1
|
Qian C, Dong G, Yang C, Zheng W, Zhong C, Shen Q, Lu Y, Zhao Y. Broadening horizons: molecular mechanisms and disease implications of endothelial-to-mesenchymal transition. Cell Commun Signal 2025; 23:16. [PMID: 39789529 PMCID: PMC11720945 DOI: 10.1186/s12964-025-02028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch. Nevertheless, the exact roles of EndMT in complicated diseases have not been comprehensively reviewed. In this review, we summarize the predominant molecular regulatory mechanisms and signaling pathways that contribute to the development of EndMT, as well as highlight the contributions of a series of imperative non-coding RNAs in curbing the initiation of EndMT. Furthermore, we discuss the significant impact of EndMT on worsening vasculature-related diseases, including cancer, cardiovascular diseases, atherosclerosis, pulmonary vascular diseases, diabetes-associated fibrotic conditions, and cerebral cavernous malformation, providing the implications that targeting EndMT holds promise as a therapeutic strategy to mitigate disease progression.
Collapse
Affiliation(s)
- Cheng Qian
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanglu Dong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunmei Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Zheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chongjin Zhong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiuhong Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Xu Y, Ma X, Ni W, Zheng L, Lin Z, Lai Y, Yang N, Dai Z, Yao T, Chen Z, Shen L, Wang H, Wang L, Wu Y, Gao W. PKM2-Driven Lactate Overproduction Triggers Endothelial-To-Mesenchymal Transition in Ischemic Flap via Mediating TWIST1 Lactylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406184. [PMID: 39474980 DOI: 10.1002/advs.202406184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Indexed: 12/19/2024]
Abstract
The accumulation of lactate is a rising risk factor for patients after flap transplantation. Endothelial-to-mesenchymal transition (EndoMT) plays a critical role in skin fibrosis. Nevertheless, whether lactate overproduction directly contributes to flap necrosis and its mechanism remain unknown. The current study reveals that skin flap mice exhibit enhanced PKM2 and fibrotic response. Endothelial-specific deletion of PKM2 attenuates flap necrosis and ameliorates flap fibrosis in mice. Administration of lactate or overexpressing PKM2 promotes dysfunction of endothelial cells and stimulates mesenchymal-like phenotype following hypoxia. Mechanistically, glycolytic-lactate induces a correlation between Twist1 and p300/CBP, leading to lactylation of Twist1 lysine 150 (K150la). The increase in K150la promotes Twist1 phosphorylation and nuclear translocation and further regulates the transcription of TGFB1, hence inducing fibrosis phenotype. Genetically deletion of endothelial-specific PKM2 in mice diminishes lactate accumulation and Twist1 lactylation, then attenuates EndoMT-associated fibrosis following flap ischemia. The serum lactate levels of flap transplantation patients are elevated and exhibit predictive value for prognosis. This findings suggested a novel role of PKM2-derived lactate in mediating Twist1 lactylation and exacerbates flap fibrosis and ischemia. Inhibition of glycolytic-lactate and Twist1 lactylation reduces flap necrosis and fibrotic response might become a potential therapeutic strategy for flap ischemia.
Collapse
Affiliation(s)
- Yining Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xianhui Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Lin Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongnan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhanqiu Dai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Zeyang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Long Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
3
|
Wang Z, Jin L, Wang J, Tian X, Mi T, Li M, Zhang Z, Wu X, Li M, Liu J, Wang Z, Liu Y, Luo J, Ren C, He D. Recruitment and polarization typing of tumor-associated macrophages is associated with tumor progression and poor prognosis in Wilms tumor patients. PLoS One 2024; 19:e0309910. [PMID: 39531417 PMCID: PMC11556688 DOI: 10.1371/journal.pone.0309910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/17/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Tumor-associated macrophages (TAMs) play a crucial role in shaping various tumor microenvironments. However, their recruitment in Wilms tumor (WT), the predominant malignant renal tumor in children, has been inadequately explored. This retrospective cohort study involved the analysis of 148 WT samples to investigate the recruitment and polarization typing of TAMs in WT tissues. METHODS WT tissues underwent Western blotting (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and immunofluorescence (IF) to measure the expression of TAM markers CD68, CD86, and CD163. Statistically analyze the relationship between TAM recruitment levels and patient clinical characteristics, and use Kaplan-Meier curves and the log-rank test to evaluate the association between TAM levels and survival outcomes. RESULTS The findings indicated a positive correlation between the recruitment levels of total macrophages (Mtotal) and M2 tumor-associated macrophages (M2 TAM) in both chemotherapy and non-chemotherapy groups with the clinical stage. Elevated recruitment of Mtotal and M2 TAM in tumor tissues was linked to a poorer prognosis. Notably, patients with persistently higher recruitment of M2 TAM following preoperative chemotherapy exhibited the worst prognosis. CONCLUSIONS The recruitment and polarization typing of TAM exhibit significant differences in WT patients with various stages and prognosis outcomes, suggesting a potential avenue for future diagnosis and treatment of WT.
Collapse
Affiliation(s)
- Zhang Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jinkui Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaomao Tian
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mujie Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhaoxia Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xin Wu
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Maoxian Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jiayan Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhaoying Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yimeng Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Junyi Luo
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chunnian Ren
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dawei He
- Department of Urology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
4
|
Hong L, Tanaka M, Yasui M, Hara-Chikuma M. HSP90 promotes tumor associated macrophage differentiation during triple-negative breast cancer progression. Sci Rep 2024; 14:22541. [PMID: 39341960 PMCID: PMC11438890 DOI: 10.1038/s41598-024-73394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Tumor-associated macrophages (TAMs) originating from monocytes are crucial for cancer progression; however, the mechanism of TAM differentiation is unclear. We investigated factors involved in the differentiation of monocytes into TAMs within the tumor microenvironment of triple-negative breast cancer (TNBC). We screened 172 compounds and found that a heat shock protein 90 (HSP90) inhibitor blocked TNBC-induced monocyte-to-TAM differentiation in human monocytes THP-1. TNBC-derived conditional medium (CM) activated cell signaling pathways, including MAP kinase, AKT and STAT3, and increased the expression of TAM-related genes and proteins. These inductions were suppressed by HSP90 inhibition or by knockdown of HSP90 in TNBC. Additionally, we confirmed that TNBC secreted HSP90 extracellularly and that HSP90 itself promoted TAM differentiation. In a mouse tumor model, treatment with an HSP90 inhibitor suppressed tumor growth and reduced TAMs in the tumor microenvironment. Our findings demonstrate the role of HSP90 in TAM differentiation, suggesting HSP90 as a potential target for TNBC immunotherapy due to its regulatory role in monocyte-to-TAM differentiation.
Collapse
Affiliation(s)
- Lingjia Hong
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
5
|
Fan CS, Hung HC, Chen CC, Chen LL, Ke YY, Yeh TK, Huang CT, Chang TY, Yen KJ, Chen CH, Chua KV, Hsu JTA, Huang TS. Development of a Humanized Antibody Targeting Extracellular HSP90α to Suppress Endothelial-Mesenchymal Transition-Enhanced Tumor Growth of Pancreatic Adenocarcinoma Cells. Cells 2024; 13:1146. [PMID: 38994997 PMCID: PMC11240389 DOI: 10.3390/cells13131146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular HSP90α (eHSP90α) is a promoter of tumor development and malignant progression. Patients with malignancies, including pancreatic ductal adenocarcinoma (PDAC), have generally shown 5~10-fold increases in serum/plasma eHSP90α levels. In this study, we developed a humanized antibody HH01 to target eHSP90α and evaluated its anticancer efficacy. HH01, with novel complementarity-determining regions, exhibits high binding affinity toward HSP90α. It recognizes HSP90α epitope sites 235AEEKEDKEEE244 and 251ESEDKPEIED260, with critical amino acid residues E237, E239, D240, K241, E253, and K255. HH01 effectively suppressed eHSP90α-induced invasive and spheroid-forming activities of colorectal cancer and PDAC cell lines by blocking eHSP90α's ligation with the cell-surface receptor CD91. In mouse models, HH01 potently inhibited the tumor growth of PDAC cell grafts/xenografts promoted by endothelial-mesenchymal transition-derived cancer-associated fibroblasts while also reducing serum eHSP90α levels, reflecting its anticancer efficacy. HH01 also modulated tumor immunity by reducing M2 macrophages and reinvigorating immune T-cells. Additionally, HH01 showed low aggregation propensity, high water solubility, and a half-life time of >18 days in mouse blood. It was not cytotoxic to retinal pigmented epithelial cells and showed no obvious toxicity in mouse organs. Our data suggest that targeting eHSP90α with HH01 antibody can be a promising novel strategy for PDAC therapy.
Collapse
Affiliation(s)
- Chi-Shuan Fan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-S.F.); (C.-C.C.); (L.-L.C.); (C.-H.C.); (K.V.C.)
| | - Hui-Chen Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; (H.-C.H.); (Y.-Y.K.); (T.-K.Y.); (C.-T.H.); (T.-Y.C.); (K.-J.Y.); (J.T.-A.H.)
| | - Chia-Chi Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-S.F.); (C.-C.C.); (L.-L.C.); (C.-H.C.); (K.V.C.)
| | - Li-Li Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-S.F.); (C.-C.C.); (L.-L.C.); (C.-H.C.); (K.V.C.)
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; (H.-C.H.); (Y.-Y.K.); (T.-K.Y.); (C.-T.H.); (T.-Y.C.); (K.-J.Y.); (J.T.-A.H.)
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; (H.-C.H.); (Y.-Y.K.); (T.-K.Y.); (C.-T.H.); (T.-Y.C.); (K.-J.Y.); (J.T.-A.H.)
| | - Chin-Ting Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; (H.-C.H.); (Y.-Y.K.); (T.-K.Y.); (C.-T.H.); (T.-Y.C.); (K.-J.Y.); (J.T.-A.H.)
| | - Teng-Yuan Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; (H.-C.H.); (Y.-Y.K.); (T.-K.Y.); (C.-T.H.); (T.-Y.C.); (K.-J.Y.); (J.T.-A.H.)
| | - Kuei-Jung Yen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; (H.-C.H.); (Y.-Y.K.); (T.-K.Y.); (C.-T.H.); (T.-Y.C.); (K.-J.Y.); (J.T.-A.H.)
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-S.F.); (C.-C.C.); (L.-L.C.); (C.-H.C.); (K.V.C.)
| | - Kee Voon Chua
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-S.F.); (C.-C.C.); (L.-L.C.); (C.-H.C.); (K.V.C.)
| | - John Tsu-An Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; (H.-C.H.); (Y.-Y.K.); (T.-K.Y.); (C.-T.H.); (T.-Y.C.); (K.-J.Y.); (J.T.-A.H.)
- Anbogen Therapeutics, Taipei 11571, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (C.-S.F.); (C.-C.C.); (L.-L.C.); (C.-H.C.); (K.V.C.)
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
6
|
Zhang HR, Li TJ, Yu XJ, Liu C, Wu WD, Ye LY, Jin KZ. The GFPT2-O-GlcNAcylation-YBX1 axis promotes IL-18 secretion to regulate the tumor immune microenvironment in pancreatic cancer. Cell Death Dis 2024; 15:244. [PMID: 38575607 PMCID: PMC10995196 DOI: 10.1038/s41419-024-06589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Hui-Ru Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei-Ding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Kai-Zhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Zhuo D, Mei Y, Lin C, Wu A, Luo Y, Lu H, Fu J. Nudifloside, a Secoiridoid Glucoside Derived from Callicarpa nudiflora, Inhibits Endothelial-to-Mesenchymal Transition and Angiogenesis in Endothelial Cells by Suppressing Ezrin Phosphorylation. J Cancer 2024; 15:2448-2459. [PMID: 38577590 PMCID: PMC10988308 DOI: 10.7150/jca.91566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/19/2024] [Indexed: 04/06/2024] Open
Abstract
Callicarpa nudiflora is a traditional folk medicine in China used for eliminating stasis to subdue swelling. Several compounds from Callicarpa nudiflora have been proved to show anti-inflammatory, haemostasis, hepatitis, and anti-proliferative effects. Tumor endothelial cells play crucial roles in tumor-induced angiogenesis. Recently, it was demonstrated that ECs may be the important source of cancer associated fibroblasts (CAFs) through endothelial to mesenchymal transition (EndoMT). In this study, we evaluated the effects of nudifloside (NDF), a secoiridoid glucoside from Callicarpa Nudiflora, on TGF-β1-induced EndoMT and VEGF-induced angiogenesis, and the underlying mechanisms were also involved. It was found that NDF significantly inhibited enhanced migration, invasion and F-actin assembly in endothelial cells (ECs) exposed in TGF-β1. NDF obviously reversed expression of several biomarkers associated with EndoMT and recovered the morphological characteristics of ECs and tube-like structure induced by TGF-β1. Furthermore, treatment of NDF resulted in a significant destruction of VEGF-induced angiogenesis in vitro and ex vivo. Data from co-immunoprecipitation assay provided the evidence that Ezrin phosphorylation and the interaction with binding protein can be inhibited by NDF, which can be confirmed by data from Ezrin silencing assay. Collectively, the application of NDF inhibited TGF-β1-induced EndoMT and VEGF-induced angiogenesis in ECs by reducing Ezrin phosphorylation.
Collapse
Affiliation(s)
- Dongliang Zhuo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yinlong Mei
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chaozhan Lin
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Aizhi Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuehua Luo
- Jiangxi Provincial Institute for Drug Control, Nanchang, 330029, China
| | - Hong Lu
- Network and Educational Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jianjiang Fu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, China
| |
Collapse
|
8
|
Wang H, Wang X, Zhang X, Xu W. The promising role of tumor-associated macrophages in the treatment of cancer. Drug Resist Updat 2024; 73:101041. [PMID: 38198845 DOI: 10.1016/j.drup.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Macrophages are important components of the immune system. Mature macrophages can be recruited to tumor microenvironment that affect tumor cell proliferation, invasion and metastasis, extracellular matrix remodeling, immune suppression, as well as chemotherapy resistance. Classically activated type I macrophages (M1) exhibited marked tumor killing and phagocytosis. Therefore, using macrophages for adoptive cell therapy has attracted attention and become one of the most effective strategies for cancer treatment. Through cytokines and/or chemokines, macrophage can inhibit myeloid cells recruitment, and activate anti-tumor and immune killing functions. Applying macrophages for anti-tumor delivery is one of the most promising approaches for cancer therapy. This review article introduces the role of macrophages in tumor development and drug resistance, and the possible clinical application of targeting macrophages for overcoming drug resistance and enhancing cancer therapeutics, as well as its challenges.
Collapse
Affiliation(s)
- Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Surgical Oncology, Harbin Medical University Cancer Hospital, PR China.
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Urology, Harbin Medical University Cancer Hospital, PR China.
| |
Collapse
|
9
|
Leone P, Malerba E, Susca N, Favoino E, Perosa F, Brunori G, Prete M, Racanelli V. Endothelial cells in tumor microenvironment: insights and perspectives. Front Immunol 2024; 15:1367875. [PMID: 38426109 PMCID: PMC10902062 DOI: 10.3389/fimmu.2024.1367875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is a highly complex and dynamic mixture of cell types, including tumor, immune and endothelial cells (ECs), soluble factors (cytokines, chemokines, and growth factors), blood vessels and extracellular matrix. Within this complex network, ECs are not only relevant for controlling blood fluidity and permeability, and orchestrating tumor angiogenesis but also for regulating the antitumor immune response. Lining the luminal side of vessels, ECs check the passage of molecules into the tumor compartment, regulate cellular transmigration, and interact with both circulating pathogens and innate and adaptive immune cells. Thus, they represent a first-line defense system that participates in immune responses. Tumor-associated ECs are involved in T cell priming, activation, and proliferation by acting as semi-professional antigen presenting cells. Thus, targeting ECs may assist in improving antitumor immune cell functions. Moreover, tumor-associated ECs contribute to the development at the tumor site of tertiary lymphoid structures, which have recently been associated with enhanced response to immune checkpoint inhibitors (ICI). When compared to normal ECs, tumor-associated ECs are abnormal in terms of phenotype, genetic expression profile, and functions. They are characterized by high proliferative potential and the ability to activate immunosuppressive mechanisms that support tumor progression and metastatic dissemination. A complete phenotypic and functional characterization of tumor-associated ECs could be helpful to clarify their complex role within the tumor microenvironment and to identify EC specific drug targets to improve cancer therapy. The emerging therapeutic strategies based on the combination of anti-angiogenic treatments with immunotherapy strategies, including ICI, CAR T cells and bispecific antibodies aim to impact both ECs and immune cells to block angiogenesis and at the same time to increase recruitment and activation of effector cells within the tumor.
Collapse
Affiliation(s)
- Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), Aldo Moro University of Bari, Bari, Italy
| | - Nicola Susca
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Giuliano Brunori
- Centre for Medical Sciences, University of Trento and Nephrology and Dialysis Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| |
Collapse
|
10
|
Cao J, Jin L, Yan ZQ, Wang XK, Li YY, Wang Z, Liu YW, Li HM, Guan Z, He ZH, Gong JS, Liu JH, Yin H, Tan YJ, Hong CG, Feng SK, Zhang Y, Wang YY, Qi LY, Chen CY, Liu ZZ, Wang ZX, Xie H. Reassessing endothelial-to-mesenchymal transition in mouse bone marrow: insights from lineage tracing models. Nat Commun 2023; 14:8461. [PMID: 38123537 PMCID: PMC10733381 DOI: 10.1038/s41467-023-44312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Endothelial cells (ECs) and bone marrow stromal cells (BMSCs) play crucial roles in supporting hematopoiesis and hematopoietic regeneration. However, whether ECs are a source of BMSCs remains unclear. Here, we evaluate the contribution of endothelial-to-mesenchymal transition to BMSC generation in postnatal mice. Single-cell RNA sequencing identifies ECs expressing BMSC markers Prrx1 and Lepr; however, this could not be validated using Prrx1-Cre and Lepr-Cre transgenic mice. Additionally, only a minority of BMSCs are marked by EC lineage tracing models using Cdh5-rtTA-tetO-Cre or Tek-CreERT2. Moreover, Cdh5+ BMSCs and Tek+ BMSCs show distinct spatial distributions and characteristic mesenchymal markers, suggestive of their origination from different progenitors rather than CDH5+ TEK+ ECs. Furthermore, myeloablation induced by 5-fluorouracil treatment does not increase Cdh5+ BMSCs. Our findings indicate that ECs hardly convert to BMSCs during homeostasis and myeloablation-induced hematopoietic regeneration, highlighting the importance of using appropriate genetic models and conducting careful data interpretation in studies concerning endothelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Jia Cao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ling Jin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Zi-Qi Yan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao-Kai Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - You-You Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi-Wei Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hong-Ming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Zhe Guan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Jiang-Hua Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yi-Juan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Chun-Gu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Shi-Kai Feng
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Zhang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Lu-Yue Qi
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zheng-Zhao Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
11
|
Yin Z, Wang L. Endothelial-to-mesenchymal transition in tumour progression and its potential roles in tumour therapy. Ann Med 2023; 55:1058-1069. [PMID: 36908260 PMCID: PMC10795639 DOI: 10.1080/07853890.2023.2180155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Tumour-associated endothelial cells (TECs) are a critical stromal cell type in the tumour microenvironment and play central roles in tumour angiogenesis. Notably, TECs have phenotypic plasticity, as they have the potential to transdifferentiate into cells with a mesenchymal phenotype through a process termed endothelial-to-mesenchymal transition (EndoMT). Many studies have reported that EndoMT influences multiple malignant biological properties of tumours, such as abnormal angiogenesis and tumour metabolism, growth, metastasis and therapeutic resistance. Thus, the value of targeting EndoMT in tumour treatment has received increased attention. In this review, we comprehensively explore the phenomenon of EndoMT in the tumour microenvironment and identify influencing factors and molecular mechanisms responsible for EndoMT induction. Furthermore, the pathological functions of EndoMT in tumour progression and potential therapeutic strategies for targeting EndoMT in tumour treatment are also discussed to highlight the pivotal roles of EndoMT in tumour progression and therapy.
Collapse
Affiliation(s)
- Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, Liaoning, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, Liaoning, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
12
|
Ma X, Geng Z, Wang S, Yu Z, Liu T, Guan S, Du S, Zhu C. The driving mechanism and targeting value of mimicry between vascular endothelial cells and tumor cells in tumor progression. Biomed Pharmacother 2023; 165:115029. [PMID: 37343434 DOI: 10.1016/j.biopha.2023.115029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
The difficulty and poor prognosis of malignant tumor have always been a difficult problem to be solved. The internal components of solid tumor are complex, including tumor cells, stromal cells and immune cells, which play an important role in tumor proliferation, migration, metastasis and drug resistance. Hence, targeting of only the tumor cells will not likely improve survival. Various studies have reported that tumor cells and endothelial cells have high plasticity, which is reflected in the fact that they can simulate each other's characteristics by endothelial-mesenchymal transition (EndMT) and vasculogenic mimicry (VM). In this paper, this mutual mimicry concept was integrated and reviewed for the first time, and their similarities and implications for tumor development are discussed. At the same time, possible therapeutic methods are proposed to provide new directions and ideas for clinical targeted therapy and immunotherapy of tumor.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Clinical Medicine, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Ziang Geng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China
| | - Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Zhongxue Yu
- Department of Cardiovascular Ultrasound, The First hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China.
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China.
| | - Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China.
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China.
| |
Collapse
|
13
|
Koncz G, Jenei V, Tóth M, Váradi E, Kardos B, Bácsi A, Mázló A. Damage-mediated macrophage polarization in sterile inflammation. Front Immunol 2023; 14:1169560. [PMID: 37465676 PMCID: PMC10351389 DOI: 10.3389/fimmu.2023.1169560] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Most of the leading causes of death, such as cardiovascular diseases, cancer, dementia, neurodegenerative diseases, and many more, are associated with sterile inflammation, either as a cause or a consequence of these conditions. The ability to control the progression of inflammation toward tissue resolution before it becomes chronic holds significant clinical potential. During sterile inflammation, the initiation of inflammation occurs through damage-associated molecular patterns (DAMPs) in the absence of pathogen-associated molecules. Macrophages, which are primarily localized in the tissue, play a pivotal role in sensing DAMPs. Furthermore, macrophages can also detect and respond to resolution-associated molecular patterns (RAMPs) and specific pro-resolving mediators (SPMs) during sterile inflammation. Macrophages, being highly adaptable cells, are particularly influenced by changes in the microenvironment. In response to the tissue environment, monocytes, pro-inflammatory macrophages, and pro-resolution macrophages can modulate their differentiation state. Ultimately, DAMP and RAMP-primed macrophages, depending on the predominant subpopulation, regulate the balance between inflammatory and resolving processes. While sterile injury and pathogen-induced reactions may have distinct effects on macrophages, most studies have focused on macrophage responses induced by pathogens. In this review, which emphasizes available human data, we illustrate how macrophages sense these mediators by examining the expression of receptors for DAMPs, RAMPs, and SPMs. We also delve into the signaling pathways induced by DAMPs, RAMPs, and SPMs, which primarily contribute to the regulation of macrophage differentiation from a pro-inflammatory to a pro-resolution phenotype. Understanding the regulatory mechanisms behind the transition between macrophage subtypes can offer insights into manipulating the transition from inflammation to resolution in sterile inflammatory diseases.
Collapse
Affiliation(s)
- Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Váradi
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Balázs Kardos
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Watabe T, Takahashi K, Pietras K, Yoshimatsu Y. Roles of TGF-β signals in tumor microenvironment via regulation of the formation and plasticity of vascular system. Semin Cancer Biol 2023; 92:130-138. [PMID: 37068553 DOI: 10.1016/j.semcancer.2023.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Tumor cells evolve in tumor microenvironment composed of multiple cell types. Among these, endothelial cells (ECs) are the major players in tumor angiogenesis, which is a driver of tumor progression and metastasis. Increasing evidence suggests that ECs also contribute to tumor progression and metastasis as they modify their phenotypes to differentiate into mesenchymal cells through a process known as endothelial-mesenchymal transition (EndoMT). This plasticity of ECs is mediated by various cytokines, including transforming growth factor-β (TGF-β), and modulated by other stimuli depending on the cellular contexts. Recent lines of evidence have shown that EndoMT is involved in various steps of tumor progression, including tumor angiogenesis, intravasation and extravasation of cancer cells, formation of cancer-associated fibroblasts, and cancer therapy resistance. In this review, we summarize current updates on EndoMT, highlight the roles of EndoMT in tumor progression and metastasis, and underline targeting EndoMT as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Kristian Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, 223 81 Lund, Sweden.
| | - Yasuhiro Yoshimatsu
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
15
|
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J, Larionova I. Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 2023; 62:32. [PMID: 36660926 PMCID: PMC9851132 DOI: 10.3892/ijo.2023.5480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Anna Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Oleg Kovalev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| |
Collapse
|
16
|
Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol Cancer 2022; 21:177. [PMID: 36071472 PMCID: PMC9454207 DOI: 10.1186/s12943-022-01645-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.
Collapse
Affiliation(s)
- Ruixue Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China. .,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China.
| |
Collapse
|
17
|
Peng Q, Shan D, Cui K, Li K, Zhu B, Wu H, Wang B, Wong S, Norton V, Dong Y, Lu YW, Zhou C, Chen H. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells 2022; 11:1834. [PMID: 35681530 PMCID: PMC9180466 DOI: 10.3390/cells11111834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is the process of endothelial cells progressively losing endothelial-specific markers and gaining mesenchymal phenotypes. In the normal physiological condition, EndoMT plays a fundamental role in forming the cardiac valves of the developing heart. However, EndoMT contributes to the development of various cardiovascular diseases (CVD), such as atherosclerosis, valve diseases, fibrosis, and pulmonary arterial hypertension (PAH). Therefore, a deeper understanding of the cellular and molecular mechanisms underlying EndoMT in CVD should provide urgently needed insights into reversing this condition. This review summarizes a 30-year span of relevant literature, delineating the EndoMT process in particular, key signaling pathways, and the underlying regulatory networks involved in CVD.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Dan Shan
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Kathryn Li
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Beibei Wang
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Scott Wong
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Vikram Norton
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Yunzhou Dong
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Yao Wei Lu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA;
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| |
Collapse
|
18
|
Sun X, Fang J, Ye F, Zhang S, Huang H, Hou J, Wang T. Diffuse Large B-Cell Lymphoma Promotes Endothelial-to-Mesenchymal Transition via WNT10A/Beta-Catenin/Snail Signaling. Front Oncol 2022; 12:871788. [PMID: 35494062 PMCID: PMC9039659 DOI: 10.3389/fonc.2022.871788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is one type of highly heterogeneous lymphoid malignancy with 30%~40% of patients experiencing treatment failure. Novel risk stratification and therapeutic approaches for DLBCL are urgently needed. Endothelial-to-mesenchymal transition (EndMT), which contributes to tumor angiogenesis, metastasis, drug resistance, and cancer-associated fibroblast generation, has been detected in the microenvironment of many types of cancers. However, the existence of EndMT in the hematological malignancies microenvironment remains unknown. Here, we identified the existence of EndMT in DLBCL-associated endothelial cells and the clinical relevance of EndMT markers in DLBCL, which was associated with advanced clinical stage and poor prognosis. In vitro experiments confirmed that DLBCL cells stimulated angiogenesis and EndMT of human umbilical vein endothelial cells (HUVECs). We further unveiled the molecular mechanisms underlying this process. We demonstrated that WNT10A, a WNT family member overexpressed in DLBCL tissues and correlated with clinical features in DLBCL, promoted EndMT through glycogen synthase kinase 3β (GSK3β)/β-catenin/snail signaling. WNT10A inhibited the binding of GSK3β to β-catenin/snail, resulting in β-catenin and snail nuclear accumulation and target gene transcription. Silencing β-catenin and snail respectively attenuated WNT10A-induced angiogenesis and EndMT. The interplay between β-catenin-dependent and snail-dependent signaling was also confirmed in this study. Collectively, these findings identified that WNT10A/GSK3β/β-catenin/snail pathway performed vital roles in DLBCL-induced EndMT and indicated that EndMT markers and WNT10A may serve as novel predictors of clinical outcome.
Collapse
Affiliation(s)
- Xianting Sun
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jianchen Fang
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fen Ye
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuxian Zhang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Honghui Huang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ting Wang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
19
|
Li DY, Liang S, Wen JH, Tang JX, Deng SL, Liu YX. Extracellular HSPs: The Potential Target for Human Disease Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072361. [PMID: 35408755 PMCID: PMC9000741 DOI: 10.3390/molecules27072361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses. Recent studies have demonstrated that extracellular HSPs (eHSPs) were involved in many human diseases, such as cancers, neurodegenerative diseases, and kidney diseases, which are all diseases that are closely linked to inflammation and immunity. In this review, we describe the types of eHSPs, discuss the mechanisms of eHSPs secretion, and then highlight their functions in the modulation of inflammation and immune responses. Finally, we take cancer as an example and discuss the possibility of targeting eHSPs for human disease therapy. A broader understanding of the function of eHSPs in development and progression of human disease is essential for developing new strategies to treat many human diseases that are critically related to inflammation and immunity.
Collapse
Affiliation(s)
- Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Jun-Hao Wen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| |
Collapse
|
20
|
Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 2022; 41:68. [PMID: 35183252 PMCID: PMC8857848 DOI: 10.1186/s13046-022-02272-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
AbstractCancer immunotherapy has emerged as a novel cancer treatment, although recent immunotherapy trials have produced suboptimal outcomes, with durable responses seen only in a small number of patients. The tumor microenvironment (TME) has been shown to be responsible for tumor immune escape and therapy failure. The vital component of the TME is tumor-associated macrophages (TAMs), which are usually associated with poor prognosis and drug resistance, including immunotherapies, and have emerged as promising targets for cancer immunotherapy. Recently, nanoparticles, because of their unique physicochemical characteristics, have emerged as crucial translational moieties in tackling tumor-promoting TAMs that amplify immune responses and sensitize tumors to immunotherapies in a safe and effective manner. In this review, we mainly described the current potential nanomaterial-based therapeutic strategies that target TAMs, including restricting TAMs survival, inhibiting TAMs recruitment to tumors and functionally repolarizing tumor-supportive TAMs to antitumor type. The current understanding of the origin and polarization of TAMs, their crucial role in cancer progression and prognostic significance was also discussed in this review. We also highlighted the recent evolution of chimeric antigen receptor (CAR)-macrophage cell therapy.
Collapse
|
21
|
Extracellular HSP90α Induces MyD88-IRAK Complex-Associated IKKα/β-NF-κB/IRF3 and JAK2/TYK2-STAT-3 Signaling in Macrophages for Tumor-Promoting M2-Polarization. Cells 2022; 11:cells11020229. [PMID: 35053345 PMCID: PMC8774043 DOI: 10.3390/cells11020229] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
M2-polarization and the tumoricidal to tumor-promoting transition are commonly observed with tumor-infiltrating macrophages after interplay with cancer cells or/and other stroma cells. Our previous study indicated that macrophage M2-polarization can be induced by extracellular HSP90α (eHSP90α) secreted from endothelial-to-mesenchymal transition-derived cancer-associated fibroblasts. To extend the finding, we herein validated that eHSP90α-induced M2-polarized macrophages exhibited a tumor-promoting activity and the promoted tumor tissues had significant increases in microvascular density but decreases in CD4+ T-cell level. We further investigated the signaling pathways occurring in eHSP90α-stimulated macrophages. When macrophages were exposed to eHSP90α, CD91 and toll-like receptor 4 (TLR4) functioned as the receptor/co-receptor for eHSP90α binding to recruit interleukin (IL)-1 receptor-associated kinases (IRAKs) and myeloid differentiation factor 88 (MyD88), and next elicited a canonical CD91/MyD88-IRAK1/4-IκB kinase α/β (IKKα/β)-nuclear factor-κB (NF-κB)/interferon regulatory factor 3 (IRF3) signaling pathway. Despite TLR4-MyD88 complex-associated activations of IKKα/β, NF-κB and IRF3 being well-known as involved in macrophage M1-activation, our results demonstrated that the CD91-TLR4-MyD88 complex-associated IRAK1/4-IKKα/β-NF-κB/IRF3 pathway was not only directly involved in M2-associated CD163, CD204, and IL-10 gene expressions but also required for downregulation of M1 inflammatory cytokines. Additionally, Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2) were recruited onto MyD88 to induce the phosphorylation and activation of the transcription factor signal transducer and activator of transcription-3 (STAT-3). The JAK2/TYK2-STAT-3 signaling is known to associate with tumor promotion. In this study, the MyD88-JAK2/TYK2-STAT-3 pathway was demonstrated to contribute to eHSP90α-induced macrophage M2-polarization by regulating the expressions of M1- and M2-related genes, proangiogenic protein vascular endothelial growth factor, and phagocytosis-interfering factor Sec22b.
Collapse
|
22
|
Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol 2021; 10:60. [PMID: 34965886 PMCID: PMC8715617 DOI: 10.1186/s40164-021-00252-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophages are heterogeneous cells that present as different functional phenotypes due to their plasticity. They can be classified into two categories, namely M1- and M2-like macrophages, which are involved in processes as diverse as anti-tumor activity and immunosuppressive tumor promotion. Tumor-associated macrophages (TAMs) are defined as being of an M2-type and are considered as the active component in tumor microenvironment. TAMs are involved in multiple processes of tumor progression through the expression of cytokines, chemokines, growth factors, protein hydrolases and more, which lead to enhance tumor cell proliferation, angiogenesis, and immunosuppression, which in turn supports invasion and metastasis. It is assumed that the abundance of TAMs in major solid tumors is correlated to a negative patient prognosis. Because of the currently available data of the TAMs’ role in tumor development, these cells have emerged as a promising target for novel cancer treatment strategies. In this paper, we will briefly describe the origins and types of TAMs and will try to comprehensively show how TAMs contribute to tumorigenesis and disease progression. Finally, we will present the main TAM-based therapeutic strategies currently available.
Collapse
|
23
|
Osteosarcoma exocytosis of soluble LGALS3BP mediates macrophages toward a tumoricidal phenotype. Cancer Lett 2021; 528:1-15. [PMID: 34952143 DOI: 10.1016/j.canlet.2021.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to elucidate the interactions between osteosarcoma (OS) and M1 macrophages infiltrated into the tumor microenvironment and to explore the underlying mechanisms whereby M1 macrophages influence the growth of OS, so that novel treatments of OS can be developed. A transwell co-culture system, an indirect conditioned medium culture system and two orthotopic bearing OS models were established to assess for the interplay between M1 macrophages and OS. We found that the co-culture of M1 macrophages with OS cells significantly inhibited the growth of the tumor cells by inducing apoptosis. Furthermore, HSPA1L secreted by M1 macrophages exerted this anti-tumor effect through the IRAK1 and IRAK4 pathways. LGALS3BP secreted by OS cells bound to the ligand LGALS3 on M1 macrophages and thereby induced the secretion of Hspa11 via Akt phosphorylation. In vivo experiments demonstrated that the culture supernatant of OS-stimulated M1 macrophages significantly inhibited the growth of OS, whereas silencing Lgals3bp promoted the progression of OS. In conclusion, OS modifies the phenotype of tumor-associated macrophages (TAMs) and thereby influences the apoptosis of OS cells through soluble factors. The modulation of TAMs may be a promising and effective therapeutic approach in OS.
Collapse
|
24
|
Wang L, Lu Q, Gao W, Yu S. Recent advancement on development of drug-induced macrophage polarization in control of human diseases. Life Sci 2021; 284:119914. [PMID: 34453949 DOI: 10.1016/j.lfs.2021.119914] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Macrophages, an important part of human immune system, possess a high plasticity and heterogeneity (macrophage polarization) as classically activated macrophages (M1) and alternatively activated macrophages (M2), which exert pro-inflammatory/anti-tumor and anti-inflammatory/pro-tumor effects, respectively. Thus, drug development in induction of macrophage polarization could be used to treat different human diseases. This review summarizes the recent advancement on modulation of macrophage polarization and its related molecular mechanisms induced by a number of agents. Research on the anti-inflammatory drugs to regulate the macrophage polarization accounts for a large proportion in the field and types of diseases investigated could include atherosclerosis, enteritis, nephritis, and the nervous system and skeletal diseases, while study of the anti-tumor agents to modify macrophage polarization is a novel area of research. Future study of the molecular mechanisms by which the different agents regulate the macrophage polarization could lead to an effective control of various human diseases, including inflammation and cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China; School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qi Lu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wenwen Gao
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China
| | - Shuwen Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Qilu Hospital of Shandong University, Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
25
|
Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, Xie X, Li Y. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res 2021; 9:72. [PMID: 34625124 PMCID: PMC8501632 DOI: 10.1186/s40364-021-00327-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs), at the core of immunosuppressive cells and cytokines networks, play a crucial role in tumor immune evasion. Increasing evidences suggest that potential mechanisms of macrophage-mediated tumor immune escape imply interpretation and breakthrough to bottleneck of current tumor immunotherapy. Therefore, it is pivotal to understand the interactions between macrophages and other immune cells and factors for enhancing existing anti-cancer treatments. In this review, we focus on the specific signaling pathways through which TAMs involve in tumor antigen recognition disorders, recruitment and function of immunosuppressive cells, secretion of immunosuppressive cytokines, crosstalk with immune checkpoints and formation of immune privileged sites. Furthermore, we summarize correlative pre-clinical and clinical studies to provide new ideas for immunotherapy. From our perspective, macrophage-targeted therapy is expected to be the next frontier of cancer immunotherapy.
Collapse
Affiliation(s)
- Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China
| | - Tong Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China
| | - Ruiyi Zhu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Chujun Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Yingchen Ruan
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoling Xie
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, P. R. China.
| |
Collapse
|
26
|
Zhang J, Zhong W, Liu Y, Chen W, Lu Y, Zeng Z, Qiao Y, Huang H, Wan X, Li W, Meng X, Zou F, Cai S, Dong H. Extracellular HSP90α Interacts With ER Stress to Promote Fibroblasts Activation Through PI3K/AKT Pathway in Pulmonary Fibrosis. Front Pharmacol 2021; 12:708462. [PMID: 34497513 PMCID: PMC8420756 DOI: 10.3389/fphar.2021.708462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Pulmonary fibrosis is characterized by alveolar epithelial cell injury, lung fibroblast proliferation, differentiation, and extracellular matrix (ECM) deposition. Our previous study indicated that extracellular HSP90α (eHSP90α) promotes pulmonary fibrosis by activating the MAPK signaling pathway. Thus, treatment with 1G6-D7 (a selective HSP90α monoclonal antibody) to antagonize eHSP90α could effectively ameliorate fibrosis. This study aimed to elucidate the mechanism underlying the effects of eHSP90α in pulmonary fibrosis by focusing on its link with endoplasmic reticulum (ER) stress. Our results showed that eHSP90α promoted lung fibroblast differentiation by activating ER stress. Treatment with the ER stress inhibitor tauroursodeoxycholate (TUDCA) or glucose-regulated protein 78 kDa (GRP78) depletion significantly abrogated the effect of eHSP90α on ER stress and fibroblast activation. In addition, eHSP90α induced ER stress in fibroblasts via the phosphoinositide-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which could be blocked by the PI3K/AKT inhibitor LY294002, and blockade of eHSP90α by 1G6-D7 markedly inhibited ER stress in the model, indicating preventive and therapeutic applications. Intriguingly, we observed that TUDCA effectively reduced the secretion of eHSP90α in vitro and in vivo. In conclusion, this study shows that the interaction between eHSP90α and ER stress plays a crucial role in pulmonary fibrosis, indicating a positive feedback in lung fibroblasts. Targeting eHSP90α and alleviating fibroblast ER stress may be promising therapeutic approaches for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenshan Zhong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Lu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaojin Zeng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Qiao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Wan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Dermatology and The Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Centre, Los Angeles, CA, United States
| | - Xiaojing Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Chen S, Duan Y, Wu Y, Yang D, An J. A Novel Integrated Metabolism-Immunity Gene Expression Model Predicts the Prognosis of Lung Adenocarcinoma Patients. Front Pharmacol 2021; 12:728368. [PMID: 34393804 PMCID: PMC8361602 DOI: 10.3389/fphar.2021.728368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although multiple metabolic pathways are involved in the initiation, progression, and therapy of lung adenocarcinoma (LUAD), the tumor microenvironment (TME) for immune cell infiltration that is regulated by metabolic enzymes has not yet been characterized. Methods: 517 LUAD samples and 59 non-tumor samples were obtained from The Cancer Genome Atlas (TCGA) database as the training cohort. Kaplan-Meier analysis and Univariate Cox analysis were applied to screen the candidate metabolic enzymes for their role in relation to survival rate in LUAD patients. A prognostic metabolic enzyme signature, termed the metabolic gene risk score (MGRS), was established based on multivariate Cox proportional hazards regression analysis and was verified in an independent test cohort, GSE31210. In addition, we analyzed the immune cell infiltration characteristics in patients grouped by their Risk Score. Furthermore, the prognostic value of these four enzymes was verified in another independent cohort by immunohistochemistry and an optimized model of the metabolic-immune protein risk score (MIPRS) was constructed. Results: The MGRS model comprising 4 genes (TYMS, NME4, LDHA, and SMOX) was developed to classify patients into high-risk and low-risk groups. Patients with a high-risk score had a poor prognosis and exhibited activated carbon and nucleotide metabolism, both of which were associated with changes to TME immune cell infiltration characteristics. In addition, the optimized MIPRS model showed more accurate predictive power in prognosis of LUAD. Conclusion: Our study revealed an integrated metabolic enzyme signature as a reliable prognostic tool to accurately predict the prognosis of LUAD.
Collapse
Affiliation(s)
- Songming Chen
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yumei Duan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanhao Wu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Desong Yang
- Thoracic Surgery Department II, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian An
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Clinical Research Center for Respiratory Diseases, Changsha, China
| |
Collapse
|
28
|
Pfeifer E, Burchell JM, Dazzi F, Sarker D, Beatson R. Apoptosis in the Pancreatic Cancer Tumor Microenvironment-The Double-Edged Sword of Cancer-Associated Fibroblasts. Cells 2021; 10:cells10071653. [PMID: 34359823 PMCID: PMC8305815 DOI: 10.3390/cells10071653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis. This is attributed to the disease already being advanced at presentation and having a particularly aggressive tumor biology. The PDAC tumor microenvironment (TME) is characterized by a dense desmoplastic stroma, dominated by cancer-associated fibroblasts (CAF), extracellular matrix (ECM) and immune cells displaying immunosuppressive phenotypes. Due to the advanced stage at diagnosis, the depletion of immune effector cells and lack of actionable genomic targets, the standard treatment is still apoptosis-inducing regimens such as chemotherapy. Paradoxically, it has emerged that the direct induction of apoptosis of cancer cells may fuel oncogenic processes in the TME, including education of CAF and immune cells towards pro-tumorigenic phenotypes. The direct effect of cytotoxic therapies on CAF may also enhance tumorigenesis. With the awareness that CAF are the predominant cell type in PDAC driving tumorigenesis with various tumor supportive functions, efforts have been made to try to target them. However, efforts to target CAF have, to date, shown disappointing results in clinical trials. With the help of sophisticated single cell analyses it is now appreciated that CAF in PDAC are a heterogenous population with both tumor supportive and tumor suppressive functions. Hence, there remains a debate whether targeting CAF in PDAC is a valid therapeutic strategy. In this review we discuss how cytotoxic therapies and the induction of apoptosis in PDAC fuels oncogenesis by the education of surrounding stromal cells, with a particular focus on the potential pro-tumorigenic outcomes arising from targeting CAF. In addition, we explore therapeutic avenues to potentially avoid the oncogenic effects of apoptosis in PDAC CAF.
Collapse
|
29
|
Delprat V, Michiels C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev 2021; 40:477-500. [PMID: 33783686 PMCID: PMC8213675 DOI: 10.1007/s10555-021-09958-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Cancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| |
Collapse
|
30
|
Yang S, Liu Q, Liao Q. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Front Cell Dev Biol 2021; 8:607209. [PMID: 33505964 PMCID: PMC7829544 DOI: 10.3389/fcell.2020.607209] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy. PDAC is only cured by surgical resection in its early stage, but there remains a relatively high possibility of recurrence. The development of PDAC is closely associated with the tumor microenvironment. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations in the pancreatic tumor stroma. TAMs are inclined to M2 deviation in the tumor microenvironment, which promotes and supports tumor behaviors, including tumorigenesis, immune escape, metastasis, and chemotherapeutic resistance. Herein, we comprehensively reviewed the latest researches on the origin, polarization, functions, and reprogramming of TAMs in PDAC.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Xie Y, Chen L, Xu Z, Li C, Ni Y, Hou M, Chen L, Chang H, Yang Y, Wang H, He R, Chen R, Qian L, Luo Y, Zhang Y, Li N, Zhu Y, Ji M, Liu Y. Predictive Modeling of MAFLD Based on Hsp90α and the Therapeutic Application of Teprenone in a Diet-Induced Mouse Model. Front Endocrinol (Lausanne) 2021; 12:743202. [PMID: 34659125 PMCID: PMC8515197 DOI: 10.3389/fendo.2021.743202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIMS The heat shock protein (Hsp) 90α is induced by stress and regulates inflammation through multiple pathways. Elevated serum Hsp90α had been found in nonalcoholic steatohepatitis (NASH). Geranylgeranylacetone (GGA, also called teprenone) is a terpenoid derivative. It was reported to induce Hsp and alleviate insulin resistance. We aimed to evaluate the Hsp90α as a biomarker in predicting metabolic-associated fatty liver disease (MAFLD) and define the therapeutic effects of geranylgeranylacetone for the disease. METHODS A clinical study was conducted to analyze the elements associated with Hsp90α, and a predictive model of MAFLD was developed based on Hsp90α. The histopathological correlation between Hsp90α and MAFLD was investigated through a diet-induced mouse model. Furthermore, GGA was applied to the mouse model. RESULTS Serum Hsp90α was increased in patients with MAFLD. A positive linear relationship was found between age, glycosylated hemoglobin (HbA1c), MAFLD, and serum Hsp90α. Meanwhile, a negative linear relationship with body mass index (BMI) was found. A model using Hsp90α, BMI, HbA1c, and ALT was established for predicting MAFLD. The area under the receiver operating characteristic (ROC) curves was 0.94 (95% CI 0.909-0.971, p = 0.000). The sensitivity was 84.1%, and the specificity was 93.1%. In vitro experiments, GGA induced Hsp90α in steatosis cells. In the mice model, Hsp90α decreased in the GGA treatment group. Hepatic steatosis, inflammation, insulin resistance, and glucose intolerance were improved in the GGA-treated group. Serum Hsp90α was positively correlated with steatohepatitis activity according to hepatic histopathology. CONCLUSIONS Serum Hsp90α was elevated in MAFLD, and a positive correlation between serum Hsp90α and the grade of activity of steatohepatitis was observed. The model using BMI, HbA1c, and alanine aminotransferase (ALT) had a good value to predict MAFLD. The findings also revealed the effectiveness of GGA in the treatment of MAFLD.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yuxuan Yang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Huiquan Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Rongbo He
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Rourou Chen
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Li Qian
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Luo
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Zhang
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Na Li
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yuxiao Zhu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Center for Global Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Minjun Ji, ; Yu Liu,
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Minjun Ji, ; Yu Liu,
| |
Collapse
|
32
|
Huang C, Chen J. Laminin‑332 mediates proliferation, apoptosis, invasion, migration and epithelial‑to‑mesenchymal transition in pancreatic ductal adenocarcinoma. Mol Med Rep 2021; 23:11. [PMID: 33179081 PMCID: PMC7673329 DOI: 10.3892/mmr.2020.11649] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
The poor prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is primarily due to the invasive and metastatic behaviors of this disease. Laminin‑332 (LM‑332) is a key component of the basement membrane barrier, and is associated with tumor metastasis. The present study provides evidence towards the potential function of LM‑332 in carcinoma, indicating the distinct roles of the three LM‑332 subunits (α3, β3 and γ2) in cell proliferation, migration, invasion, apoptosis and the epithelial‑to‑mesenchymal transition (EMT) in cancer. The roles of the α3, β3 and γ2 subunits in the malignant biological behavior of PDAC were investigated in the present study. It was revealed that the α3, β3 and γ2 subunits were upregulated in PDAC. Inhibition of all LM‑332 subunits abrogated the tumorigenic outcomes, which included cell proliferation, apoptosis, invasion, migration and EMT in vitro. However, the three LM‑332 subunits had different degrees of effects on biological behavior. It was observed that LAMA3 (α3) had a stronger effect on cell proliferation, migration and invasion. In addition, LAMB3 (β3) knockdown significantly increased E‑cadherin levels and decreased vimentin levels, indicating that LAMB3 was associated with EMT. Likewise, LAMC2 (γ2) mediated proliferation, apoptosis, invasion and migration. However, small interfering (si)‑LAMC2 promoted the progression of EMT, which was the opposite effect to that of si‑LAMB3. The LM‑332 subunits (α3, β3 and γ2) may be novel therapeutic targets of PDAC in the future.
Collapse
Affiliation(s)
- Caiqun Huang
- Department of Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Jun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
33
|
Clere N, Renault S, Corre I. Endothelial-to-Mesenchymal Transition in Cancer. Front Cell Dev Biol 2020; 8:747. [PMID: 32923440 PMCID: PMC7456955 DOI: 10.3389/fcell.2020.00747] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most important causes of morbidity and mortality worldwide. Tumor cells grow in a complex microenvironment constituted of immune, stromal, and vascular cells that supports growth, angiogenesis, and metastasis. Endothelial cells (ECs) are major components of the vascular microenvironment. These cells have been described for their plasticity and potential to transdifferentiate into mesenchymal cells through a process known as endothelial-to-mesenchymal transition (EndMT). This complex process is controlled by various factors, by which ECs convert into a phenotype characterized by mesenchymal protein expression and motile, contractile morphology. Initially described in normal heart development, EndMT is now identified in several pathologies, and especially in cancer. In this review, we highlight the process of EndMT in the context of cancer and we discuss it as an important adaptive process of the tumor microenvironment that favors tumor growth and dissemination but also resistance to treatment. Thus, we underline targeting of EndMT as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Nicolas Clere
- Micro and Nanomédecines Translationnelles, Université d'Angers, INSERM UMR U1066, CNRS 6021, Angers, France
| | - Sarah Renault
- Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, INSERM UMR U1238, Nantes, France
| | - Isabelle Corre
- Sarcomes Osseux et Remodelage des Tissus Calcifiés, Université de Nantes, INSERM UMR U1238, Nantes, France
| |
Collapse
|
34
|
Chua KV, Fan CS, Chen CC, Chen LL, Hsieh SC, Huang TS. Octyl Gallate Induces Pancreatic Ductal Adenocarcinoma Cell Apoptosis and Suppresses Endothelial-Mesenchymal Transition-Promoted M2-Macrophages, HSP90α Secretion, and Tumor Growth. Cells 2019; 9:E91. [PMID: 31905895 PMCID: PMC7016987 DOI: 10.3390/cells9010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/05/2023] Open
Abstract
Octyl gallate (OG) is a common antioxidant and preservative safely used in food additive and cosmetics. In this study, OG exhibited an activity to induce apoptosis in pancreatic ductal adenocarcinoma (PDAC) cells. It induced BNIP3L level and facilitated physical associations of BNIP3L with Bcl-2 as well as Bcl-XL to set the mitochondrial Bax/Bak channels free for cytochrome c release. In addition, in vivo evaluation also showed that daily oral administration of OG was efficacious to prevent the tumor growth of PDAC cell grafts. Considering PDAC is a desmoplastic tumor consisting of many cancer-associated fibroblasts (CAFs), we further evaluated the efficacy of OG in a CAFs-involved PDAC mouse model. Endothelial-to-mesenchymal transition (EndoMT) is an important source of CAFs. The mix of EndoMT-derived CAFs with PDAC cell grafts significantly recruited myeloid-derived macrophages but prevented immune T cells. HSP90α secreted by EndoMT-derived CAFs further induced macrophage M2-polarization and more HSP90α secretion to expedite PDAC tumor growth. OG exhibited its potent efficacy against the tumor growth, M2-macrophages, and serum HSP90α level in the EndoMT-involved PDAC mouse model. CD91 and TLR4 are cell-surface receptors for extracellular HSP90α (eHSP90α). OG blocked eHSP90α-TLR4 ligation and, thus, prevented eHSP90α-induced M2-macrophages and more HSP90α secretion from macrophages and PDAC cells.
Collapse
Affiliation(s)
- Kee Voon Chua
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (K.V.C.); (C.-S.F.); (C.-C.C.); (L.-L.C.)
| | - Chi-Shuan Fan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (K.V.C.); (C.-S.F.); (C.-C.C.); (L.-L.C.)
| | - Chia-Chi Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (K.V.C.); (C.-S.F.); (C.-C.C.); (L.-L.C.)
| | - Li-Li Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (K.V.C.); (C.-S.F.); (C.-C.C.); (L.-L.C.)
| | - Shu-Chen Hsieh
- Graduate Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan;
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan; (K.V.C.); (C.-S.F.); (C.-C.C.); (L.-L.C.)
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|