1
|
Ling X, Jiao Q, Lin D, Chen J, Han Y, Meng J, Zhong B, Zhang H, Zhang G, Zhu F, Qin J, Ruan Y, Liu L. Extrachromosomal circular DNA containing DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1. BMC Cancer 2024; 24:1448. [PMID: 39587541 PMCID: PMC11587744 DOI: 10.1186/s12885-024-13177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/09/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA), a novel class of DNA with a circular topological structure, is present in a variety of cancer cells and tissues and may play broad roles in processes ranging from aging to cancer cell heterogeneity through multiple mechanisms. EccDNA has been characterized by profile, structure and function in several prominent studies but its effect on hydroquinone (HQ)-induced malignantly transformed cells (TK6-HQ) is still elusive. METHODS Circle-seq was applied to determine the eccDNA counts and characteristics of TK6-HQ cells. DNA-fluorescence in situ hybridization was used to measure the abundance of eccDNA_DTX1. Differential gene expression analysis was carried out by RNA-seq. Gene expression was quantified by wertern blot and qPCR. Decircularization of eccDNA_DTX1 was achieved by CRISPR/Cas9. Tumorigenicity was evaluated by xenograft assay in BALB/c nude mice. RESULTS In this study, we characterized the structure of eccDNAs and the function of DTX1-containing eccDNA (eccDNA_DTX1) in TK6-HQ cells. A total of 669,179 eccDNAs were identified, including 901 eccDNAs with different counts. Most of the eccDNAs were < 1000 bp in length and were enriched in four periodic peaks starting at 186 bp with an interval of ~ 180 bp. The genomic distribution of eccDNAs confirmed that eccDNAs could be observed across all chromosomes and had greater enrichment on chromosomes 17, 19, 20, and 22, with abundant Alu repeat elements, introns and CpG islands. By combining the results of the integrated circle-seq analysis of eccDNAs with those from the RNA-seq analysis (differentially expressed genes, 1064 upregulated and 427 downregulated), the authors showed that the transcription of 20 potential coding genes might be driven by eccDNAs. Finally, the knockdown of eccDNA_DTX1 by CRISPR/Cas9 inhibited the growth of TK6-HQ cells in vitro and in vivo by inhibiting the transcription of DTX1 and promoting ferroptosis, and ferroptosis inhibior, Ferrostatin-1, abrogated the proliferation inhibition of eccDNA_DTX1 knockdown. CONCLUSIONS EccDNA_DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1 and ferroptosis. This study profiles eccDNA characteristics and defines the role and mechanism of eccDNA_DTX1 for the first time, shedding new light on the relationship between eccDNAs and carcinogenesis.
Collapse
Affiliation(s)
- Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Qunfang Jiao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Daifan Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Gongda Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Fangling Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jiheng Qin
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Meidical University, Dongguan, 523808, P.R. China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523722, P.R. China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
| |
Collapse
|
2
|
Sengupta S, Bhattacharjee SM, Mishra G. Large bubble drives circular DNA melting. Phys Chem Chem Phys 2024. [PMID: 39027987 DOI: 10.1039/d4cp01536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We investigate the melting transition of non-supercoiled circular DNA of different lengths, employing Brownian dynamics simulations. In the absence of supercoiling, we find that melting of circular DNA is driven by a large bubble, which agrees with the previous predictions of circular DNA melting in the presence of supercoiling. By analyzing sector-wise changes in average base-pair distance, our study reveals that the melting behavior of circular DNA closely resembles that of linear DNA. Additionally, we find a marked difference in the thermal stability of circular DNA over linear DNA at very short length scales, an effect that diminishes as the length of circular DNA increases. The stability of smaller circular DNA is linked to the occurrence of transient small bubbles, characterized by a lower probability of growth.
Collapse
Affiliation(s)
- Souradeep Sengupta
- Department of Physics, Ashoka University, Sonipat, Haryana - 131029, India.
| | | | - Garima Mishra
- Department of Physics, Ashoka University, Sonipat, Haryana - 131029, India.
| |
Collapse
|
3
|
Bastianello G, Kidiyoor GR, Lowndes C, Li Q, Bonnal R, Godwin J, Iannelli F, Drufuca L, Bason R, Orsenigo F, Parazzoli D, Pavani M, Cancila V, Piccolo S, Scita G, Ciliberto A, Tripodo C, Pagani M, Foiani M. Mechanical stress during confined migration causes aberrant mitoses and c-MYC amplification. Proc Natl Acad Sci U S A 2024; 121:e2404551121. [PMID: 38990945 PMCID: PMC11260125 DOI: 10.1073/pnas.2404551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.
Collapse
Affiliation(s)
- Giulia Bastianello
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Gururaj Rao Kidiyoor
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Conor Lowndes
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Qingsen Li
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Raoul Bonnal
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Jeffrey Godwin
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabio Iannelli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | | | - Ramona Bason
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabrizio Orsenigo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Dario Parazzoli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Mattia Pavani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Stefano Piccolo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Department of Molecular Medicine, University of Padua, Padua35123, Italy
| | - Giorgio Scita
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Andrea Ciliberto
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Claudio Tripodo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Massimiliano Pagani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Marco Foiani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Istituto di Genetica Molecolare, Centro Nazionale Ricerca, Pavia27100, Italy
- Cancer Science Institute of Singapore, National University of Singapore, Singapore117599, Singapore
| |
Collapse
|
4
|
Zhang C, Du Q, Zhou X, Qu T, Liu Y, Ma K, Shen Z, Wang Q, Zhang Z, Zhang R. Differential expression and analysis of extrachromosomal circular DNAs as serum biomarkers in pulmonary arterial hypertension. Respir Res 2024; 25:181. [PMID: 38664836 PMCID: PMC11046951 DOI: 10.1186/s12931-024-02808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNAs (eccDNAs) have been reported to play a key role in the occurrence and development of various diseases. However, the characterization and role of eccDNAs in pulmonary arterial hypertension (PAH) remain unclear. METHODS In the discovery cohort, we first explored eccDNA expression profiles by Circle-sequencing analysis. The candidate eccDNAs were validated by routine polymerase chain reaction (PCR), TOPO-TA cloning and Sanger sequencing. In the validation cohort, 30 patients with PAH and 10 healthy controls were recruited for qPCR amplification to detect the candidate eccDNAs. Datas at the baseline were collected, including clinical background, biochemical variables, echocardiography and hemodynamic factors. Receiver operating characteristic curve was used to investigate the diagnostic effect of the eccDNA. RESULTS We identified a total of 21,741 eccDNAs in plasma samples of 3 IPAH patients and 3 individuals in good health, and the expression frequency, GC content, length distribution, and genome distribution of the eccDNAs were thoroughly characterized and analyzed. In the validation cohort, 687 eccDNAs were differentially expressed in patients with IPAH compared with healthy controls (screening threshold: |FC|≥2 and P < 0.05). Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the specific eccDNAs in IPAH were significantly enriched in calcium channel activity, the mitogen-activated protein kinase pathway, and the wnt signaling pathway. Verification queue found that the expression of eccDNA-chr2:131208878-131,424,362 in PAH was considerably higher than that in healthy controls and exhibited a high level of accuracy in predicting PAH with a sensitivity of 86.67% and a specificity of 90%. Furthermore, correlation analysis disclosed a significant association between serum eccDNA-chr2:131208878-131,424,362 and mean pulmonary artery pressure (mPAP) (r = 0.396, P = 0.03), 6 min walking distance (6MWD) (r = -0.399, P = 0.029), N-terminal pro-B-type natriuretic peptide (NT-proBNP) (r = 0.685, P < 0.001) and cardiac index (CI) (r = - 0.419, P = 0.021). CONCLUSIONS This is the first study to identify and characterize eccDNAs in patients with PAH. We revealed that serum eccDNA-chr2:131208878-131,424,362 is significantly overexpressed and can be used in the diagnosis of PAH, indicating its potential as a novel non-invasive biomarker.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Qiang Du
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Xiao Zhou
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Tianyu Qu
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Yingying Liu
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Kai Ma
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Ziling Shen
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Qun Wang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China
| | - Zaikui Zhang
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 210000, People's Republic of China
| | - Ruifeng Zhang
- Department of Respiratory Medicine, Zhongda Hospital of Southeast University, Dingjiaqiao 87, Nanjing City, Jiangsu Province, 210000, People's Republic of China.
| |
Collapse
|
5
|
Abbasi AF, Asim MN, Ahmed S, Dengel A. Long extrachromosomal circular DNA identification by fusing sequence-derived features of physicochemical properties and nucleotide distribution patterns. Sci Rep 2024; 14:9466. [PMID: 38658614 PMCID: PMC11043385 DOI: 10.1038/s41598-024-57457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Long extrachromosomal circular DNA (leccDNA) regulates several biological processes such as genomic instability, gene amplification, and oncogenesis. The identification of leccDNA holds significant importance to investigate its potential associations with cancer, autoimmune, cardiovascular, and neurological diseases. In addition, understanding these associations can provide valuable insights about disease mechanisms and potential therapeutic approaches. Conventionally, wet lab-based methods are utilized to identify leccDNA, which are hindered by the need for prior knowledge, and resource-intensive processes, potentially limiting their broader applicability. To empower the process of leccDNA identification across multiple species, the paper in hand presents the very first computational predictor. The proposed iLEC-DNA predictor makes use of SVM classifier along with sequence-derived nucleotide distribution patterns and physicochemical properties-based features. In addition, the study introduces a set of 12 benchmark leccDNA datasets related to three species, namely Homo sapiens (HM), Arabidopsis Thaliana (AT), and Saccharomyces cerevisiae (SC/YS). It performs large-scale experimentation across 12 benchmark datasets under different experimental settings using the proposed predictor, more than 140 baseline predictors, and 858 encoder ensembles. The proposed predictor outperforms baseline predictors and encoder ensembles across diverse leccDNA datasets by producing average performance values of 81.09%, 62.2% and 81.08% in terms of ACC, MCC and AUC-ROC across all the datasets. The source code of the proposed and baseline predictors is available at https://github.com/FAhtisham/Extrachrosmosomal-DNA-Prediction . To facilitate the scientific community, a web application for leccDNA identification is available at https://sds_genetic_analysis.opendfki.de/iLEC_DNA/.
Collapse
Affiliation(s)
- Ahtisham Fazeel Abbasi
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany.
| | - Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany.
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany
| | - Andreas Dengel
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany
| |
Collapse
|
6
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
7
|
Wang S, Wu CY, He MM, Yong JX, Chen YX, Qian LM, Zhang JL, Zeng ZL, Xu RH, Wang F, Zhao Q. Machine learning-based extrachromosomal DNA identification in large-scale cohorts reveals its clinical implications in cancer. Nat Commun 2024; 15:1515. [PMID: 38373991 PMCID: PMC10876971 DOI: 10.1038/s41467-024-45479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
The clinical implications of extrachromosomal DNA (ecDNA) in cancer therapy remain largely elusive. Here, we present a comprehensive analysis of ecDNA amplification spectra and their association with clinical and molecular features in multiple cohorts comprising over 13,000 pan-cancer patients. Using our developed computational framework, GCAP, and validating it with multifaceted approaches, we reveal a consistent pan-cancer pattern of mutual exclusivity between ecDNA amplification and microsatellite instability (MSI). In addition, we establish the role of ecDNA amplification as a risk factor and refine genomic subtypes in a cohort from 1015 colorectal cancer patients. Importantly, our investigation incorporates data from four clinical trials focused on anti-PD-1 immunotherapy, demonstrating the pivotal role of ecDNA amplification as a biomarker for guiding checkpoint blockade immunotherapy in gastrointestinal cancer. This finding represents clinical evidence linking ecDNA amplification to the effectiveness of immunotherapeutic interventions. Overall, our study provides a proof-of-concept of identifying ecDNA amplification from cancer whole-exome sequencing (WES) data, highlighting the potential of ecDNA amplification as a valuable biomarker for facilitating personalized cancer treatment.
Collapse
Affiliation(s)
- Shixiang Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chen-Yi Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Ming He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jia-Xin Yong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Xing Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Mei Qian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jin-Ling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
8
|
Kong X, Wan SJ, Chen TB, Jiang L, Xing YJ, Bai YP, Hua Q, Yao XM, Zhao YL, Zhang HM, Wang DG, Su Q, Lv K. Increased serum extrachromosomal circular DNA SORBS1 circle level is associated with insulin resistance in patients with newly diagnosed type 2 diabetes mellitus. Cell Mol Biol Lett 2024; 29:12. [PMID: 38212723 PMCID: PMC10785328 DOI: 10.1186/s11658-023-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNAs (eccDNAs) exist in human blood and somatic cells, and are essential for oncogene plasticity and drug resistance. However, the presence and impact of eccDNAs in type 2 diabetes mellitus (T2DM) remains inadequately understood. METHODS We purified and sequenced the serum eccDNAs obtained from newly diagnosed T2DM patients and normal control (NC) subjects using Circle-sequencing. We validated the level of a novel circulating eccDNA named sorbin and SH3-domain- containing-1circle97206791-97208025 (SORBS1circle) in 106 newly diagnosed T2DM patients. The relationship between eccDNA SORBS1circle and clinical data was analyzed. Furthermore, we explored the source and expression level of eccDNA SORBS1circle in the high glucose and palmitate (HG/PA)-induced hepatocyte (HepG2 cell) insulin resistance model. RESULTS A total of 22,543 and 19,195 eccDNAs were found in serum samples obtained from newly diagnosed T2DM patients and NC subjects, respectively. The T2DM patients had a greater distribution of eccDNA on chromosomes 1, 14, 16, 17, 18, 19, 20 and X. Additionally, 598 serum eccDNAs were found to be upregulated, while 856 eccDNAs were downregulated in T2DM patients compared with NC subjects. KEGG analysis demonstrated that the genes carried by eccDNAs were mainly associated with insulin resistance. Moreover, it was validated that the eccDNA SORBS1circle was significantly increased in serum of newly diagnosed T2DM patients (106 T2DM patients vs. 40 NC subjects). The serum eccDNA SORBS1circle content was positively correlated with the levels of glycosylated hemoglobin A1C (HbA1C) and homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM patients. Intracellular eccDNA SORBS1circle expression was significantly enhanced in the high glucose and palmitate (HG/PA)-induced hepatocyte (HepG2 cell) insulin resistance model. Moreover, the upregulation of eccDNA SORBS1circle in the HG/PA-treated HepG2 cells was dependent on generation of apoptotic DNA fragmentation. CONCLUSIONS These results provide a preliminary understanding of the circulating eccDNA patterns at the early stage of T2DM and suggest that eccDNA SORBS1circle may be involved in the development of insulin resistance.
Collapse
Affiliation(s)
- Xiang Kong
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
- Geriatric Endocrinology Unit, Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China
- Central Laboratory of Yijishan Hospital, Wuhu, 241001, China
| | - Shu-Jun Wan
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
- Central Laboratory of Yijishan Hospital, Wuhu, 241001, China
| | - Tian-Bing Chen
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
- Central Laboratory of Yijishan Hospital, Wuhu, 241001, China
| | - Lan Jiang
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
- Central Laboratory of Yijishan Hospital, Wuhu, 241001, China
| | - Yu-Jie Xing
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
- Geriatric Endocrinology Unit, Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China
| | - Ya-Ping Bai
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
| | - Qiang Hua
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China
| | - Xin-Ming Yao
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China
| | - Yong-Li Zhao
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China
| | - Hong-Mei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - De-Guo Wang
- Geriatric Endocrinology Unit, Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China.
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Kun Lv
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China.
- Central Laboratory of Yijishan Hospital, Wuhu, 241001, China.
| |
Collapse
|
9
|
Wu N, Wei L, Zhu Z, Liu Q, Li K, Mao F, Qiao J, Zhao X. Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction. Protein Cell 2024; 15:6-20. [PMID: 37233789 PMCID: PMC10762679 DOI: 10.1093/procel/pwad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.
Collapse
Affiliation(s)
- Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ling Wei
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Qiang Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
10
|
Bergonzini C, Gregori A, Hagens TMS, van der Noord VE, van de Water B, Zweemer AJM, Coban B, Capula M, Mantini G, Botto A, Finamore F, Garajova I, McDonnell LA, Schmidt T, Giovannetti E, Danen EHJ. ABCB1 overexpression through locus amplification represents an actionable target to combat paclitaxel resistance in pancreatic cancer cells. J Exp Clin Cancer Res 2024; 43:4. [PMID: 38163893 PMCID: PMC10759666 DOI: 10.1186/s13046-023-02879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer and the chemotherapies such as gemcitabine/nab-paclitaxel are confronted with intrinsic or acquired resistance. The aim of this study was to investigate mechanisms underlying paclitaxel resistance in PDAC and explore strategies to overcome it. METHODS Three paclitaxel (PR) and gemcitabine resistant (GR) PDAC models were established. Transcriptomics and proteomics were used to identify conserved mechanisms of drug resistance. Genetic and pharmacological approaches were used to overcome paclitaxel resistance. RESULTS Upregulation of ABCB1 through locus amplification was identified as a conserved feature unique to PR cells. ABCB1 was not affected in any of the GR models and no cross resistance was observed. The ABCB1 inhibitor verapamil or siRNA-mediated ABCB1 depletion sensitized PR cells to paclitaxel and prevented efflux of ABCB1 substrates in all models. ABCB1 expression was associated with a trend towards shorter survival in patients who had received gemcitabine/nab-paclitaxel treatment. A pharmacological screen identified known and novel kinase inhibitors that attenuate efflux of ABCB1 substrates and sensitize PR PDAC cells to paclitaxel. CONCLUSION Upregulation of ABCB1 through locus amplification represents a novel, conserved mechanism of PDAC paclitaxel resistance. Kinase inhibitors identified in this study can be further (pre) clinically explored as therapeutic strategies to overcome paclitaxel resistance in PDAC.
Collapse
Affiliation(s)
- Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alessandro Gregori
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Tessa M S Hagens
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Vera E van der Noord
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Annelien J M Zweemer
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mjriam Capula
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Asia Botto
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Francesco Finamore
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Ingrid Garajova
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Liam A McDonnell
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy.
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
11
|
Li F, Ming W, Lu W, Wang Y, Li X, Dong X, Bai Y. FLED: a full-length eccDNA detector for long-reads sequencing data. Brief Bioinform 2023; 24:bbad388. [PMID: 37930031 PMCID: PMC10632013 DOI: 10.1093/bib/bbad388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Reconstructing the full-length sequence of extrachromosomal circular DNA (eccDNA) from short sequencing reads has proved challenging given the similarity of eccDNAs and their corresponding linear DNAs. Previous sequencing methods were unable to achieve high-throughput detection of full-length eccDNAs. Herein, a novel algorithm was developed, called Full-Length eccDNA Detection (FLED), to reconstruct the sequence of eccDNAs based on the strategy that combined rolling circle amplification and nanopore long-reads sequencing technology. Seven human epithelial and cancer cell line samples were analyzed by FLED and over 5000 full-length eccDNAs were identified per sample. The structures of identified eccDNAs were validated by both Polymerase Chain Reaction (PCR) and Sanger sequencing. Compared to other published nanopore-based eccDNA detectors, FLED exhibited higher sensitivity. In cancer cell lines, the genes overlapped with eccDNA regions were enriched in cancer-related pathways and cis-regulatory elements can be predicted in the upstream or downstream of intact genes on eccDNA molecules, and the expressions of these cancer-related genes were dysregulated in tumor cell lines, indicating the regulatory potency of eccDNAs in biological processes. The proposed method takes advantage of nanopore long reads and enables unbiased reconstruction of full-length eccDNA sequences. FLED is implemented using Python3 which is freely available on GitHub (https://github.com/FuyuLi/FLED).
Collapse
Affiliation(s)
- Fuyu Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Wenlong Ming
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Wenxiang Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ying Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiaohan Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xianjun Dong
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, MA 02115, USA
- Precision Neurology Program, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
12
|
Yüksel A, Altungöz O. Gene amplifications and extrachromosomal circular DNAs: function and biogenesis. Mol Biol Rep 2023; 50:7693-7703. [PMID: 37433908 DOI: 10.1007/s11033-023-08649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Gene amplification is an increase in the copy number of restricted chromosomal segments that contain gene(s) and frequently results in the over-expression of the corresponding gene(s). Amplification may be found in the form of extrachromosomal circular DNAs (eccDNAs) or as linear repetitive amplicon regions that are integrated into chromosomes, which may form cytogenetically observable homogeneously staining regions or may be scattered throughout the genome. eccDNAs are structurally circular and in terms of their function and content, they can be classified into various subtypes. They play pivotal roles in many physiological and pathological phenomena such as tumor pathogenesis, aging, maintenance of telomere length and ribosomal DNAs (rDNAs), and gain of resistance against chemotherapeutic agents. Amplification of oncogenes is consistently seen in various types of cancers and can be associated with prognostic factors. eccDNAs are known to be originated from chromosomes as a consequence of various cellular events such as repair processes of damaged DNA or DNA replication errors. In this review, we highlighted the role of gene amplification in cancer, the functional aspects of eccDNAs subtypes, the proposed biogenesis mechanisms, and their role in gene or segmental-DNA amplification.
Collapse
Affiliation(s)
- Ali Yüksel
- Department of Medical Biology and Genetics, Institute of Health Sciences, Dokuz Eylul University, 35330, Izmir, Turkey.
| | - Oğuz Altungöz
- Department of Medical Biology and Genetics, Institute of Health Sciences, Dokuz Eylul University, 35330, Izmir, Turkey.
- Department of Medical Biology, Dokuz Eylül Medical School, 35330, Izmir, Turkey.
| |
Collapse
|
13
|
Chitwood DG, Uy L, Fu W, Klaubert SR, Harcum SW, Saski CA. Dynamics of Amino Acid Metabolism, Gene Expression, and Circulomics in a Recombinant Chinese Hamster Ovary Cell Line Adapted to Moderate and High Levels of Extracellular Lactate. Genes (Basel) 2023; 14:1576. [PMID: 37628627 PMCID: PMC10454118 DOI: 10.3390/genes14081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The accumulation of metabolic wastes in cell cultures can diminish product quality, reduce productivity, and trigger apoptosis. The limitation or removal of unintended waste products from Chinese hamster ovary (CHO) cell cultures has been attempted through multiple process and genetic engineering avenues with varied levels of success. One study demonstrated a simple method to reduce lactate and ammonia production in CHO cells with adaptation to extracellular lactate; however, the mechanism behind adaptation was not certain. To address this profound gap, this study characterizes the phenotype of a recombinant CHO K-1 cell line that was gradually adapted to moderate and high levels of extracellular lactate and examines the genomic content and role of extrachromosomal circular DNA (eccDNA) and gene expression on the adaptation process. More than 500 genes were observed on eccDNAs. Notably, more than 1000 genes were observed to be differentially expressed at different levels of lactate adaptation, while only 137 genes were found to be differentially expressed between unadapted cells and cells adapted to grow in high levels of lactate; this suggests stochastic switching as a potential stress adaptation mechanism in CHO cells. Further, these data suggest alanine biosynthesis as a potential stress-mitigation mechanism for excess lactate in CHO cells.
Collapse
Affiliation(s)
- Dylan G. Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (D.G.C.); (L.U.); (S.W.H.)
| | - Lisa Uy
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (D.G.C.); (L.U.); (S.W.H.)
| | - Wanfang Fu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Stephanie R. Klaubert
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA;
| | - Sarah W. Harcum
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (D.G.C.); (L.U.); (S.W.H.)
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA;
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
14
|
Arshadi A, Tolomeo D, Venuto S, Storlazzi CT. Advancements in Focal Amplification Detection in Tumor/Liquid Biopsies and Emerging Clinical Applications. Genes (Basel) 2023; 14:1304. [PMID: 37372484 PMCID: PMC10298061 DOI: 10.3390/genes14061304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Focal amplifications (FAs) are crucial in cancer research due to their significant diagnostic, prognostic, and therapeutic implications. FAs manifest in various forms, such as episomes, double minute chromosomes, and homogeneously staining regions, arising through different mechanisms and mainly contributing to cancer cell heterogeneity, the leading cause of drug resistance in therapy. Numerous wet-lab, mainly FISH, PCR-based assays, next-generation sequencing, and bioinformatics approaches have been set up to detect FAs, unravel the internal structure of amplicons, assess their chromatin compaction status, and investigate the transcriptional landscape associated with their occurrence in cancer cells. Most of them are tailored for tumor samples, even at the single-cell level. Conversely, very limited approaches have been set up to detect FAs in liquid biopsies. This evidence suggests the need to improve these non-invasive investigations for early tumor detection, monitoring disease progression, and evaluating treatment response. Despite the potential therapeutic implications of FAs, such as, for example, the use of HER2-specific compounds for patients with ERBB2 amplification, challenges remain, including developing selective and effective FA-targeting agents and understanding the molecular mechanisms underlying FA maintenance and replication. This review details a state-of-the-art of FA investigation, with a particular focus on liquid biopsies and single-cell approaches in tumor samples, emphasizing their potential to revolutionize the future diagnosis, prognosis, and treatment of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (D.T.); (S.V.)
| |
Collapse
|
15
|
Guo J, Zhang Z, Li Q, Chang X, Liu X. TeCD: The eccDNA Collection Database for extrachromosomal circular DNA. BMC Genomics 2023; 24:47. [PMID: 36707765 PMCID: PMC9881285 DOI: 10.1186/s12864-023-09135-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA) is a kind of DNA that widely exists in eukaryotic cells. Studies in recent years have shown that eccDNA is often enriched during tumors and aging, and participates in the development of cell physiological activities in a special way, so people have paid more and more attention to the eccDNA, and it has also become a critical new topic in modern biological research. DESCRIPTION We built a database to collect eccDNA, including animals, plants and fungi, and provide researchers with an eccDNA retrieval platform. The collected eccDNAs were processed in a uniform format and classified according to the species to which it belongs and the chromosome of the source. Each eccDNA record contained sequence length, start and end sites on the corresponding chromosome, order of the bases, genomic elements such as genes and transposons, and other information in the respective sequencing experiment. All the data were stored into the TeCD (The eccDNA Collection Database) and the BLAST (Basic Local Alignment Search Tool) sequence alignment function was also added into the database for analyzing the potential eccDNA sequences. CONCLUSION We built TeCD, a platform for users to search and obtain eccDNA data, and analyzed the possible potential functions of eccDNA. These findings may provide a basis and direction for researchers to further explore the biological significance of eccDNA in the future.
Collapse
Affiliation(s)
- Jing Guo
- grid.410726.60000 0004 1797 8419Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.464226.00000 0004 1760 7263Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu, 233030 China ,grid.27255.370000 0004 1761 1174School of Mathematics and Statistics, Shandong University, Weihai, 264209 Shandong China
| | - Ze Zhang
- grid.410726.60000 0004 1797 8419Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.410726.60000 0004 1797 8419School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China
| | - Qingcui Li
- grid.410726.60000 0004 1797 8419School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China
| | - Xiao Chang
- grid.464226.00000 0004 1760 7263Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu, 233030 China
| | - Xiaoping Liu
- grid.410726.60000 0004 1797 8419Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013 China ,grid.27255.370000 0004 1761 1174School of Mathematics and Statistics, Shandong University, Weihai, 264209 Shandong China
| |
Collapse
|
16
|
Chitwood DG, Wang Q, Klaubert SR, Green K, Wu CH, Harcum SW, Saski CA. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Sci Rep 2023; 13:1200. [PMID: 36681715 PMCID: PMC9862248 DOI: 10.1038/s41598-023-27962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr®250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.
Collapse
Affiliation(s)
- Dylan G Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Qinghua Wang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Kiana Green
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
17
|
Sun H, Lu X, Zou L. EccBase: A high-quality database for exploration and characterization of extrachromosomal circular DNAs in cancer. Comput Struct Biotechnol J 2023; 21:2591-2601. [PMID: 37114214 PMCID: PMC10126927 DOI: 10.1016/j.csbj.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are widely observed in eukaryotes. Previous studies have demonstrated that eccDNAs are essential to cancer progression, and found that they can not only express in normal cells to regulate RNA, but also function differently in different tissues. It is of major interest to conduct computational or experiments assay to elucidate the mechanisms of eccDNA function, uncover key eccDNAs associated with diseases, and even develop related algorithms for liquid biopsy. Naturally, a comprehensive eccDNAs data resource is urgently needed to provide annotation and analysis more in-depth research. In this study, we constructed the eccBase (http://www.eccbase.net) in literature curation and database retrieval, which was the first database mainly collecting eccDNAs from Homo sapiens (n = 754,391) and Mus musculus (n = 481,381). Homo sapiens eccDNAs were taken from 50 kinds of cancer tissue and/or cell line, and 5 kinds of healthy tissues. The Mus musculus eccDNAs were sourced from 13 kinds of healthy tissue and/or cell line. We thoroughly annotated all eccDNA molecules in terms of basic information, genomic composition, regulatory elements, epigenetic modifications, and raw data. EccBase provided users with the ability to browse, search, download for targets of interest, as well as similarity alignment by the integrated BLAST. Further, comparative analysis suggested the cancer eccDNA is composed of nucleosomes and is prominently derived from the gene-dense regions. We also initially revealed that eccDNAs are strongly tissue-specific. In short, we have started a robust database for eccDNA resource utilization, which may facilitate studying the role of eccDNA in cancer development and therapy, cell function maintenance, and tissue differentiation.
Collapse
Affiliation(s)
- Haiyang Sun
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300350 Tianjin, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, 518102 Shenzhen, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300350 Tianjin, China
| | - Lingyun Zou
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, Chongqing University, 400014 Chongqing, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, 518102 Shenzhen, China
- Corresponding author at: Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, Chongqing University, 400014 Chongqing, China.
| |
Collapse
|
18
|
The landscape of extrachromosomal circular DNA (eccDNA) in the normal hematopoiesis and leukemia evolution. Cell Death Dis 2022; 8:400. [PMID: 36171187 PMCID: PMC9519993 DOI: 10.1038/s41420-022-01189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Elevated extrachromosomal circular DNA (eccDNA) has been reported to accelerate tumor pathogenesis. Although the eccDNA profiles of other tumors have been established, the landscape of the eccDNA of acute myeloid leukemia (AML) has not been revealed. Our study first depicted the eccDNA profile of normal hematopoiesis and AML evolution by exploiting the ATAC-seq and RNA-seq data from nine healthy donors and 12 AML patients, which contained a total of 137 cell samples and 96 RNA-seq samples (including 16 blood cell types of the normal hematopoietic and AML hierarchies). We found the number of eccDNAs generally increased with the evolution of normal hematopoiesis and AML. The ecDNAs and ring chromosomes were found to reappear both in normal hematopoiesis and AML cells. Furthermore, we compared the eccDNAs of AML with normal cells. There were almost 300 AML-specific genes, including the known oncogenes NRAS, MCL1, EVI1, GATA2, WT1, and PAK1. And the ecDNA (chr11: 58668376-58826008) occurred in five out of 17 AML evolution-related cells, which was associated with the high expression of the GLYATL1 gene and the high expressed GLYATL1 was a poor prognostic factor. In conclusion, the eccDNA profiles of normal hematopoiesis and AML evolution were depicted and the recurrent eccDNAs we revealed might be utilized in the treatment of AML as biomarkers.
Collapse
|
19
|
Sequence characterization of eccDNA content in glyphosate sensitive and resistant Palmer amaranth from geographically distant populations. PLoS One 2022; 17:e0260906. [PMID: 36103503 PMCID: PMC9473621 DOI: 10.1371/journal.pone.0260906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
The discovery of non-chromosomal circular DNA offers new directions in linking genome structure with function in plant biology. Glyphosate resistance through EPSPS gene copy amplification in Palmer amaranth was due to an autonomously replicating extra-chromosomal circular DNA mechanism (eccDNA). CIDER-Seq analysis of geographically distant glyphosate sensitive (GS) and resistant (GR) Palmer Amaranth (Amaranthus palmeri) revealed the presence of numerous small extra-chromosomal circular DNAs varying in size and with degrees of repetitive content, coding sequence, and motifs associated with autonomous replication. In GS biotypes, only a small portion of these aligned to the 399 kb eccDNA replicon, the vehicle underlying gene amplification and genetic resistance to the herbicide glyphosate. The aligned eccDNAs from GS were separated from one another by large gaps in sequence. In GR biotypes, the eccDNAs were present in both abundance and diversity to assemble into a nearly complete eccDNA replicon. Mean sizes of eccDNAs were similar in both biotypes and were around 5kb with larger eccDNAs near 25kb. Gene content for eccDNAs ranged from 0 to 3 with functions that include ribosomal proteins, transport, metabolism, and general stress response genetic elements. Repeat content among smaller eccDNAs indicate a potential for recombination into larger structures. Genomic hotspots were also identified in the Palmer amaranth genome with a disposition for gene focal amplifications as eccDNA. The presence of eccDNA may serve as a reservoir of genetic heterogeneity in this species and may be functionally important for survival.
Collapse
|
20
|
Abstract
In cancer, complex genome rearrangements and other structural alterations, including the amplification of oncogenes on circular extrachromosomal DNA (ecDNA) elements, drive the formation and progression of tumors. ecDNA is a particularly challenging structural alteration. By untethering oncogenes from chromosomal constraints, it elevates oncogene copy number, drives intratumoral genetic heterogeneity, promotes rapid tumor evolution, and results in treatment resistance. The profound changes in DNA shape and nuclear architecture generated by ecDNA alter the transcriptional landscape of tumors by catalyzing new types of regulatory interactions that do not occur on chromosomes. The current suite of tools for interrogating cancer genomes is well suited for deciphering sequence but has limited ability to resolve the complex changes in DNA structure and dynamics that ecDNA generates. Here, we review the challenges of resolving ecDNA form and function and discuss the emerging tool kit for deciphering ecDNA architecture and spatial organization, including what has been learned to date about how this dramatic change in shape alters tumor development, progression, and drug resistance.
Collapse
Affiliation(s)
- Vineet Bafna
- Department of Computer Science and Engineering and Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, California, USA;
| | - Paul S Mischel
- Department of Pathology and ChEM-H, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
21
|
Gao Y, Zhou Y, Wei L, Feng Z, Chen Y, Liu P, Peng Y, Huang Q, Gao L, Liu Y, Han Y, Shen H, Cai C, Zeng S. Hsa_Circ_0066351 Acts as a Prognostic and Immunotherapeutic Biomarker in Colorectal Cancer. Front Immunol 2022; 13:927811. [PMID: 36405685 PMCID: PMC9667793 DOI: 10.3389/fimmu.2022.927811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 11/05/2022] Open
Abstract
Circular RNA (circRNA), a novel class of non-coding RNA, has been reported in various diseases, especially in tumors. However, the key signatures of circRNA-competitive endogenous RNA (ceRNA) network are largely unclear in colorectal cancer (CRC). We first characterized circRNAs profile by using circRNA-seq analysis from real-word dataset. The expression level of hsa_circ_0066351 in CRC tissues and cell lines was detected by quantitative real-time PCR. Then, cell proliferation assay was used to confirm the proliferation function of hsa_circ_0066351. Next, Cytoscape was used to construct circRNA–miRNA–mRNA networks. Last but not least, the landscape of hsa_circ_0066351–miRNA–mRNA in CRC had been investigated in the bulk tissue RNA-Seq level and single-cell Seq level. We proved that hsa_circ_0066351 was significantly downregulated in CRC cell lines and tissues (P < 0.001), and was negatively associated with distant metastasis (P < 0.01). Significantly, the expression of hsa_circ_0066351 was associated with better survival in patients with CRC. Function assays showed that hsa_circ_0066351 could inhibit CRC cells proliferation. In addition, a ceRNA network, including hsa_circ_0066351, two miRNAs, and ten mRNAs, was constructed. Our analyses showed that these ten mRNAs were consistently downregulated in pan-cancer and enriched in tumor suppressive function. A risk score model constructed by these ten downstream genes also indicated that they were related to the prognosis and immune response in CRC. In conclusion, we demonstrated that a novel circRNA (hsa_circ_0066351) inhibited CRC proliferation, and revealed a potential prognostic and immunotherapeutic biomarker in CRC.
Collapse
Affiliation(s)
- Yan Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Le Wei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoqiao Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Le Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Changjing Cai, ; Shan Zeng,
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Changjing Cai, ; Shan Zeng,
| |
Collapse
|
22
|
Sakamoto Y, Miyake S, Oka M, Kanai A, Kawai Y, Nagasawa S, Shiraishi Y, Tokunaga K, Kohno T, Seki M, Suzuki Y, Suzuki A. Phasing analysis of lung cancer genomes using a long read sequencer. Nat Commun 2022; 13:3464. [PMID: 35710642 PMCID: PMC9203510 DOI: 10.1038/s41467-022-31133-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal backgrounds of cancerous mutations still remain elusive. Here, we conduct the phasing analysis of non-small cell lung cancer specimens of 20 Japanese patients. By the combinatory use of short and long read sequencing data, we obtain long phased blocks of 834 kb in N50 length with >99% concordance rate. By analyzing the obtained phasing information, we reveal that several cancer genomes harbor regions in which mutations are unevenly distributed to either of two haplotypes. Large-scale chromosomal rearrangement events, which resemble chromothripsis events but have smaller scales, occur on only one chromosome, and these events account for the observed biased distributions. Interestingly, the events are characteristic of EGFR mutation-positive lung adenocarcinomas. Further integration of long read epigenomic and transcriptomic data reveal that haploid chromosomes are not always at equivalent transcriptomic/epigenomic conditions. Distinct chromosomal backgrounds are responsible for later cancerous aberrations in a haplotype-specific manner.
Collapse
Affiliation(s)
- Yoshitaka Sakamoto
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shuhei Miyake
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Miho Oka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Ono Pharmaceutical Co., Ltd, Ibaraki, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yosuke Kawai
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoi Nagasawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
23
|
Tatman PD, Black JC. Extrachromosomal Circular DNA from TCGA Tumors Is Generated from Common Genomic Loci, Is Characterized by Self-Homology and DNA Motifs near Circle Breakpoints. Cancers (Basel) 2022; 14:cancers14092310. [PMID: 35565439 PMCID: PMC9101409 DOI: 10.3390/cancers14092310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Extrachromosomal circular DNA has emerged as a frequent genomic alteration in tumors. High numbers of circular DNAs correspond to poor prognosis suggesting an important function in tumor biology. However, despite mounting evidence supporting the importance of circular DNA, little is known about their production, maintenance, or selection. To provide insight into these processes, we analyzed circular DNA elements computationally identified in 355 TCGA tumors spanning 22 tumor types. Circular DNAs originated from common genomic loci irrespective of cancer type. Genes found in circularized genomic regions were more likely to be expressed and were enriched in cancer-related pathways. Finally, in support of a model for circle generation through either a homology or microhomology-mediated process, circles exhibit homology near their breakpoint. These breakpoints are also enriched in specific DNA motifs. Our analysis supports a model where gene-containing circles emerge from common, highly transcribed regions through a homology-mediated process.
Collapse
|
24
|
Cen Y, Fang Y, Ren Y, Hong S, Lu W, Xu J. Global characterization of extrachromosomal circular DNAs in advanced high grade serous ovarian cancer. Cell Death Dis 2022; 13:342. [PMID: 35418185 PMCID: PMC9007969 DOI: 10.1038/s41419-022-04807-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 01/02/2023]
Abstract
High grade serous ovarian cancer (HGSOC) is the most aggressive subtype of ovarian cancer and HGSOC patients often appear with metastasis, leading to the poor prognosis. Up to date, the extrachromosomal circular DNAs (eccDNAs) have been shown to be involved in cancer genome remodeling but the roles of eccDNAs in metastatic HGSOC are still not clear. Here we explored eccDNA profiles in HGSOC by Circle-Sequencing analysis using four pairs of primary and metastatic tissues of HGSOC patients. Within the differentially expressed eccDNAs screened out by our analysis, eight candidates were validated by outward PCR and qRT-PCR analysis. Among them, DNMT1circle10302690-10302961 was further confirmed by FISH assay and BaseScope assay, as the most significantly down-regulated eccDNA in metastatic tumors of HGSOC. Lower expression of DNMT1circle10302690-10302961 in both primary and metastatic tumors was associated with worse prognosis of HGSOC. Taken together, our finding firstly demonstrated the eccDNAs landscape of primary and metastatic tissues of HGSOC. The eccDNA DNMT1circle10302690-10302961 can be considered as a potential biomarker or a therapeutically clinical target of HGSOC metastasis and prognosis.
Collapse
Affiliation(s)
- Yixuan Cen
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yifeng Fang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yan Ren
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Shiyuan Hong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Weiguo Lu
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Junfen Xu
- Women's Reproductive Health Laboratory of Zhejiang Province; Women's Hospital; School of Medicine, Zhejiang University, Hangzhou, 310006, China. .,Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
25
|
Özturan D, Morova T, Lack NA. Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells 2022; 11:898. [PMID: 35269520 PMCID: PMC8909478 DOI: 10.3390/cells11050898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Androgen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight several outstanding questions and discuss potential mechanisms of this critical transcription factor.
Collapse
Affiliation(s)
- Doğancan Özturan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| | - Nathan A. Lack
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada;
| |
Collapse
|
26
|
Peter MR, Zhao F, Jeyapala R, Kamdar S, Xu W, Hawkins C, Evans AJ, Fleshner NE, Finelli A, Bapat B. Investigating Urinary Circular RNA Biomarkers for Improved Detection of Renal Cell Carcinoma. Front Oncol 2022; 11:814228. [PMID: 35174071 PMCID: PMC8841801 DOI: 10.3389/fonc.2021.814228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinomas (RCC) are usually asymptomatic until late stages, posing several challenges for early detection of malignant disease. Non-invasive liquid biopsy biomarkers are emerging as an important diagnostic tool which could aid with routine screening of RCCs. Circular RNAs (circRNAs) are novel non-coding RNAs that play diverse roles in carcinogenesis. They are promising biomarkers due to their stability and ease of detection in small quantities from non-invasive sources such as urine. In this study, we analyzed the expression of various circRNAs that were previously identified in RCC tumors (circEGLN3, circABCB10, circSOD2 and circACAD11) in urinary sediment samples from non-neoplastic controls, patients with benign renal tumors, and clear cell RCC (ccRCC) patients. We observed significantly reduced levels of circEGLN3 and circSOD2 in urine from ccRCC patients compared to healthy controls. We also assessed the linear variant of EGLN3 and found differential expression between patients with benign tumors compared to ccRCC patients. These findings highlight the potential of circRNA markers as non-invasive diagnostic tools to detect malignant RCC.
Collapse
Affiliation(s)
- Madonna R. Peter
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Fang Zhao
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Renu Jeyapala
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shivani Kamdar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Cynthia Hawkins
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew J. Evans
- Department of Laboratory Medicine, Mackenzie Health, Richmond Hill, ON, Canada
| | - Neil E. Fleshner
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Antonio Finelli
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bharati Bapat
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Bharati Bapat,
| |
Collapse
|
27
|
Zhang P, Peng H, Llauro C, Bucher E, Mirouze M. ecc_finder: A Robust and Accurate Tool for Detecting Extrachromosomal Circular DNA From Sequencing Data. FRONTIERS IN PLANT SCIENCE 2021; 12:743742. [PMID: 34925397 PMCID: PMC8672306 DOI: 10.3389/fpls.2021.743742] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/25/2021] [Indexed: 06/06/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) has been observed in different species for decades, and more and more evidence shows that this specific type of DNA molecules may play an important role in rapid adaptation. Therefore, characterizing the full landscape of eccDNA has become critical, and there are several protocols for enriching eccDNAs and performing short-read or long-read sequencing. However, there is currently no available bioinformatic tool to identify eccDNAs from Nanopore reads. More importantly, the current tools based on Illumina short reads lack an efficient standardized pipeline notably to identify eccDNA originating from repeated loci and cannot be applied to very large genomes. Here, we introduce a comprehensive tool to solve both of these two issues. Applying ecc_finder to eccDNA-seq data (either mobilome-seq, Circle-Seq and CIDER-seq) from Arabidopsis, human, and wheat (with genome sizes ranging from 120Mb to 17 Gb), we document the improvement of computational time, sensitivity, and accuracy and demonstrate ecc_finder wide applicability and functionality.
Collapse
Affiliation(s)
- Panpan Zhang
- Institut de Recherche pour le Développement (IRD), Montpellier, France
- Laboratory of Plant Genome and Development, University of Perpignan, Perpignan, France
| | - Haoran Peng
- Crop Genome Dynamics Group, Agroscope Changins, Nyon, Switzerland
- Department of Botany and Plant Biology, Section of Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Christel Llauro
- Laboratory of Plant Genome and Development, University of Perpignan, Perpignan, France
- Laboratory of Plant Genome and Development, Centre National de la Recherche Scientifique (CNRS), Perpignan, France
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope Changins, Nyon, Switzerland
| | - Marie Mirouze
- Institut de Recherche pour le Développement (IRD), Montpellier, France
- Laboratory of Plant Genome and Development, University of Perpignan, Perpignan, France
| |
Collapse
|
28
|
He J, Chu Z, Lai W, Lan Q, Zeng Y, Lu D, Jin S, Xu H, Su P, Yin D, Chu Z, Liu L. Circular RNA circHERC4 as a novel oncogenic driver to promote tumor metastasis via the miR-556-5p/CTBP2/E-cadherin axis in colorectal cancer. J Hematol Oncol 2021; 14:194. [PMID: 34781990 PMCID: PMC8591961 DOI: 10.1186/s13045-021-01210-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The main cause of death in colorectal cancer patients is metastasis. Accumulating evidences suggest that circRNA plays pivotal roles in cancer initiation and development. However, the underlying molecular mechanisms of circRNAs that orchestrate cancer metastasis remain vague and need further clarification. METHODS Two paired CRC and adjacent normal tissues were used to screen the upregulated circRNAs by circRNA-seq; then, cell invasion assay was applied to confirm the functional invasion-related circRNAs. According to the above methods, circHERC4 (hsa_circ_0007113) was selected for further research. Next, we investigated the clinical significance of circHERC4 in a large cohort of patients with CRC. The oncogenic activity of circHERC4 was investigated in both CRC cell lines and animal xenograft studies. Finally, we explored the molecular mechanisms underlying circHERC4 as a malignant driver. RESULTS We demonstrated that circHERC4 was aberrantly elevated in CRC tissues (P < 0.001), and was positively associated with lymph node metastasis and advanced tumor grade (P < 0.01). Notably, the expression of circHERC4 was associated with worse survival in patients with CRC. Silencing of circHERC4 significantly inhibited the proliferation and migration of two highly aggressive CRC cell lines and reduced liver and lung metastasis in vivo. Mechanistically, we revealed that circHERC4 inactivated the tumor suppressor, miR-556-5p, leading to the activation of CTBP2/E-cadherin pathway which promotes tumor metastasis in CRC. CONCLUSIONS CircHERC4 exerts critical roles in promoting tumor aggressiveness through miR-556-5p/CTBP2/E-cadherin pathway and is a prognostic biomarker of the disease, suggesting that circHERC4 may serve as an exploitable therapeutic target for patients with CRC.
Collapse
Affiliation(s)
- Jiehua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, People's Republic of China
| | - Ziqiang Chu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Wei Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Qiusheng Lan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yujie Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, People's Republic of China
| | - Shaowen Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Heyang Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Pengwei Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, People's Republic of China.
| | - Zhonghua Chu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Lu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
29
|
Cao X, Wang S, Ge L, Zhang W, Huang J, Sun W. Extrachromosomal Circular DNA: Category, Biogenesis, Recognition, and Functions. Front Vet Sci 2021; 8:693641. [PMID: 34568472 PMCID: PMC8458813 DOI: 10.3389/fvets.2021.693641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA), existing as double-stranded circular DNA, is derived and free from chromosomes. It is common in eukaryotes but has a strong heterogeneity in count, length, and origin. It has been demonstrated that eccDNA could function in telomere and rDNA maintenance, aging, drug resistance, tumorigenesis, and phenotypic variations of plants and animals. Here we review the current knowledge about eccDNA in category, biogenesis, recognition, and functions. We also provide perspectives on the potential implications of eccDNA in life science.
Collapse
Affiliation(s)
- Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
Wang Y, Huang R, Zheng G, Shen J. Small ring has big potential: insights into extrachromosomal DNA in cancer. Cancer Cell Int 2021; 21:236. [PMID: 33902601 PMCID: PMC8077740 DOI: 10.1186/s12935-021-01936-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Recent technical advances have led to the discovery of novel functions of extrachromosomal DNA (ecDNA) in multiple cancer types. Studies have revealed that cancer-associated ecDNA shows a unique circular shape and contains oncogenes that are more frequently amplified than that in linear chromatin DNA. Importantly, the ecDNA-mediated amplification of oncogenes was frequently found in most cancers but rare in normal tissues. Multiple reports have shown that ecDNA has a profound impact on oncogene activation, genomic instability, drug sensitivity, tumor heterogeneity and tumor immunology, therefore may offer the potential for cancer diagnosis and therapeutics. Nevertheless, the underlying mechanisms and future applications of ecDNA remain to be determined. In this review, we summarize the basic concepts, biological functions and molecular mechanisms of ecDNA. We also provide novel insights into the fundamental role of ecDNA in cancer.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Guopei Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
31
|
Xing J, Ning Q, Tang D, Mo Z, Lei X, Tang S. Progress on the role of extrachromosomal DNA in tumor pathogenesis and evolution. Clin Genet 2020; 99:503-512. [PMID: 33314031 DOI: 10.1111/cge.13896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022]
Abstract
The amplification of oncogenes on extrachromosomal DNA (ecDNA) provides a new mechanism for cancer cells to adapt to the changes in the tumor microenvironment and accelerate tumor evolution. These extrachromosomal elements contain oncogenes, and their chromatin structures are more open than linear chromosomes and therefore have stronger oncogene transcriptional activity. ecDNA always contains enhancer elements, and genes on ecDNA can be reintegrated into the linear genome to regulate the selective expression of genes. ecDNA lacks centromeres, and the inheritance from the parent cell to the daughter cell is uneven. This non-Mendelian genetic mechanism results in the increase of tumor heterogeneity with daughter cells that can gain a competitive advantage through a large number of copies of oncogenes. ecDNA promotes tumor invasiveness and provides a mechanism for drug resistance associated with poorer survival outcomes. Recent studies have demonstrated that the overall proportion of ecDNA in tumors is approximately 40%. In this review, we summarize the current knowledge of ecDNA in the field of tumorigenesis and development.
Collapse
Affiliation(s)
- Jichen Xing
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Diya Tang
- Department of Medical Oncology, Xiangya Hospital Central South University, Changsha, China
| | - Zhongcheng Mo
- Institute of Basic Medical Sciences, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaoyong Lei
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China
| | - Shengsong Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
32
|
Qiu H, Shao ZY, Wen X, Zhang LZ. New insights of extrachromosomal DNA in tumorigenesis and therapeutic resistance of cancer. Am J Cancer Res 2020; 10:4056-4065. [PMID: 33414985 PMCID: PMC7783743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023] Open
Abstract
In the past few decades, the studies of extrachromosomal DNA (ecDNA), which existed independently of chromosomes, were tepid. However, recent studies on ecDNA rekindled the enthusiasm of oncologists for further studying ecDNA. In this review, we summarized the recent advances of ecDNA in oncogenesis and oncotherapy. ecDNA consists of highly open chromatin, and its circular structure enables ultra-long-range chromatin contacts. ecDNA is not inherited in accordance with Mendel's laws. Furthermore, ecDNA is widely existed in cancer cells, but almost never found in normal cells. It has been found that ecDNA played important roles in tumorigenesis and tumor progression, including oncogene amplification, tumor heterogeneity, enhancer hijacking and genomic rearrangement. More importantly, ecDNA is closely related to cancer treatment resistance. In hence, further understanding of ecDNA would contribute to developing innovative targeting ecDNA therapies.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
| | - Zhi-Ying Shao
- Department of Interventional Ultrasound, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer HospitalHangzhou 310000, Zhejiang, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
| | - Long-Zhen Zhang
- Cancer Institute, Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
- Jiangsu Center for The Collaboration and Innovation of Cancer BiotherapyJiangsu, China
| |
Collapse
|