase. Posttreatment revealed secondary αIIbβ3 inactivation (not P-selectin expression), in the same order, but this reversibility was confined to CRP and PAR1 agonist. Combined inhibition of conventional and novel PKC isoforms was most effective for integrin closure. Pre- and posttreatment with ticagrelor, blocking the P2Y 12 adenosine diphosphate (ADP) receptor, enhanced αIIbβ3 inactivation. Spreading assays showed that PKC or P2Y 12 inhibition provoked a partial conversion from filopodia to a more discoid platelet shape. Conclusion PKC and autocrine ADP signaling contribute to persistent integrin αIIbβ3 activation in the order of PAR1/GPVI > PAR4 stimulation and hence to stabilized platelet aggregation. These findings are relevant for optimization of effective antiplatelet treatment.
Collapse
Affiliation(s)
- Jinmi Zou
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry and Internal Medicine, Maastricht University Medical Center + , Maastricht, The Netherlands
| | - Siyu Sun
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry and Internal Medicine, Maastricht University Medical Center + , Maastricht, The Netherlands
| | - Ilaria De Simone
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Hugo ten Cate
- Department of Biochemistry and Internal Medicine, Maastricht University Medical Center + , Maastricht, The Netherlands
| | - Philip G. de Groot
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Bas de Laat
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Mark Roest
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Johan W.M. Heemskerk
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Frauke Swieringa
- Platelet (patho)physiology, Synapse Research Institute, Maastricht, The Netherlands
| |
Collapse
|
40
|
Sangha MS, Deroide F, Meys R. Wound healing, scarring and management. Clin Exp Dermatol 2024; 49:325-336. [PMID: 38001053 DOI: 10.1093/ced/llad410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Understanding wound healing is imperative for the dermatological physician to optimize surgical outcomes. Poor healing may result in negative functional, cosmetic and psychological sequelae. This review briefly outlines the physiology of wound healing, with a view to improving the management of wounds and scars, and minimizing the long-term scarring complications.
Collapse
Affiliation(s)
| | - Florence Deroide
- Department of Dermatology, Royal Free London NHS Foundation Trust, London, UK
| | - Rhonda Meys
- Department of Dermatology, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
41
|
HU QIAN, WANG MENGYAO, WANG JINJIN, TAO YALI, NIU TING. Development of a cell adhesion-based prognostic model for multiple myeloma: Insights into chemotherapy response and potential reversal of adhesion effects. Oncol Res 2024; 32:753-768. [PMID: 38560563 PMCID: PMC10972724 DOI: 10.32604/or.2023.043647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy notorious for its high relapse rate and development of drug resistance, in which cell adhesion-mediated drug resistance plays a critical role. This study integrated four RNA sequencing datasets (CoMMpass, GSE136337, GSE9782, and GSE2658) and focused on analyzing 1706 adhesion-related genes. Rigorous univariate Cox regression analysis identified 18 key prognosis-related genes, including KIF14, TROAP, FLNA, MSN, LGALS1, PECAM1, and ALCAM, which demonstrated the strongest associations with poor overall survival (OS) in MM patients. To comprehensively evaluate the impact of cell adhesion on MM prognosis, an adhesion-related risk score (ARRS) model was constructed using Lasso Cox regression analysis. The ARRS model emerged as an independent prognostic factor for predicting OS. Furthermore, our findings revealed that a heightened cell adhesion effect correlated with tumor resistance to DNA-damaging drugs, protein kinase inhibitors, and drugs targeting the PI3K/Akt/mTOR signaling pathway. Nevertheless, we identified promising drug candidates, such as tirofiban, pirenzepine, erlotinib, and bosutinib, which exhibit potential in reversing this resistance. In vitro, experiments employing NCIH929, RPMI8226, and AMO1 cell lines confirmed that MM cell lines with high ARRS exhibited poor sensitivity to the aforementioned candidate drugs. By employing siRNA-mediated knockdown of the key ARRS model gene KIF14, we observed suppressed proliferation of NCIH929 cells, along with decreased adhesion to BMSCs and fibronectin. This study presents compelling evidence establishing cell adhesion as a significant prognostic factor in MM. Additionally, potential molecular mechanisms underlying adhesion-related resistance are proposed, along with viable strategies to overcome such resistance. These findings provide a solid scientific foundation for facilitating clinically stratified treatment of MM.
Collapse
Affiliation(s)
- QIAN HU
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - MENGYAO WANG
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - JINJIN WANG
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - YALI TAO
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - TING NIU
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
42
|
Zhang Y, Xin G, Zhou Q, Yu X, Feng L, Wen A, Zhang K, Wen T, Zhou X, Wu Q, He H, Huang W. Elucidating the distinctive regulatory effects and mechanisms of active compounds in Salvia miltiorrhiza Bunge via network pharmacology: Unveiling their roles in the modulation of platelet activation and thrombus formation. Toxicol Appl Pharmacol 2024; 484:116871. [PMID: 38423217 DOI: 10.1016/j.taap.2024.116871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Salvia miltiorrhiza Bunge. (DS), as an important traditional Chinese medicine (TCM), has a long history of usage for promoting blood circulation and removing blood stasis. Modern studies have shown that the chemical components of DS have many biological activities such as cardiovascular protection, anti-arrhythmia, anti-atherosclerosis, improvement of microcirculation, protection of myocardium, inhibition and removal of platelet aggregation. Nevertheless, the action mechanism of DS as well its active compounds on platelet activation has not been fully uncovered. This study aimed to find out the potential targets and mechanisms of DS in the modulation of platelet activation and thrombosis, using network pharmacology and biological experimental. These compounds with anti-thrombotic activity in DS, cryptotanshinone (CPT), isoeugenol (ISO) and tanshinone IIA (TSA), together with the corresponding targets being Src, Akt and RhoA are screened by network pharmacology. We confirmed that ISO, CPT and TSA dose-dependently inhibited platelet activation in vitro, mainly by inhibiting agonist-induced clot retraction, aggregation and P-selectin and ATP release. The western blot findings indicated that ISO, CPT, and TSA led to reduced levels of p-Akt and p-ERK in activated platelets. Additionally, ISO and TSA were observed to decrease p-cSrc expression while increasing RhoA expression. ISO, CPT, and TSA demonstrated a potential to restrict the advancement of carotid arterial thrombosis in vivo. We confirm that ISO, CPT and TSA are the key anti-thrombotic active compounds in DS. These active compounds exhibit unique inhibitory effects on platelet activation and thrombus formation by modulating the Akt/ERK and cSrc/RhoA signaling pathways.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Guang Xin
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Qilong Zhou
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Xiuxian Yu
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Lijuan Feng
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Ao Wen
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Kun Zhang
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Tingyu Wen
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Xiaoli Zhou
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Qiuling Wu
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Hongchen He
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China
| | - Wen Huang
- Department of Rehabilitation edicine and Laboratory of Ethnopharmacology, Tissueorientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West ChinaSchool of Medicine, West China Hospital, Sichuan University, China.
| |
Collapse
|
43
|
Ding Y, Xiang Q, Zhu P, Fan M, Tong H, Wang M, Cheng S, Yu P, Shi H, Zhang H, Chen X. Qihuang Zhuyu formula alleviates coronary microthrombosis by inhibiting PI3K/Akt/αIIbβ3-mediated platelet activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155276. [PMID: 38295661 DOI: 10.1016/j.phymed.2023.155276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Coronary microembolism (CME) is commonly seen in the peri-procedural period of Percutaneous Coronary Intervention (PCI), where local platelet activation and endothelial cell inflammation crosstalk may lead to micro thrombus erosion and rupture, with serious consequences. Qihuang Zhuyu Formula (QHZYF) is a Chinese herbal compound with high efficacy against coronary artery disease, but its antiplatelet mechanism is unclear. HYPOTHESIS/PURPOSE This study aimed to elucidate the effects and mechanisms of QHZYF on sodium laurate-induced CME using network pharmacology and in vitro and in vivo experiments. METHODS We employed high-performance liquid chromatography mass spectrometry to identify the main components of QHZYF. Network pharmacology analysis, molecular docking and surface plasmon resonance (SPR) were utilized to predict the primary active components, potential therapeutic targets, and intervention pathways mediating the effects of QHZYF on platelet activation. Next, we pretreated a sodium laurate-induced minimally invasive CME rat model with QHZYF. In vivo experiments were performed to examine cardiac function in rats, to locate coronary arteries on heart sections to observe internal microthrombi, to extract rat Platelet-rich plasma (PRP) for adhesion assays and CD62p and PAC-1 (ITGB3/ITGA2B) flow assays, and to measure platelet-associated protein expression in PRP. In vitro clot retraction and Co-culture of HUVECs with PRP were performed and the gene pathway was validated through flow cytometry and immunofluorescence. RESULTS Combining UPLC-Q-TOF/MS technology and database mining, 78 compounds were finally screened as the putative and representative compounds of QHZYF, with 75 crossover genes associated with CME. QHZYF prevents CME mainly by regulating key pathways of the inflammation and platelets, including Lipid and atherosclerosis, Fluid shear stress, platelet activation, and PI3K-Akt signaling pathways. Five molecules including Calyson, Oroxin A, Protosappanin A,Kaempferol and Geniposide were screened and subjected to molecular docking and SPR validation in combination with Lipinski rules (Rule of 5, Ro5). In vivo experiments showed that QHZYF not only improved myocardial injury but also inhibited formation of coronary microthrombi. QHZYF inhibited platelet activation by downregulating expression of CD62p receptor and platelet membrane protein αIIbβ3 and reduced the release of von Willebrand Factor (vWF), Ca2+ particles and inflammatory factor IL-6. Further analysis revealed that QHZYF inhibited the activation of integrin αIIbβ3, via modulating the PI3K/Akt pathways. In in vitro experiments, QHZYF independently inhibited platelet clot retraction. Upon LPS induction, the activation of platelet membrane protein ITGB3 was inhibited via the PI3K/Akt pathway, revealing an important mechanism for attenuating coronary microthrombosis. We performed mechanistic validation using PI3K inhibitor LY294002 and Akt inhibitor MK-2206 to show that QHZYF inhibited platelet membrane protein activation and inflammation to improved coronary microvessel embolism by regulating PI3K/Akt/αIIbβ3 pathways, mainly by inhibiting PI3K and Akt phosphorylation. CONCLUSION QHZYF interferes with coronary microthrombosis through inhibition of platelet adhesion, activation and inflammatory crosstalk, thus has potential in clinical anti-platelet applications. Calyson, Oroxin A, Protosappanin A, Kaempferol and Geniposide may be the major active ingredient groups of QHZYF that alleviate coronary microthrombosis.
Collapse
Affiliation(s)
- Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Peiyuan Zhu
- Department of Transfusion Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, PR China
| | - Manlu Fan
- Department of TCM, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong 250013, China
| | - Huaqin Tong
- Department of Cardiology, Yangzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou 225127, China
| | - Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Songyi Cheng
- Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China
| | - Haibo Shi
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China
| | - Haowen Zhang
- College of Health Preservation and Rehabilitation, Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
44
|
Fernández-Infante C, Hernández-Cano L, Herranz Ó, Berrocal P, Sicilia-Navarro C, González-Porras JR, Bastida JM, Porras A, Guerrero C. Platelet C3G: a key player in vesicle exocytosis, spreading and clot retraction. Cell Mol Life Sci 2024; 81:84. [PMID: 38345631 PMCID: PMC10861696 DOI: 10.1007/s00018-023-05109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 02/15/2024]
Abstract
C3G is a Rap1 GEF that plays a pivotal role in platelet-mediated processes such as angiogenesis, tumor growth, and metastasis by modulating the platelet secretome. Here, we explore the mechanisms through which C3G governs platelet secretion. For this, we utilized animal models featuring either overexpression or deletion of C3G in platelets, as well as PC12 cell clones expressing C3G mutants. We found that C3G specifically regulates α-granule secretion via PKCδ, but it does not affect δ-granules or lysosomes. C3G activated RalA through a GEF-dependent mechanism, facilitating vesicle docking, while interfering with the formation of the trans-SNARE complex, thereby restricting vesicle fusion. Furthermore, C3G promotes the formation of lamellipodia during platelet spreading on specific substrates by enhancing actin polymerization via Src and Rac1-Arp2/3 pathways, but not Rap1. Consequently, C3G deletion in platelets favored kiss-and-run exocytosis. C3G also controlled granule secretion in PC12 cells, including pore formation. Additionally, C3G-deficient platelets exhibited reduced phosphatidylserine exposure, resulting in decreased thrombin generation, which along with defective actin polymerization and spreading, led to impaired clot retraction. In summary, platelet C3G plays a dual role by facilitating platelet spreading and clot retraction through the promotion of outside-in signaling while concurrently downregulating α-granule secretion by restricting granule fusion.
Collapse
Affiliation(s)
- Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Óscar Herranz
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Pablo Berrocal
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Carmen Sicilia-Navarro
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - José María Bastida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
45
|
Xu X, Wang Y, Tao Y, Dang W, Yang B, Li Y. The role of platelets in sepsis: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:741-752. [PMID: 38236204 PMCID: PMC11293227 DOI: 10.17305/bb.2023.10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/19/2024]
Abstract
Sepsis, a life-threatening condition characterized by organ dysfunction, results from a complex series of pathophysiological mechanisms including immune dysfunction, an uncontrolled inflammatory response, and coagulation abnormalities. It is a major contributor to global mortality and severe disease development. Platelets, abundant in the circulatory system, are sensitive to changes in the body's internal environment and are among the first cells to respond to dysregulated pro-inflammatory and pro-coagulant reactions at the onset of sepsis. In the initial stages of sepsis, the coagulation cascade, inflammatory response, and endothelial tissue damage perpetually trigger platelet activation. These activated platelets then engage in complex inflammatory and immune reactions, potentially leading to organ dysfunction. Therefore, further research is essential to fully understand the role of platelets in sepsis pathology and to develop effective therapeutic strategies targeting the associated pathogenic pathways. This review delves into the involvement of platelets in sepsis and briefly outlines the clinical applications of associated biomarkers.
Collapse
Affiliation(s)
- Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yurou Wang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
46
|
Najafi S, Asemani Y, Majidpoor J, Mahmoudi R, Aghaei-Zarch SM, Mortezaee K. Tumor-educated platelets. Clin Chim Acta 2024; 552:117690. [PMID: 38056548 DOI: 10.1016/j.cca.2023.117690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Beyond traditional roles in homeostasis and coagulation, growing evidence suggests that platelets also reflect malignant transformation in cancer. Platelets are present in the tumor microenvironment where they interact with cancer cells. This interaction results in direct and indirect "education" as evident by platelet alterations in adhesion molecules, glycoproteins, nucleic acids, proteins and various receptors. Subsequently, these tumor-educated platelets (TEPs) circulate throughout the body and play pivotal roles in promotion of tumor growth and dissemination. Accordingly, platelet status can be considered a unique blood-based biomarker that can potentially predict prognosis and therapeutic success. Recently, liquid biopsies including TEPs have received much attention as safe, minimally invasive and sensitive alternatives for patient management. Herein, we provide an overview of TEPs and explore their benefits and limitations in cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
47
|
Artemenko EO, Obydennyi SI, Troyanova KS, Novichkova GA, Nechipurenko DY, Panteleev MA. Adhesive properties of plasma-circulating and platelet-derived microvesicles from healthy individuals. Thromb Res 2024; 233:119-126. [PMID: 38039724 DOI: 10.1016/j.thromres.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Microvesicles (MVs) produced by platelets upon activation possess high procoagulant activity and represent a possible thrombotic risk marker. However, direct experimental evaluation of the adhesive properties of MVs and their potential role in thrombus growth is lacking. OBJECTIVES We investigated integrin αIIbβ3 status and adhesive properties of plasma-circulating and platelet-derived MVs from healthy individuals. METHODS MVs were isolated from whole blood or produced from activated platelets. Flow cytometry was used for quantification of fluorescently labeled PAC-1 and fibrinogen binding to MVs. Confocal microscopy was used for evaluation of MVs adhesion to fibrinogen and for estimation of their involvement in whole blood thrombus formation in a parallel-plate flow chambers under arterial shear conditions. RESULTS AND CONCLUSIONS Neither circulating plasma MVs, nor platelet-activation-produced MVs bound PAC-1. However, both types of MVs specifically and weakly bound fibrinogen (about 400 molecules of bound fibrinogen per MV versus >100,000 per non-procoagulant activated platelet). Still, the MVs did not adhere stably to the immobilized fibrinogen. Both types of MVs were weakly incorporated into a thrombus and did not affect thrombus formation: average thrombus height in the recalcified whole blood in the presence of platelet-activation-produced MVs was 4.19 ± 1.38 μm versus 4.87 ± 1.72 μm (n = 6, p > 0.05) in the control experiments. This suggests that MVs present in plasma of healthy individuals are not likely to be directly involved in thrombus formation under arterial flow conditions.
Collapse
Affiliation(s)
- E O Artemenko
- Centre for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia; National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | - S I Obydennyi
- Centre for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia; National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - K S Troyanova
- Centre for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia; Faculty of Physics, Moscow State University, Moscow, Russia
| | - G A Novichkova
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - D Y Nechipurenko
- Centre for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia; National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Moscow State University, Moscow, Russia
| | - M A Panteleev
- Centre for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia; National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Moscow State University, Moscow, Russia
| |
Collapse
|
48
|
Ye W, Wang J, Little PJ, Zou J, Zheng Z, Lu J, Yin Y, Liu H, Zhang D, Liu P, Xu S, Ye W, Liu Z. Anti-atherosclerotic effects and molecular targets of ginkgolide B from Ginkgo biloba. Acta Pharm Sin B 2024; 14:1-19. [PMID: 38239238 PMCID: PMC10792990 DOI: 10.1016/j.apsb.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases (CVDs), the world's primary cause of death. Ginkgo biloba , a well-known traditional Chinese medicine with notable cardiovascular actions, has been used as a cardio- and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries. Preclinical studies have shown that ginkgolide B, a bioactive component in Ginkgo biloba , can ameliorate atherosclerosis in cultured vascular cells and disease models. Of clinical relevance, several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases, such as ischemia stroke. Here, we present a comprehensive review of the pharmacological activities, pharmacokinetic characteristics, and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy. We highlight new molecular targets of ginkgolide B, including nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidase), lectin-like oxidized LDL receptor-1 (LOX-1), sirtuin 1 (SIRT1), platelet-activating factor (PAF), proprotein convertase subtilisin/kexin type 9 (PCSK9) and others. Finally, we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
Collapse
Affiliation(s)
- Weile Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya QLD 4575, Australia
| | - Jiami Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanjun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Institute of Endocrine and Metabolic Diseases, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhiping Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
49
|
Komatsuya K, Ishikawa M, Kikuchi N, Hirabayashi T, Taguchi R, Yamamoto N, Arai M, Kasahara K. Integrin-Dependent Transient Density Increase in Detergent-Resistant Membrane Rafts in Platelets Activated by Thrombin. Biomedicines 2023; 12:69. [PMID: 38255176 PMCID: PMC10813660 DOI: 10.3390/biomedicines12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Platelet lipid rafts are critical membrane domains for adhesion, aggregation, and clot retraction. Lipid rafts are isolated as a detergent-resistant membrane fraction via sucrose density gradient centrifugation. The platelet detergent-resistant membrane shifted to a higher density on the sucrose density gradient upon thrombin stimulation. The shift peaked at 1 min and returned to the control level at 60 min. During this time, platelets underwent clot retraction and spreading on a fibronectin-coated glass strip. Thrombin induced the transient tyrosine phosphorylation of several proteins in the detergent-resistant membrane raft fraction and the transient translocation of fibrin and myosin to the detergent-resistant membrane raft fraction. The level of phosphatidylserine (36:1) was increased and the level of phosphatidylserine (38:4) was decreased in the detergent-resistant membrane raft fraction via the thrombin stimulation. Furthermore, Glanzmann's thrombasthenia integrin αIIbβ3-deficient platelets underwent no detergent-resistant membrane shift to a higher density upon thrombin stimulation. As the phosphorylation of the myosin regulatory light chain on Ser19 was at a high level in Glanzmann's thrombasthenia resting platelets, thrombin caused no further phosphorylation of the myosin regulatory light chain on Ser19 or clot retraction. These observations suggest that the fibrin-integrin αIIbβ3-myosin axis and compositional change of phosphatidylserine species may be required for the platelet detergent-resistant membrane shift to a higher density upon stimulation with thrombin.
Collapse
Affiliation(s)
- Keisuke Komatsuya
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Masaki Ishikawa
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan;
| | - Norihito Kikuchi
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Tetsuya Hirabayashi
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Ryo Taguchi
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naomasa Yamamoto
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Morio Arai
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
- Sado General Hospital, Niigata 952-1209, Japan
| | - Kohji Kasahara
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| |
Collapse
|
50
|
Hashemzadeh M, Haseefa F, Peyton L, Shadmehr M, Niyas AM, Patel A, Krdi G, Movahed MR. A comprehensive review of the ten main platelet receptors involved in platelet activity and cardiovascular disease. AMERICAN JOURNAL OF BLOOD RESEARCH 2023; 13:168-188. [PMID: 38223314 PMCID: PMC10784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/10/2023] [Indexed: 01/16/2024]
Abstract
Cardiovascular disease (CVD) is a major cause of death worldwide. Although there are many variables that contribute to the development of this disease, it is predominantly the activity of platelets that provides the mechanisms by which this disease prevails. While there are numerous platelet receptors expressed on the surface of platelets, it is largely the consensus that there are 10 main platelet receptors that contribute to a majority of platelet function. Understanding these key platelet receptors is vitally important for patients suffering from myocardial infarction, CVD, and many other diseases that arise due to overactivation or mutations of these receptors. The goal of this manuscript is to review the main platelet receptors that contribute most to platelet activity.
Collapse
Affiliation(s)
- Mehrnoosh Hashemzadeh
- University of Arizona College of MedicinePhoenix, AZ, USA
- Pima CollegeTucson, AZ, USA
| | | | - Lee Peyton
- Pima CollegeTucson, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and ScienceRochester, MN, USA
| | | | | | - Aamir Patel
- University of Arizona College of MedicinePhoenix, AZ, USA
| | - Ghena Krdi
- University of Arizona College of MedicinePhoenix, AZ, USA
| | - Mohammad Reza Movahed
- University of Arizona College of MedicinePhoenix, AZ, USA
- University of ArizonaTucson, AZ, USA
| |
Collapse
|